Stochastic second-gradient continuum theory for particle-based materials: part II - Université Gustave Eiffel
Article Dans Une Revue Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées Année : 2024

Stochastic second-gradient continuum theory for particle-based materials: part II

Résumé

This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed Finite Element (FE) and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.
Fichier principal
Vignette du fichier
publi-2024-ZAMP-PartII-LaValle_Soize_published.pdf (849.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04560066 , version 1 (26-04-2024)

Identifiants

Citer

Gabriele La Valle, Christian Soize. Stochastic second-gradient continuum theory for particle-based materials: part II. Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées, 2024, 75 (3), pp.93. ⟨10.1007/s00033-024-02232-9⟩. ⟨hal-04560066⟩
16 Consultations
42 Téléchargements

Altmetric

Partager

More