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Stochastic Second-Gradient Continuum Theory for Particle-Based Materials.
Part II

Gabriele La Vallea,∗, Christian Soizea

aUniversité Gustave Eiffel, MSME UMR 8208, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a compre-
hensive study on the development and application of a novel stochastic second-gradient continuum model for particle-
based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based
materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered.
The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for
uncertainties. The stochastic computational model is based on a mixed Finite Element (FE) and the Monte Carlo
(MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient
model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the ef-
fects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there
could be significant fluctuations in the displacements.

Keywords: Stochastic nonlocal elasticity, Stochastic second-gradient continuum, Particle-based materials

1. Introduction

This paper is the second part of the previous one [1].
Due to their unique properties and applications, particle-based materials are widely used in different fields, rang-

ing from engineering to biology. Accurately understanding and modeling these materials is crucial for designing
and analyzing advanced systems. This work focuses on particle-based materials, and therefore, factors such as the
topology of contacts between contiguous particles, particle sizes, and particle shapes are not considered. Note that
in the literature, particle-based materials are also known as granular materials [2], and the associated continuum-
type formulations are also known as continuum molecular formulations [3] and continuum particle models [4]. In
recent years, significant advancements have been made in the development of continuum models that capture the
mesoscale behavior of particle-based materials. These models include micropolar continuum theories [5, 6] for soil
failure modeling [7] and granular material modeling [8, 9], second-gradient theories [10, 11] for describing cohesive
materials with pseudo-granular structures [12] and metamaterials [13, 14, 15, 16, 17, 18, 19]. Among these, second-
gradient continuum models have gained considerable attention because capable of considering size effects without
rotational degree of freedom [20, 21]. Moreover, the particle-based continuum models allow solving nonlinear sys-
tems of equations resulting from Finite Element (FE) discretization whose number is much smaller than the number
of particles.

Second-gradient continuum models are characterized by deformation-energy functionals depending on the first
and second-order derivatives of the displacement field. Despite the numerous conducted studies, there is a current
lack of advancements in incorporating random fields to enhance the modeling capabilities of second-gradient con-
tinuum approaches. The fundamental mathematical tools used for modeling stochastic processes and random fields
are very developed and allow numerous problems to be studied in sciences: see for instance [22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32]. By using random fields, it becomes possible to consider the spatial variability and heterogeneity
inherent in real continuum materials (see for instance [33, 34, 35, 36, 37, 38, 39, 40]), allowing for a more accurate
and realistic mechanical description. Consequently, the integration of random fields represents a robust and essential
framework for refining second-gradient continuum models and investigating the stochastic behavior displayed by
particle-based materials.

In this context, our work proposes a novel stochastic second-gradient continuum model for particle-based mate-
rials. The primary aim is to develop a comprehensive framework that combines the advantages of second-gradient
continuum modeling with the incorporation of random fields. Our goal is to capture the inherent spatial variability
present in the material properties of these materials. Specifically, the proposed model will be applied to the analysis
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of colloidal crystals with uncertainties. Colloidal crystals represent an important class of particle-based materials.
They find applications in material sciences and biomedical engineering [41], as optical materials [42], and have the
potential to improve 3D printing technologies due to their tunable electrical, optical, mechanical, and rheological
properties [43]. Currently, significant scientific efforts are underway to realize complex colloidal crystals and novel
colloidal crystal microsensing systems [44, 45].

The paper is organized as follows. After clarifying the notation used throughout the article, Section 2 defines
the novel second-gradient continuum model for particle-based materials. In Section 3, we discuss the construction
of prior random fields, using the Maximum Entropy (MaxEnt) principle from Information Theory, to account for
uncertainties related to uncertain material parameters. Finally, Section 4 deals with an application devoted to colloidal
crystals with uncertainties.

Notation

Any vector in R3 is identified to the column matrix of its components on the canonical basis of R3. Any tensor
of any order will be represented by its components on the canonical basis. The components of a fourth-order
tensor x will be denoted by xi jkh. In particular, any second-order tensor will be represented with the matrix of
its components. In addition, the classical convention of summation on repeated indices is used.

A lowercase letter such as x, y or z is a real deterministic variable except when used as an integer index as i, j,
etc.

A boldface upper case letter such as X or Ξ is a real random vector and such as C or Λ is a random tensor.

A boldface lowercase letter such as x or ξ is a real deterministic vector and such as c or λ is a tensor.

A boldface lowercase letter between brackets, such as [x],
[
y
]
, or [z], is a real deterministic matrix. The entries

of [x] will be denoted by [x]i j.

A boldface uppercase letter between brackets, such as [X], [Y], or [Z], is a real random matrix. The entries of
[X] will be denoted by [X]i j.

⟨x, y⟩: standard inner product in Euclidean space Rn.

∥x∥: Euclidean norm in Rn equal to ⟨x, x⟩1/2.

[x]T : transpose of the matrix [x].

[ I ]: identity matrix.

Mn: ensemble of n × n real matrices.

MS
n : subset of Mn of symmetric matrices.

M+n : subset of MS
n of positive definite matrices.

M+n diag: subset of M+n of diagonal matrices.

T4: ensemble of 4-th order real tensors ti jkh.

TS
4 : subset of T4 of symmetric tensors such that ti jkh = t jikh = ti jhk = tkhi j.

T+4 : subset of TS
4 of positive definite tensors.

CN(Ω): set of real functions defined on Ω, which are N times continuously differentiable.

2. Defining the Deterministic Second-Gradient Continuum Theory for Particle-Based Materials

In this section, we adapt the results presented in [1], concerning an N-th order nonlocal elasticity continuum
model, to the second-gradient case, intending to capture second-gradient effects under the hypotheses of small de-
formations and small displacements.
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2.1. Nonlocal Second-Gradient Specific Deformation Energy

Let us consider a continuum body that occupies the open, bounded, and convex domain Ω, with a sufficiently
smooth boundary ∂Ω, defining the reference configuration. Let {ξ1, ξ2, ξ3} be the canonical basis of R3. Both
reference and deformed configurations are referred to the Cartesian coordinate system (O, ξ1, ξ2, ξ3). Let x 7→ r(x)
be a bijection from Ω = Ω ∪ ∂Ω into Ωt = r(Ω), assumed to be in C2(Ω). Let us assume that the nonlocal interaction
between particles is of interest within a sufficiently small range, such that the position vector r at the point x can be
approximated using its Taylor expansion in the neighborhood of x truncated at the second order,

ri(x) = ri(x) +
∂ri(x)
∂x j

(x j − x j) +
1
2
∂2ri(x)
∂x j∂xk

(x j − x j)(xk − xk) . (1)

Let us define the tensor f(1)(x) represented by the matrix [f(1)(x)] such that

[f(1)(x)]i j =
∂ri(x)
∂x j

(2)

and the tensor f(x, x) represented by the matrix [f(x, x)]i j

[f(x, x)]i j = [f(1)(x)]i j +
1
2
∂[f(1)(x)]i j

∂xk
(xk − xk) . (3)

Taking into account Eq. (2) and (3), Eq. (1) can be rewritten as

ri(x) = ri(x) + [f(x, x)]i j(x j − x j) , (4)

where det(f(x, x)) > 0 under the hypothesis of orientation-preserving deformations. Let us define the tensor c(x, x)
represented by the matrix [c(x, x)] in M+3 given by

[c(x, x)] = [f(x, x)]T [f(x, x)] . (5)

By taking into account Eq. (3), Eq. (5) can be rewritten as

[c(x, x)]pq = [f(1)(x)]ip[f(1)(x)]iq +
1
2

[f(1)(x)]ip
∂[f(1)(x)]iq

∂x j
(x j − x j) +

1
2
∂[f(1)(x)]ip

∂x j
[f(1)(x)]iq(x j − x j)

+
1
4
∂[f(1)(x)]ip

∂x j

∂[f(1)(x)]iq

∂xk
(x j − x j)(xk − xk) .

(6)

Let us define the Cauchy-Green tensor c(1)(x) represented by the matrix [c(1)(x)] in M+3 given by

[c(1)(x)] = [f(1)(x)]T [f(1)(x)] , (7)

and the third-order tensor c(12)(x) = ∇c(1)(x) whose components are

c(12)
pq j (x) = [f(1)(x)]ip

∂[f(1)(x)]iq

∂x j
+
∂[f(1)(x)]ip

∂x j
[f(1)(x)]iq . (8)

Finally, let us introduce the fourth-order tensor c(2)(x) whose components are

c(2)
pq jk(x) =

∂[f(1)(x)]ip

∂x j

∂[f(1)(x)]iq

∂xk
. (9)

Replacing Eqs. (7), (8), and (9) into Eq. (6) yields

[c(x, x)]pq = [c(1)(x)]pq +
1
2

c(12)
pq j (x)(x j − x j) +

1
4

c(2)
pq jk(x)(x j − x j)(xk − xk) . (10)

Let us introduce the tensor e(x, x) represented by the matrix [e(x, x)] in MS
3 defined by

[e(x, x)] =
1
2

([c(x, x)] − [ I ]) (11)

and let us introduce the tensor e(1)(x) represented by the matrix [e(1)(x)] in MS
3 defined by

[e(1)(x)] =
1
2

([c(1)(x)] − [ I ]) . (12)
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Eq. (11) can be rewritten in terms of components as

[e(x, x)]pq = [e(1)(x)]pq +
1
4

c(12)
pq j (x)(x j − x j) +

1
8

c(2)
pq jk(x)(x j − x j)(xk − xk) . (13)

Finally, from Eq. (4), we obtain∥∥∥r(x) − r(x)
∥∥∥2
−

∥∥∥x − x
∥∥∥2
=

〈
2[e(x, x)](x − x), (x − x)

〉
. (14)

Tensor e(x, x) can describe the change in configuration of the continuum due to the movement of x with respect to
x. Let us introduce the tensors e(12)(x, x), and e(2)(x, x) represented by the matrix [e(12)(x, x)] and [e(2)(x, x)] in MS

3
defined by

[e(12)(x, x)]pq =
1
4

c(12)
pq j (x)(x j − x j) , (15)

[e(2)(x, x)]pq =
1
8

c(2)
pq jk(x)(x j − x j)(xk − xk) . (16)

In a more general way, e(x, x) can be seen as the result of three different deformation mechanisms described by the
tensors e(1)(x), e(12)(x, x), and e(2)(x, x),

e(x, x) = e(1)(x) + e(12)(x, x) + e(2)(x, x) . (17)

The tensors e(1)(x), e(12)(x, x), and e(2)(x, x) have been obtained by fixing x and developing r in x in the neighborhood
of x. As a consequence, they can take into account the effects of the movement of x with respect to x. To take
into account the effects of the movement of x with respect to x, we can use the tensors e(1)(x), e(12)(x, x), and
e(2)(x, x), in which the position of x and x are switched. Consequently, within the proposed kinematic framework,
the nonlocal-specific deformation energy can be assumed to be a symmetric function with respect to x and x and
dependent on e(1)(x), e(1)(x), e(12)(x, x), e(12)(x, x), e(2)(x, x), and e(2)(x, x). In the following, we look for a nonlocal
specific deformation energy that is quadratic with respect to these tensors just mentioned that can take into account
nonlocal effects, and that can describe second-gradient effects. We add the hypothesis of small deformations and we
assume that there are no rigid body displacements. Let u be the displacement field such that r(x) = u(x) + x. Let us
define ϵ(1)(x) and ϵ(12)(x) as the approximation of e(1)(x) and e(12)(x) for small deformations,

[ϵ(1)(x)]i j =
1
2

(
∂ui(x)
∂x j

+
∂u j(x)
∂xi

)
, (18)

[ϵ(12)(x, x)]pq =
1
4
κ(12)

pq j (x)(x j − x j) , (19)

in which κ(12)(x) = 2∇ϵ(1)(x) approximates c(12)(x) for small deformations. Hence, for small deformations, we
propose to write the nonlocal specific deformation energy φ̂ as

φ̂(x, x) = φ̂(11)(x, x) + φ̂(112)(x, x) + φ̂(1212)(x, x) , (20)

where

φ̂(11)(x, x) =
1
4
α(x, x)

(
a(11)

i jkh(x) + a(11)
i jkh(x)

)
[ϵ(1)(x)]kh[ϵ(1)(x)]i j

+
1
4
α(x, x)

(̃
a(11)

i jkh(x) + ã(11)
i jkh(x)

) (
[ϵ(1)(x)]kh[ϵ(1)(x)]i j + [ϵ(1)(x)]kh[ϵ(1)(x)]i j

)
,

(21)

φ̂(112)(x, x) =
1
4
α(x, x)

(
a(112)

i jkh (x) + a(112)
i jkh (x)

)
([ϵ(1)(x)]kh[ϵ(12)(x, x)]i j + [ϵ(1)(x)]kh[ϵ(12)(x, x)]i j)

+
1
4
α(x, x)

(̃
a(112)

i jkh (x) + ã(112)
i jkh (x)

) (
[ϵ(1)(x)]kh[ϵ(12)(x, x)]i j + [ϵ(1)(x)]kh[ϵ(12)(x, x)]i j

)
,

(22)

and

φ̂(1212)(x, x) =
1
4
α(x, x)

(
a(1212)

i jkh (x) + a(1212)
i jkh (x)

)
[ϵ(12)(x, x)]kh[ϵ(12)(x, x)]i j

+
1
4
α(x, x)

(̃
a(1212)

i jkh (x) + ã(1212)
i jkh (x)

) (
[ϵ(12)(x, x)]kh[ϵ(12)(x, x)]i j + [ϵ(12)(x, x)]kh[ϵ(12)(x, x)]i j

)
,

(23)
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in which a(11)
i jkh, a(112)

i jkh , a(1212)
i jkh , ã(11)

i jkh, ã(112)
i jkh , and ã(1212)

i jkh are fourth-order constitutive tensors satisfying the usual properties
of symmetry, and α is an influence function. The total deformation energy functional π̂ will be given by

π̂ =

∫
Ω

∫
Ω

φ̂(x, x) dx dx . (24)

Eq. (24) allows us to formulate the deterministic and stochastic Boundary Value Problem (BVP) within the frame-
work of linear elasticity and small deformations.

2.2. Local Second-Gradient Specific Deformation Energy

Looking for a local theory in x, we derive Eq. (1) with respect to x and we obtain

[f(1)(x)]i j = [f(1)(x)]i j +
∂[f(1)(x)]i j

∂xk
(xk − xk) , (25)

∂[f(1)(x)]i j

∂xk
=
∂[f(1)(x)]i j

∂xk
. (26)

Taking into account the definition of c(1), c(12), and c(2) (see Eqs. (7), (8), and (8)) and under the assumption of small
deformations, Eqs. (25) and (26) lead us to

[ϵ(1)(x)]pq ≈ [ϵ(1)(x)]pq +
1
2
κ(12)

pq j (x)(x j − x j) = [ϵ(1)(x)]pq + 2 [ϵ(12)(x, x)]pq (27)

κ(12)
pq j (x) ≈ κ(12)

pq j (x) , (28)

[ϵ(12)(x, x)]pq ≈ −ϵ
(12)(x, x)]pq . (29)

Let us define the function

φ(x, x) =
1
2
α(x, x)a(11)

i jkh(x) [ϵ(1)(x)]kh [ϵ(1)(x)]i j + 2α(x, x)a(1212)
i jkh (x) [ϵ(12)(x, x)]kh [ϵ(12)(x, x)]i j , (30)

where
a

(11)
i jkh(x) = a(11)

i jkh(x) + 2̃a(11)
i jkh(x) , (31)

a
(1212)
i jkh (x) =

1
4

(
2 a(112)

i jkh (x) + 2 ã(1212)
i jkh (x) − a(1212)

i jhk (x) − 2 ã(112)
i jkh (x)

)
. (32)

Within the framework of small displacements, we can assume that the second-order derivatives are small with respect
to the first-order derivatives of displacement (when multiplied for the same constitutive parameter). As a result, we
assume that the products of first- and second-order derivatives, as well as those between second-order derivatives,
are negligible compared to the product of first-order derivatives. Under this hypothesis, we obtain

π̂ ≈ π =

∫
Ω

∫
Ω

φ(x, x) dx dx . (33)

Consequently, within the framework of linear elasticity, small deformations, and small displacements, we choose π
as the total deformation energy functional. Finally, let us introduce the local second-gradient specific deformation
energy w such that

w(x) =
∫
Ω

φ(x, x) dx . (34)

Let us define x 7→ m(0)(x) and x 7→ [m(2)(x)] such that

m(0)(x) =
∫
Ω

α(x, x) dx (35)

and
[m(2)(x)]pq =

∫
Ω

α(x, x)(xp − xp)(xq − xq) dx . (36)

Replacing Eq. (30) into Eq. (34) and considering Eqs. (35) and (36), we obtain

w(x) =
1
2

m(0)(x)a(11)
i jkh(x) [ϵ(1)(x)]kh [ϵ(1)(x)]i j +

1
2

[m(2)(x)]pq a
(1212)
i jkh (x)

∂[ϵ(1)(x)]kh

∂xp

∂[ϵ(1)(x)]i j

∂xq
. (37)
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Then, the deformation energy functional π will be given by

π =

∫
Ω

w(x) dx . (38)

Note that the center-symmetric model results from the assumption of linear elasticity, small deformations, and small
displacements (these assumptions will be verified for the application devoted to colloidal crystals).

2.3. Isotropic case

Under the isotropic hypothesis, we define the fourth-order elasticity tensors a(11)(x) and a(1212)(x) as follows,

a
(11)
i jkh(x) = λ(1)

1 (x)[ I ]i j[ I ]kh + λ
(1)
2 (x)

(
[ I ]ik[ I ] jh + [ I ]ih[ I ] jk

)
, (39)

and
a

(1212)
i jkh (x) = λ(2)

1 (x)[ I ]i j[ I ]kh + λ
(2)
2 (x)

(
[ I ]ik[ I ] jh + [ I ]ih[ I ] jk

)
, (40)

where λ(a)
b (x) > 0, with a and b in {1, 2}, are the Lamé parameters at point x. For the isotropic case, α has to be a

function of
∥∥∥x − x

∥∥∥. Replacing Eqs. (39) and (40) into Eq. (30), we obtain that for all x and x, then φ(x, x) > 0 and
isotropic. Consequently, for all x, considering Eq. (34), w(x) > 0 and isotropic.

3. Defining the Stochastic Second-Gradient Continuum Theory for Nonhomogeneous Particle-Based Materi-
als at the Mesoscale

In this section, we consider uncertainties in the mechanical properties of the proposed nonlocal continuum. The
stochastic modeling is limited to the isotropic case. Consequently, in Eqs. 39 and 40, λ(a)

b , with a and b in {1, 2}, are
modeled by random fields for which the prior probability model has to be defined. To facilitate the reading, we recall
some basic definitions of random variables and random fields (see [22, 23, 24] for details).

3.1. Probability space, random variable, and random field

(i) Let E a finite-dimensional Euclidean vector space equipped with the σ-algebra BE. If V is a E-valued random
variable defined on the probability space (Θ, T , P), V is the mapping θ 7→ V(θ) from Θ into E, measurable from
(Θ, T ) into (E, BE), and V(θ) is a realization (sample) of V for θ fixed in Θ. The probability distribution of V is
the probability measure PV(dv) on the measurable set (E, BE) (we will simply say on E). The volume element on E
is noted dv (for instance if E is Rn, dv is the Lebesgue measure) and when PV(dv) is written as pV(v)dv, pV is the
probability density function (pdf) on E of PV(dv) with respect to dv. Finally, E denotes the mathematical expectation
operator. Random variable V is of second-order if E{∥V∥2} =

∫
E
∥v∥2 PV(dv) < +∞.

(ii) A random field, V = {V(x), x ∈ Ω}, defined on (Θ, T , P), indexed by Ω ⊂ R3, with values in E, is the family of
random variables V(x) for x ∈ Ω. For all x fixed in Ω, V(x) is therefore a random variable with values in E. For θ
fixed inΘ, V(x; θ) is a realization of random variable V(x), and x 7→ V(x; θ) is a trajectory (or sample path) of random
field V. The probability distribution of V is defined as the uncountable family of the marginal probability distribution
PV(x1),...,V(xm)(dv1, . . . dvm; x1, . . . , xm) on (E, BE) of random variables V(x1), . . . ,V(xm) for any non ordered finite
partition x1, . . . , xm inΩ. Random field V is of second-order if for all x inΩ, E{∥V(x)∥2} =

∫
E
∥v∥2 PV(x)(dv; x) < +∞.

Second-order random field V is Gaussian if its system of marginal probability distributions is constituted of Gaussian
probability measures.

3.2. The stochastic second-gradient continuum

In the following, all random quantities are defined in the probability space (Θ,P,T ). Let us model the deter-
ministic fields x 7→ a(11)(x) and x 7→ a

(1212)(x), defined in Ω with values in T+4 , by the second-order tensor-valued
random fields {A(11)(x), x ∈ Ω} and {A(1212)(x), x ∈ Ω}, indexed by Ω with values in T+4 . In this framework, the dis-
placement field x 7→ u(x) is assumed to be a second-order random field {U(x), x ∈ Ω}. The local specific deformation
energy W(x) becomes random and it is written as

W(x) =
1
2

m(0)(x)A(11)
i jkh(x)[E(1)(x)]kh[E(1)(x)]i j +

1
2

[m(2)(x)]pq A
(1212)
i jkh (x)

∂[E(1)(x)]kh

∂xp

∂[E(1)(x)]i j

∂xq
. (41)

where
A

(11)
i jkh(x) = Λ(1)

1 (x)[ I ]i j[ I ]kh + Λ
(1)
2 (x)

(
[ I ]ik[ I ] jh + [ I ]ih[ I ] jk

)
, (42)

and
A

(1212)
i jkh (x) = Λ(2)

1 (x)[ I ]i j[ I ]kh + Λ
(2)
2 (x)

(
[ I ]ik[ I ] jh + [ I ]ih[ I ] jk

)
, (43)
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in which {Λ(a)
b (x), x ∈ Ω}, with a and b in {1, 2}, are the second-order random fields, indexed by Ω with values in

R+. Note that the influence function α is assumed to be deterministic and the randomness of the continuum model is
generated by the randomness of Λ(a)

b .

3.3. Prior probability model for the random fields

The prior probability model of tensor-valued fields {Λ(a)
b (x), x ∈ Ω} is constructed (see [46, 47]) using the Max-

imum Entropy (MaxEnt) principle within the framework of Information Theory (see [48, 49]). To achieve this, we
construct the prior probability model for the matrix-valued random field {[Λ(a)(x)], x ∈ Ω}, indexed by Ω with values
in the ensemble M+2 diag, defined by

[Λ(a)(x)] =
[
Λ

(a)
1 (x) 0
0 Λ

(a)
2 (x)

]
, a ∈ {1, 2} , (44)

while taking into account the available information outlined below. It is assumed that the considered system is
organized as an ordered structure in the mean configuration. It will be the case for the presented application devoted
to a colloidal crystals for which the colloids are organized in an ordered structure in the mean configuration (see
Fig. 1). As a consequence, matrix-valued random field {[Λ(a) (x)], x ∈ Ω} is the restriction to Ω of a homogeneous
(stationary in x) and second-order random field {[Λ(a) (x)], x ∈ R3}, indexed by R3 with values in M+2 diag. The mean
function of {[Λ(a) (x)], x ∈ R3}, which is thus independent of x, is a constant matrix given in M+2 diag,

E{[Λ(a) (x)]} = [λ(a)] , [λ(a)] =
[
λ(a)

1 0
0 λ(a)

2

]
∈M+2 diag , a ∈ {1, 2} . (45)

The second-order moment of [Λ(a)(x)]−1 must be finite for physical consistency. Note that, random matrix [Λ(a)(x)] is
almost-surely invertible, which does not imply neither the existence of a second-order moment of its inverse nor the
existence of a deterministic lower bound. Following the formulation proposed in [46], a deterministic lower bound
is introduced, which assures the existence of the second-order moment of the inverse. Consequently, the algebraic
representation of [Λ(a)(x)] is defined as

[Λ(a) (x)] =
1

1 + ε

(
ε [λ(a)] + [λ(a)]1/2[G(a) (x)][λ(a)]1/2

)
. (46)

In Eq. (46), ε is an arbitrarily sufficiently small positive number (defining a lower bound), [λ(a)]1/2 is the square root
of [λ(a)], and {[G(a) (x)], x ∈ R3} is a homogeneous, second-order, non-Gaussian M+2 diag-valued random field, which
must satisfies

E{[G(a) (x)]} = [ I2 ] , E{log(det[G(a) (x)])} = ν(a), |ν(a)| < +∞ , ∀x ∈ R3, (47)

as proposed in [50] and where ν(a) is independent of x. Matrix-valued random field {[G(a) (x)], x ∈ R3} is constructed
using the MaxEnt principle under constraints defined by Eq. (47) following the methodology and developments
proposed in [50, 51, 52, 46], which are summarized in Section 3.3.1 to 3.3.3. For these random field cases, the
construction is related to the one presented in [53, 54] . The proposed procedure, for which the considered system is
ordered in the mean configuration, can be adapted and generalized in the case where the mean system is not ordered.
The only difference is that matrix-valued random field {[Λ(a) (x)], x ∈ Ω} would become the restriction to Ω of a
non-homogeneous (non-stationary in x) random field for which its mean function E{[Λ(a) (x)]} = [λ(a)(x)] would
depend on x. Substituting [λ(a)] with [λ(a)(x)], the same procedure as before would still hold (see [50] for details).

3.3.1. Construction of a real-valued random germ {Z(a) (x) , x ∈ R3} and its generator
The construction of random field {[G(a) (x)], x ∈ R3} will be performed using a random germ {Z(a) (x) , x ∈ R3},

which allows the spatial correlation structure of [G(a)] to be define. Random germ {Z(a) (x) , x ∈ R3} is defined
as a Gaussian, second-order, centered, homogeneous random field, indexed by R3 with values in R, for which the
autocorrelation function is expressed, for a in {1, 2}, as

RZ(a)
(
η
)
=

3∏
j=1

ϱ(a)
j

(
η j

)
, ∀η = (η1, η2, η3) ∈ R3 , (48)

where, for all j ∈ {1, 2, 3},

ϱ(a)
j (0) = 1 , ϱ(a)

j

(
η j

)
=

4 ℓ(a)2
j

π2η2
j

sin2

 π η j

2 ℓ(a)
j

 for η j , 0 . (49)
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The symbols ℓ(a)
1 , ℓ(a)

2 , ℓ(a)
3 denote positive real numbers that represent the spatial correlation lengths of random germ

{Z(a) (x) , x ∈ R3}. Since the objective is to simulate {Z(a) (x) , x ∈ R3} at given points x1,. . . , xm of Ω ⊂ R3, we
define the random vector Z(a) = (Z(a)

1 , . . . ,Z
(a)
m ) with values in Rm, in which Z(a)

s = Z(a)(xs), with s = 1, . . . ,m.
The realizations of Z(a) are constructed using the method based on the Cholesky factorization of the covariance
matrix [50]. Since random vector Z(a) is centered, the covariance matrix

[
CZ(a)

]
∈M+m of Z(a) is given by the formula[

CZ(a)
]
rs = RZ(a) (xr − xs) . (50)

Let
[
CZ(a)

]
=

[
LZ(a)

]T [
LZ(a)

]
be the Cholesky factorization of

[
CZ(a)

]
, therefore, the random vector Z(a) can be written

as the linear transformation
Z(a) =

[
LZ(a)

]T Z̃
(a)
, (51)

in which Z̃
(a)
= (Z̃(a)

1 , . . . , Z̃
(a)
m ) is a Rm-random variable whose components Z̃(a)

1 , . . . , Z̃
(a)
m are m independent nor-

malized Gaussian random variables, i.e., E{Z̃(a)
s } = 0 and E{Z̃(a)2

s } = 1 for s = 1, . . . ,m. To finish the construc-
tion of the family of random matrices {[G(a) (xs)], s = 1, . . . ,m} as a function of the family of random variables
{Z(a)

s , s = 1, . . . ,m}, it is necessary to introduce a family of functions {y 7→ h (α, y)}α>0 defined in Section 3.3.2.

3.3.2. Definition of the family of functions {y 7→ h(α, y)}α>0y mapsto h(alpha, y)
Let us consider a positive real number α. Let y 7→ h (α, y) be the function from R into ]0,+∞[ such that

Γα = h (α,Y) is a Gamma random variable with parameter α and Y is a normalized Gaussian real-valued random
variable, i.e., E {Y} = 0 and E

{
Y2

}
= 1. For all y in R, mapping h(α, ·) is written as

h (α, y) = F−1
Γα

(FY (y)) , (52)

in which g 7→ FΓα (g) is the cumulative distribution function of random variable Γα, y 7→ FY (y) is the cumulative
distribution function of random variable Y ,

FΓα (g) =
∫ g

0

1
γ (α)

tα−1 e−t dt , FY (y) =
∫ y

−∞

1
√

2π
e−t2/2 dt , (53)

and α 7→ γ (α) is the Gamma function defined by

γ (α) =
∫ +∞

0
tα−1 e−t dt , (54)

in which F−1
Γα

is the inverse function of FΓα .

3.3.3. Construction of the matrix-valued random fields [G(a)] and [Λ(a)]Construction of the family of matrices
G(a)(x) and Lambda(a)(x)

Let Z(a)
11 (xs) and Z(a)

22 (xs) be two independent copies of the random variable Z(a)
s , with s = 1, . . . ,m, built as in

Section 3.3.1. Let δ[G(a)] be a real number independent of xs such that 0 < δ[G(a)] <
√

3/7, which allows for controlling
the statistical fluctuations of the random field {[G(a) (x)], x ∈ R3}. Let us define the random matrix [L(a) (xs)] with
values in M+2 diag such that

[L(a) (xs)] =

 σ
(a)
2

√
2 h

(
α(a)

1 ,Z
(a)
11 (xs)

)
0

0 σ(a)
2

√
2 h

(
α(a)

2 ,Z
(a)
22 (xs)

)
 , (55)

in which σ(a)
2 = δ[G(a)]/

√
3, α(a)

1 = 3/(2δ2
[G(a)]

), α(a)
2 = 3/(2δ2

[G(a)]
) − 1/2, and h (α, y) is defined by Eq. (52). Finally,

the random matrix [G(a) (xs)] is given by

[G(a) (xs)] = [L(a) (xs)]T [L(a) (xs)] . (56)

The objective is to simulate the family of random matrices {[Λ(a) (xs)], s = 1, . . . ,m}. Taking into account Eq. (46),
the random matrix [Λ(a) (xs)] is written as,

[Λ(a) (xs)] =
1

1 + ε

(
ε [λ(a)] + [λ(a)]1/2[L(a) (xs)]T [L(a) (xs)][λ(a)]1/2

)
, (57)

which depends on three correlation lengths ℓ(a)
1 , ℓ

(a)
2 , ℓ

(a)
3 and dispersion parameter δ[G(a)].
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4. Application to 2D colloidal crystals

Hereafter, we study a rectangular 2D colloidal crystal using the stochastic granular continuum model presented in
Section 3. The rectangular domain is denoted by Ω ⊂ R2(see 1) and its boundary is represented by ∂Ω0∪∂Ω1∪∂Ω2.
The horizontal and vertical displacements are zero on the left-end boundary denoted as ∂Ω0 and its edges denoted
as ∂∂Ω0. The vertical displacement is zero on the right-end boundary denoted as ∂Ω2 and its edges denoted as
∂∂Ω2. All components of displacement gradient are set to zero on both ∂Ω0 and ∂Ω2 . A uni-axial traction line force
qext is applied on ∂Ω2. The displacement field is free on the boundary ∂Ω1. Note that considering a rectangular
domain under uniform traction simplifies issues related to boundary conditions, wedges, corners, and the evolution
of nonhomogeneous strain with concentration bands. Further details can be found in [55].

x1

x2
qextb1

b2

Figure 1: Scheme of the considered colloidal crystal and of the simulated axial traction test.

4.1. Geometry characteristics, load magnitude, and random fields parameters

The dimensions of Ω are b1 = 1.38 × 10−5 m and b2 = 5.52 × 10−6 m. The colloidal crystal is assumed to be
constituted of particles organized in a triangular grid. Consequently, we introduce isotropic hypothesis [56, 57]. The
influence function α is defined by

α(x, x) =
1

ξ3(2π)3/2 exp

−1
2

∥∥∥x − x
∥∥∥2

ξ2

 . (58)

Regarding the mechanical properties, we refer to [58]. The mean shear modulus of the equivalent continuum is
λ(1)

1 = 20 Pa (200 dyn/cm2). Moreover, we choose λ(1)
2 = 8 Pa (80 dyn/cm2), leading to a ratio of 1.06 between

the bulk modulus and shear modulus. This choice corresponds to a physical state that is far from the melting point
of the phase transition [59]. We also choose λ(2)

1 = ζ λ
(1)
1 and λ(2)

2 = ζ λ
(1)
2 , in which three values 1, 103, and 106

of ζ are considered. Note that the second-order gradient effects are sensitive to ζ. To analyze these effects, we
are volunteering small and large values of ζ. These properties can vary with particle size and shape, interparticle
interactions, packing, ordering, temperature, surface effects, external environment, and more [56, 57]. The effect
of line forces qext of different amplitudes ranging from zero to 10−5 N/m is investigated. We consider random
stiffnesses controlled by the dispersion parameter δ[G(1)] = δ[G(2)] = δ[G] and the two correlation lengths ℓ1 and ℓ2 such
that ℓ1 = ℓ2 = ℓ. A parametric study is conducted for two different values of δ[G], 0.1 and 0.2 (10 % and 20 %), and
two different values of ℓ, 2.76 × 10−7 m (0.276 µm) and 5.52 × 10−7 m (0.552 µm). The sensitivity of the mechanical
response of colloidal crystal is analyzed concerning δ[G] and ℓ, and three values 10−6 m (1 µm) and 2× 10−6 m (2 µm)
of interaction length ξ are considered in Eq. 58.

4.2. Computational aspects

The computational model is constructed using the mixed FE method, as described in [60, 61], with a 2D triangular
mesh. The characteristic mesh length is chosen equal to 2.76 × 10−7 m corresponding to 2 408 mesh elements and
24 646 degrees of freedom. The displacement field u and its gradient ∇xu are treated as unknowns, subject to
constraints imposed via Lagrange multipliers. The Python code used in this work is based on the FEniCS project,
accessible at http://www.fenicsproject.org/download. To perform massive parallelization, the MPI library is used.
An example of the computational implementation is provided in [62] and is available for use under the GNU Public
License [63]. The implementation of the prior probabilistic model has been made in this code.

For constructing the random fields {Λ(b)
a (x) , x ∈ Ω}, we consider a partition of Ω consisting of m subdo-

mains, whose centroids are denoted as x1, . . . , xm. After selecting the parameters δ[G] and ℓ for the random fields
{Λ

(b)
a (x) , x ∈ Ω} with a and b in {1, 2}, we generate n independent realizations of them at x1, . . . , xm. For fixed θ in

Θ, the trajectories of random fields {Λ(b)
a (x; θ) , x ∈ Ω} are piecewise constant functions. For the s-th partition of Ω,
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with s = 1, . . . ,m, we assume that this constant value is equal to Λ(b)
a (xs; θ). The strong stochastic solution is then

constructed using the Monte Carlo (MC) numerical simulation using the n realizations of the random fields. The
sensitivity of the mechanical response concerning uncertainties is analyzed by examining a finite set of scalar obser-
vations that are expressed in terms of displacements. These observations include the horizontal displacement U1

1 at
x1 = (b1, 0) and the absolute value |U2

2 | of the transversal displacement at x2 = (b1/2, b2/2). Let m(n)
U1

1
, δ(n)

U1
1
, m(n)
|U2

2 |
, and

δ(n)
|U2

2 |
be the estimation of the mean values and coefficient of variations of U1

1 and |U2
2 | performed with n realizations.

The convergence of the stochastic solver with respect to n is monitored (see ([46] pp. 35)) by the quantity ε̃(n)
U1

1
/m(n)

U1
1

and ε̃(n)
|U2

2 |
/m(n)
|U2

2 |
that can be expressed as η δ(n)

U1
1
/
√

n and η δ(n)
|U2

2 |
/
√

n with η = G−1 (0.95), in which G is the standard

normal cumulative distribution function. The probability density functions of U1
1 and |U2

2 | are estimated using the
Gaussian Kernel Density Estimation (KDE) method. Moreover, we analyze the graph (u1

1(p), q
ext) and (|u2

2(p)|, q
ext),

where u1
1(p) and |u2

2(p)| are the p-th percentile of U1
1 and |U2

2 |. Confidence intervals are constructed for these graphs.

4.3. Analyzing convergences and quantifying uncertainty propagation
We recall that x1 = (b1, 0) and x2 = (b1/2, b2/2) represent two points of Ω, and U1

1 = U1(x1) and U2
2 = U2(x2)

denote the horizontal and transversal displacements at x1 and x2, respectively.

4.3.1. Convergence of stochastic solver
The convergence of the stochastic responses is verified as a function of the number n of realizations by evaluating

the quantities ε̃U1
1
/m(n)

U1
1

and ε̃|U2
2 |
/m(n)
|U2

2 |
defined, as previously explained, by

ε̃(n)
U1

1
(η)

m(n)
U1

1

=

η δ(n)
U1

1
√

n
,
ε̃(n)
|U2

2 |
(η)

m(n)
|U2

2 |

=

η δ(n)
|U2

2 |
√

n
. (59)

Fig. 2 shows that there is the 95% probability of having an error of at most 0.02% in the mean values of U1
1 ,

and of at most 0.2% in the mean values of |U2
2 | when considering the number of realizations n = 10 000. Hence,

good convergence is obtained. The results are provided for axial external load qext = 10−5 N/m, correlation length
ℓ = 2.76 × 10−7 m, ξ = 10−6 m, ζ = 1 and ζ = 103, δ[G] = 10 % and δ[G] = 20 %.

2000 4000 6000 8000 10000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

n

ϵ̃
U
11
/m

U
11
(%

)

ϵ̃
U1
1 /mU1

1 as a function of n

(a)

2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

n

ϵ̃

U
22

/m


U
22

(%

)

ϵ̃ U2
2/mU2

2 as a function of n

(b)

Figure 2: Convergence analysis of the stochastic solver. Graphs (a) n 7→ ε̃U1
1
/mU1

1
and (b) n 7→ ε̃

|U2
2 |
/m
|U2

2 |
. External load qext = 10−5 N/m,

correlation length ℓ = 2.76 × 10−7 m, ξ = 10−6 m, ζ = 1 (black), ζ = 103 (red), δ[G] = 10 % (dashed line), and δ[G] = 20 % (solid line).

4.3.2. Probability Density Functions with Fixed Correlation and Interaction Lengths
The pdfs u1

1 7→ pU1
1
(u1

1) and u2
2 7→ p|U2

2 |
(u2

2) are estimated using n = 10 000 realizations. We assume axial external
load qext = 10−5 N/m, correlation length ℓ = 2.76×10−7 m, ξ = 10−6 m and δ[G] equal to 10 % and 20 % . Concerning
component U1

1 , in Fig. 3, it can be observed that the mean value and the standard deviation are increasing with the
values of δ[G]. In addition, the mean value decreases as the second-order gradient effects, depending on ζ, increase.
Concerning |U2

2 |, in Fig. 4, the same remarks hold. These remarks are further supported by Fig. 5 displaying the
coefficients of variation δU1

1
and δ|U2

2 |
of U1

1 and U2
2 , respectively. We observe that δ|U2

2 |
is much larger than δU1

1
. This

result can be attributed to the similar values of standard deviations σU1
1

of U1
1 and σ|U2

2 |
of |U2

2 |, as shown in Fig. 6,
despite the much smaller mean value of |U2

2 | compared to the mean value of U1
1 . In addition, note that second-order

effects increase the coefficient of variation of U1
1 and decrease the coefficient of variation of |U2

2 |.
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Figure 3: Graphs of u1
1 7→ pU1

1
(u1

1) for (a) ζ = 1 and (b) ζ = 103. External load qext = 10−5 N/m, correlation length ℓ = 2.76×10−7 m, ξ = 10−6 m,
δ[G] = 10 % (dashed line), and δ[G] = 20 % (solid line).
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Figure 4: Graphs of u2
2 7→ p

|U2
2 |

(u2
2) for (a) ζ = 1 and (b) ζ = 103. External load qext = 10−5 N/m, correlation length ℓ = 2.76 × 10−7 m,

ξ = 10−6m, , δ[G] = 10 % (dashed line), and δ[G] = 20 % (solid line).
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Figure 5: Graphs of (a) δU1
1

and (b) δ∣∣∣U2
2

∣∣∣ as a function of ζ. External load qext = 10−5 N/m, correlation length ℓ = 2.76 × 10−7 m, ξ = 10−6 m,
δ[G] = 10 % (dashed line), and δ[G] = 20 % (solid line).
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Figure 6: Graphs of σU1
1
/σ
|U2

2 |
as a function of δ[G]. External load qext = 10−5 N/m, correlation length ℓ = 2.76 × 10−7 m, ξ = 10−6 m, ζ = 1

(solid line), ζ = 103 (dashed line), and ζ = 106 (dotted line).

4.3.3. Effect of the correlation length
Let us consider qext = 10−5 N/m, ξ = 10−6 m, ζ = 106, δ[G] = 20%, and a number of realizations n = 10 000.

Fig. 7 shows how the probability density function u1
1 7→ pU1

1
(u1

1) and u2
2 7→ p|U2

2 |
(u2

2) changes as the correlation length
ℓ changes. These functions are built using the Gaussian KDE method. As expected, an increase in correlation leads
to greater randomness of the system.
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Figure 7: Graphs of (a) u1
1 7→ pU1

1
(u1

1) and (b) u2
2 7→ p

|U2
2 |

(u2
2). External load qext = 10−5 N/m, δ[G] = 20 %, ζ = 106, ξ = 10−6 m, correlation

length ℓ = 2.76 × 10−7 m (dashed line) and ℓ = 5.52 × 10−7 m (solid line).

4.3.4. Effect of the interaction length
Consider qext = 10−5 N/m, ℓ = 2.76 × 10−7 m, ζ = 106, δ[G] = 20 %, and a number of realizations n = 10 000.

Fig. 8 illustrates the changes in the probability density functions u1
1 7→ pU1

1
(u1

1) and u2
2 7→ p|U2

2 |
(u2

2) as the interaction
length ξ varies. An increase in interaction length leads to greater rigidity within the system. This phenomenon is
considered physically plausible because extending the interaction length implies greater cooperation among various
parts of the continuum. Note that the proposed mechanical model can be regarded as an extension of Eringen model
for higher interaction lengths by introducing second-gradient effects. The model can be extended to encompass
higher-order effects beyond the second.

4.3.5. Graphs of the force-displacement relationships and their confidence regions
Fig. 9 and 10 display the confidence regions with the probability level 95 % of the force-displacement graphs

(u1
1(p), q

ext) and (|u2
2(p)|, q

ext), where we recall that u1
1(p) and |u2

2(p)| are the p-th percentile of u1
1 and |u2

2|. The results are
obtained for correlation length ℓ = 2.76 × 10−7 m, δ[G] = 20 %, and ξ = 10−6 m. The confidence regions are built
for two different values of ζ, 1 and 103. The confidence region related to the axial displacement U1

1 is smaller due to
the smaller coefficient of variation δU1

1
compared to δ|U2

2 |
. Note that the confidence interval of U1

1 increases with ζ,
whereas for |U2

2 |, it decreases as ζ increases. Therefore, the second-gradient nonlocal effects, which are proportional
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Figure 8: Graphs of (a) u1
1 7→ pU1

1
(u1

1) and (b) u2
2 7→ p

|U2
2 |

(u2
2). External load qext = 10−5 N/m, correlation length ℓ = 2.76 × 10−7m, δ[G] = 20 %,

ζ = 106, ξ = 2 × 10−6 m (dashed line), and ξ = 10−6 m (solid line).

to ζ, amplify the randomness of U1
1 and reduce that of |U2

2 |. These results align with those regarding the coefficients
of variation shown in Fig. 5.

Studying the confidence interval for the force-displacement relationship is crucial in the context of understanding
and manipulating the structural, mechanical, and optical properties of colloidal crystals. In the presented applica-
tions, constitutive parameters are assumed to be known a priori; hence, the related confidence intervals are omitted.
Conversely, the confidence intervals of constitutive parameters are crucial within the framework of experimental
constitutive identification, a topic not explored in this paper.
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Figure 9: Confidence region with the probability level 95 % for the graph (u1
1(p), q

ext) for (a) ζ = 1 and (b) ζ = 103 truncated at qext equal to

10−5 N/m. The results are obtained considering correlation length ℓ = 2.76 × 10−7m, δ[G] = 20 %, and ξ = 10−6 m. The solid line represents the
statistical mean value.

5. Conclusion

This work has focused on developing a novel deterministic and stochastic second-gradient continuum model for
granular materials, based on pairwise particle interactions. This model could be viewed as an extension Eringen non-
local elasticity to account for larger interaction lengths. By incorporating assumptions of small displacements and
deformations, we have obtained a novel center-symmetric second-gradient continuum model within a linear elastic
framework. The proposed model effectively captures and describes second-gradient effects. The model could be
generalized under large deformations and large displacements hypotheses. To enhance the deterministic model, we
have introduced random fields to characterize uncertain constitutive parameters. For the isotropic case, the construc-
tion of these random fields has been based on the Maximum Entropy principle. The same procedure could be applied
to extend the probabilistic modeling to the non-isotropic cases. Lastly, we have explored the main features of the
resulting stochastic second-gradient continuum within an application framework involving axial tests on colloidal
crystals. Notably, our findings show that second-gradient effects increase the randomness of axial displacements
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Figure 10: Confidence region with the probability level 95 % for the graph (|u2
2(p) |, q

ext) for (a) ζ = 1 and (b) ζ = 103 truncated at qext equal to

10−5 N/m. The results are obtained considering correlation length ℓ = 2.76 × 10−7 m, δ[G] = 20 %, and ξ = 10−6 m. The solid line represents the
statistical mean value.

while decreasing the randomness of the transversal ones. Moreover, the obtained probability density functions for
horizontal and axial displacements, under different hypotheses concerning coefficients of variation and correlation
lengths of the random constitutive properties, are, in general, non-symmetric and non-Gaussian. This aspect em-
phasizes the importance of performing accurate uncertainty quantification, showing that mean values and standard
deviations are not enough to characterize the mechanical response of continua characterized by random constitutive
properties.

The novel proposed stochastic second-gradient continuum model finds many applications concerning granular
materials. We have addressed constitutive parameter identification in [64]. A key advantage of the proposed second-
gradient continuum model is the possibility to define a symmetric and positive-definite acoustic tensor. This enables
the formulation of an acoustic tensor methodology for experimentally identifying the constitutive tensors associated
with both first- and second-gradient effects. Furthermore, ongoing studies aim to describe the nonlinear hardening
behavior of colloidal gels with increasing shear deformation [65] and of colloidal crystals with increasing tempera-
ture [66]. Within this framework, we would like to investigate the ability of the proposed second-gradient model to
describe nonlinear constitutive behaviors under monotonic loading corresponding to plastic deformation. The same
approach has been used for modeling pantographic structures under axial tests (see [67]). Finally, an interesting
research insight is to find a microstructure resulting in the proposed second-gradient continuum model. This is not
the purpose of this paper, but it could help in the design of novel metamaterials exhibiting nonclassical mechanical
behaviors.
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