A multi-model approach for wooden furniture failure under mechanical load
Résumé
Furniture failure generally appears at junctions between wooden parts. Failure prediction is a challenging problem considering the various technologies used for the assembly, the geometric dimensions of the wooden assembled parts and of the assembly components as well as the material properties of the wooden parts. Being able to provide a procedure for failure analysis is of great interest to the furniture industry. This paper proposes a multi-model approach in 3 steps: (i) a simplified global modeling of the whole structure (high loft bed) taking into account the specific geometry of each wooden part (beams or plates), (ii) a three-dimensional local numerical analysis of a through-bolt junction subjected to the mean critical load identified during a series of experimental compression tests to determine the local stresses in such a corner-type junction, and (iii) the application of an ad hoc failure criterion adapted to the anisotropic behavior of wood for failure prediction in through-bolt junctions.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|