Fault-prognosability, K-step prognosis and K-step predictive diagnosis in partially observed petri nets by means of algebraic techniques - Université Gustave Eiffel
Article Dans Une Revue Automatica Année : 2024

Fault-prognosability, K-step prognosis and K-step predictive diagnosis in partially observed petri nets by means of algebraic techniques

Résumé

In this paper, we explore some issues relevant to fault monitoring in discrete event systems modeled by partially observed LPNs with, possibly indistinguishable observable events and acyclic unobservable subnet. Firstly, we address the (offline) fault-prognosability analysis problem. Subsequently, we tackle the two online problems of K-step fault prognosis and K-step predictive diagnosis. We propose algebraic formulations and solutions to these problems. Namely, a necessary and sufficient condition for fault-prognosability is established based on solving an integer optimization problem. The proposed approach is applicable for bounded Petri nets. As for the K-step prognosis and K-step predictive diagnosis, algebraic approaches based on state estimation on a sliding horizon are elaborated to produce relevant verdicts. The established results for K-step prognosis and K-step predictive diagnosis are applicable for both bounded and unbounded Petri nets.
Fichier non déposé

Dates et versions

hal-04397381 , version 1 (16-01-2024)

Identifiants

Citer

Amira Chouchane, Mohamed Ghazel. Fault-prognosability, K-step prognosis and K-step predictive diagnosis in partially observed petri nets by means of algebraic techniques. Automatica, 2024, 162, pp.111513. ⟨10.1016/j.automatica.2024.111513⟩. ⟨hal-04397381⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More