Effect of embedding depth on the monotonic lateral response of monopiles in sand: centrifuge and numerical modelling
Résumé
An experimental campaign is conducted on a 100g centrifuged monopile model, impact driven, into saturated dense sand, down to three embedding depths, corresponding to three slenderness ratios of 5, 4 and 3. These models are instrumented with optical fibres to measure the bending moment profile along the monopile. A new method is developed to determine the experimental soil reaction curves by considering the distributed moment part from the measured bending moment. This distributed moment is assessed by the one-dimensional finite-element (1D FE) model of the PISA (pile soil analysis) method. The key features of this study are: (a) the monopile behaves from pure rotation to combined rotation–flexure as the slenderness ratio is enhanced from 3 to 5, inducing a less pronounced linear rotation–deflection response at ground level; (b) although the distributed moment assessed in the PISA project is very low, the developed method is useful to explore the experimental local behaviour of laterally loaded monopiles; (c) the 1D FE PISA model captures reasonably well the overall behaviour of laterally loaded centrifuged driven monopiles, even if it is less accurate for the local behaviour.