Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in 5G and Beyond Mobile Networks - Université Gustave Eiffel
Communication Dans Un Congrès Année : 2022

Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in 5G and Beyond Mobile Networks

Badre Bousalem
  • Fonction : Auteur
  • PersonId : 1241436
Vinicius F Silva
  • Fonction : Auteur
  • PersonId : 1241437
Rami Langar
  • Fonction : Auteur
  • PersonId : 1078053
Sylvain Cherrier

Résumé

In this demo, we present a 5G prototype for attacks detection and mitigation in sliced networks leveraging Machine Learning (ML). Our prototype, based on OpenAirInterface, allows creating network slices on demand and managing physical resources dynamically according to the users' behavior, while considering the inputs from a northbound Software Defined Network (SDN) application. We focus here on Distributed Denial of Service (DDoS) attacks, where one or multiple malicious users generate attacks on the 5G Core Network. Based on our developed ML module, we show that our prototype is able to detect such attacks, then automatically creates a sinkhole-type slice with a small portion of physical resources, and isolates the malicious users within this slice to mitigate the attackers' action. We demonstrate the effectiveness of our approach by showing the decrease in the network throughput for the malicious users by a factor of 15, while maintaining a high network throughput for benign users.
Fichier principal
Vignette du fichier
Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in 5G and Beyond Mobile Networks.pdf (771.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04046662 , version 1 (26-03-2023)

Identifiants

Citer

Badre Bousalem, Vinicius F Silva, Rami Langar, Sylvain Cherrier. Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in 5G and Beyond Mobile Networks. 8th International Conference on Network Softwarization (NetSoft 2022), Jun 2022, Milan, Italy. pp.228-230, ⟨10.1109/NetSoft54395.2022.9844053⟩. ⟨hal-04046662⟩
97 Consultations
334 Téléchargements

Altmetric

Partager

More