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Abstract—Positioning is a critical function in every intelligent
vehicle application. Most applied system is a GNSS (Global
Navigation Satellite System)-based receiver, cheap and offering
a continuous meter-level accuracy. However accuracy strongly
depends on the satellite signal reception state: LOS (Line of
sight), that is direct, optimal signal or NLOS (Non LOS), i.e
received without direct visibilty and after one or more reflections
of the signal. Based on previous work, this paper summarizes
different weighting schemes applied to mitigate these local effects
on GNSS signals and enhance position accuracy in land transport
environment. A database collected by ISAE is used for application
and comparison of the different schemes. One of them not only
relies on GNSS signals but also on satellite state identification
thanks to the use of a fisheye camera. This state allows us to
deweight degraded measurements without excluding them, in
order to keep availability. The paper shows that considering this
additional information allows the WLS (Weighting Least Square)
to significantly increase accuracy in every types of environments.
If state of the art weighting schemes already improve accuracy
by 65 and 77% over ordinary least squares in the 2D plan,
our weight further improves accuracy by 40% compared to the
classical elevation-based weight.

Index Terms—GNSS, Localisation, Weighting schemes, Vision

I. INTRODUCTION

GNSS-based localisation systems are nowadays part of our
everyday lives. Embedded in smartphones, they inform us
about our own positions and are the core of a number of
applications: from navigation of course, to sport, social net-
works, weather forecast, delivery servies etc. In land transport
applications, they allow for guidance, traffic management,
toll, emergency services... with different levels of require-
ments. The generalization of such tools increased performance
requirements with new services. However, GNSS receivers
suffer from degraded performance in many land transportation
environment such as urban areas. Indeed, optimal performance
require a number a satellite signal to be received in a Line of
Sight (LOS) condition, meaning that any obstacle can disturb
signal propagation and time of arrival estimation, basis for
position computation.

Main disturbance in land transport area is multipath and
NLOS (Non Line of Sight). Multipath is usually characterised
by the reception of both a direct signal and one or more
echoes of the same signal. NLOS is a particular case where
echoes are received in absence of the direct ray. If some other
error sources can be corrected by models, as atmospheric
delays, these effects are by definition very local, that make
them difficult to model. Literature is abundant on multipath
mitigation, especially in urban areas. Considering GNSS as
a standalone solution, mitigation techniques address antenna
technology, receiver signal processing or estimation block. But
some more solutions also include the use of complementary
heterogeneous sensors to compensate some of the GNSS
drawbacks. Following previous work [1], this paper intends
to compare different mitigation techniques based on weighted
least squares from state of the art literature on a real data set.
Most of the weighting schemes applied here rely on GNSS
alone, but one will benefit from satellite state of reception
knowledge given by a fisheye image processing algorithm
developped in detail in [2]. Our study is performed in the
framework of the French Ferromobile project, that deals with
the development of a multimodal, flexible and electric vehicle
capable of travelling both on roads and rails. The vehicle will
be equiped of an on-board positioning system, which requires
to be accurate and robust whatever its surroundings.

II. MAIN WLS

One of the techniques to achieve precise positioning within
the Global Navigation Satellite System (GNSS) is the im-
plementation of sophisticated weighting schemes for satellite
signals to mitigate local errors and enhance reliability. Over
the years, numerous weighting methodologies have been pro-
posed and refined, each endeavoring to optimize positioning
accuracy by considering factors such as signal quality, satellite
geometry, and environmental conditions.

In GNSS applications, the signal propagation time between
the receiver and the satellite is typically represented using
pseudo-range measurements ρ. These ranges account for mea-



surement erros such as ionospheric and tropospheric delays,
local effetcs and other noises.

The pseudo-range residual measurements [3] as follows :

∆ρ = H∆x+ ε (1)

where H is the design matrix(n× 4). The vector ε com-
prises pseudo-range measurement errors, which are presumed
to follow a normal distribution, denoted as ε ∼ N (0,Σ).

H is designed as:

H =


ax1 ay1 az1 1
ax2 ay2 az2 1

...
...

...
...

axn ayn azn 1

 (2)

where ai = (axi, ayi, azi) are unit vectors that indicate the
direction from the linearization point to the i− th satellite.

In case 1, where n = 4 and the linearization point is very
close to the user’s true position, ∆x is a vector representing
the variations in position and time offsets.

In another case n > 4, the ordinary least squares (OLS)
method can be employed to estimate ∆x :

∆x =
(
HTH

)−1
HT∆ρ (3)

Performing weighting enhances reliability. Therefore, to
achieve a more accurate localization estimate, ∆x should
be defined using the estimation technique of Weighted Least
Squares (WLS) :

∆x =
(
HTWH

)−1
HTW∆ρ (4)

Where W denotes the measurement weighting matrix, typi-
cally defined as Σ−1, i.e., the inverse of the covariance matrix
of observation error.

Therefore, the estimated coordinates x̂ are obtained by
combining the linearization point with the variation vector ∆x.

x̂ = ∆x+ x (5)

In this paper, we evaluate various weighting schemes,
such as Elevation-based WLS(Groves) [4], Sigma-ϵ [5], and
CAPLOC-WLS [1]. These schemes correspond to the carrier-
to-noise ratio (C/No), satellite elevation, and line-of-sight
(LOS) versus non-line-of-sight (NLOS) satellite classifica-
tions, among other factors.

A. Elevation-based WLS(Groves)

A weighting model utilizing elevation as a criterion exists in
the literature [4]. This model, referred to as Elevation-based
WLS(Groves) by us, is based on an exponential elevation-
based weighting scheme. This scheme only relies on the
satellite elevation, without any knowledge on its satellite state
of reception ((LOS) or not), even in, in practice, higher
satellites are more likely (LOS) than lower elevated ones.

σ = a+ b · exp(−θi/θ0) (6)

Where θi is the elevation angle of the i satellite. And the
constants are a = 0.13 m, b = 0.56 m and θ0 = 0.1745 rad
[6].

B. Sigma-ϵ

Geodetic antennas designed for high-precision measurement
and positioning applications exhibit variations in carrier-to-
noise ratio (C/No) with respect to antenna gain. Langley
[7] derived a formula to express the functional relationship
between phase variance and C/No values.

The Sigma-ϵ weighted model was initially proposed by
Hartinger [8]. Subsequently, Wieser [5] discovered that certain
antenna receivers required an additional term, Vi. Conse-
quently, the Sigma-weighted model is now expressed as:

σ2 = Vi + Ci · 10−
C/No

10 (7)

Where C/No is measured carrier-to-noise power-density
ratio[dB − Hz], and Vi[m

2] and Ci[m
2Hz] are the model

parameters. The subscript i indicates the Li signal, such as
L1 and L2 for GPS. Empirical values were chosen as follows
: Vi = 0, C1 = 1.1 · 104 m2Hz.

As C/No varies with satellite elevation, but is also impacted
by propagation conditions, we could expect that this model
may better consider available satellites than the first presented
one.

C. CAPLOC-WLS

The aforementioned weighting schemes exhibit limited ac-
curacy in the presence of strong urban multipath conditions
[1]. For instance, satellites with low elevation angles θi can
still exhibit high C/No values.

Consequently, Tay et.al proposed an enhanced weighting
scheme that integrates both C/No and θi the elevation angle
of the satellites, as well as an indicator for line-of-sight (LOS)
and non-line-of-sight (NLOS) satellites [1].

CAPLOC-WLS is a solution that uses a combination of
images and estimation technique to weight different satellites
according to their reception state.

The images are acquired using fisheye cameras to char-
acterize the surrounding environment all along the run. The
acquired image pixels are classified into two principal regions:
sky and non-sky [2] (see Fig. 1.).

A classification method [9] based on deep learning identifies
occlusions and obstructions caused by buildings, vegetation,
and other elements to ascertain the satellite position within
the sky image (see Fig. 2.).

The line-of-sight (LOS) received signal is represented in
the sky region, while the non-line-of-sight (NLOS) received
signal is characterized in the non-sky region.

The variance of CAPLOC-WLS can be written as :

σ2 = k × 10−
C/No

10

sin2 θi
(8)



Fig. 1. Fisheye lens image of an urban environment, where red points
represent LOS signals, blue points represent NLOS signals, and green points
represent mixed regions between NLOS and LOS

With k empirically fixed:

k =

{
1 if LOS
2 if NLOS

When the received signal is line-of-sight (LOS), k is set to
1. However, when the signal is non-line-of-sight (NLOS), k
assumes a different value.

III. OUR DATABASE

The proposed algorithms were tested and validated, with
results compared using the dataset from Toulouse, France,
collected in February 4, 2022 by ISAE-Supaero [10].

During the measurements, a Ublox EVK-M8T receiver and
a NovAtel VEXXIS GNSS-804 antenna were utilized. Data
were collected at a rate of 5 Hz using the ROS platform.
Higher frequencies are capable of handling higher speeds,
while a frequency of 1 Hz is suitable for static or low-speed
scenarios.

In this paper, we used GPS satellites only
Fig. 3. illustrates the acquisition trajectory as viewed in

Google Earth, encompassing terrain characterized by deep
urban canyons and forested regions.

IV. PERFORMANCE ANALYSIS

A. KPIs (Key Performance Indicators)

To evaluate the performance of various weighting schemes,
we will analyze several factors, including root mean square
error (RMSE) in 3D, root mean square error (RMSE) in 2D
and horizontal position error (HPE).

Fig. 2. Classified fisheye lens image of an urban environment into several
classes, where red pixels represent sky, and blue and green obstacles

Fig. 3. Reference Trajectory in Toulouse, France

B. Comparisons

Table I presents a detailed comparison of the 3D root
mean square error (RMSE) across various weighting schemes,
including CAPLOC-WLS, Elevation-based WLS (Groves),
Sigma-ϵ, and OLS. The results clearly highlight the superior
performance of CAPLOC-WLS, which achieves an RMSE
of 5.17 meters. This value is notably lower than that of
some other schemes, reflecting its exceptional accuracy in 3D
positioning.

The Elevation-based WLS (Groves) method, with an RMSE
of 8.65 meters, demonstrates a significant improvement of
61.38% over the traditional OLS method, which has an RMSE
of 22.40 meters. This substantial enhancement underscores
the effectiveness of incorporating elevation-based weighting
in improving positioning accuracy.



TABLE I
3D PERFORMANCE COMPARISON OF WEIGHTING SCHEMES: OLS,

ELEVATION-WLS(GROVES), SIGMA-ϵ, AND CAPLOC-WLS FOR k = 2

OLS Elev. WLS(Groves) Sigma-ϵ CAPLOC-WLS
RMS(m) RMS(m) Imp.(%) RMS(m) Imp.(%) RMS(m) Imp.(%)

22.40 8.65 61.38 4.83 78.44 5.17 76.92

TABLE II
2D PERFORMANCE COMPARISON OF WEIGHTING SCHEMES: OLS,

ELEVATION-WLS(GROVES), SIGMA-ϵ, AND CAPLOC-WLS FOR k = 2

OLS Elev. WLS(Groves) Sigma-ϵ CAPLOC-WLS
RMS(m) RMS(m) Imp.(%) RMS(m) Imp.(%) RMS(m) Imp.(%)

16.75 5.84 65.13 3.70 77.91 3.41 79.64

The Sigma-ϵ method demonstrates a substantial improve-
ment with an RMSE of 4.83 meters, reflecting a 78.44%
enhancement over OLS. This indicates a marked advancement
in accuracy and a notable performance advantage over the
Elevation-based WLS (Groves).

CAPLOC-WLS, however, stands out with a remarkable
76.92% improvement over OLS, showcasing its superior ca-
pability in reducing positioning errors. While Sigma-ϵ also
shows significant performance with a 78.44% improvement
over OLS, CAPLOC-WLS surpasses it in terms of 2D po-
sitioning accuracy, demonstrating its exceptional positioning
capabilities.

In contrast, Tables II and III provide a comprehensive
evaluation of positioning accuracy across various weighting
schemes, focusing on the 2D root mean square error (RMSE)
and horizontal position error (HPE), respectively.

Table II compares the 2D RMSE for OLS, Elevation-based
WLS (Groves), Sigma-ϵ, and CAPLOC-WLS. CAPLOC-WLS
demonstrates outstanding performance with an RMSE of 3.41
meters, reflecting a remarkable 79.64% improvement over the
OLS method, which has an RMSE of 16.75 meters. Sigma-ϵ
follows with an RMSE of 3.70 meters, representing a 77.91%
improvement over OLS. Elevation-based WLS (Groves) shows
an RMSE of 5.84 meters, indicating an 65.13% improvement

Fig. 4. 2D Positioning Errors for Different GNSS Weighting Strategies in
Toulouse, France

TABLE III
HORIZONTAL POSITION ERRORS (HPE) IN GNSS LOCALIZATION ACROSS

DIFFERENT WEIGHTING SCHEMES

Mean(m) Median(m) 95%
OLS 16.04 16.77 23.22

Elev. WLS(Groves) 5.52 5.43 8.59
Sigma-ϵ 3.30 3.01 6.28

CAPLOC-WLS 2.87 2.58 6.16

Fig. 5. 2D Positioning Trajectories for Different GNSS Weighting Strategies
in Toulouse, France

over OLS, though it still lags behind CAPLOC-WLS and
Sigma-ϵ in terms of accuracy. Table III, on the other hand,
provides a detailed analysis of horizontal position errors,
emphasizing the mean, median, and 95th percentile errors.
CAPLOC-WLS excels with a mean HPE of 2.87 meters, a
median of 2.58 meters, and a 95th percentile error of 6.16
meters, clearly outperforming other methods. Elevation-based
WLS (Groves) shows a mean HPE of 5.52 meters, a median
of 5.43 meters, and a 95th percentile error of 8.59 meters.
In comparison, Sigma-ϵ demonstrates a mean HPE of 3.30
meters, a median of 3.01 meters, and a 95th percentile error
of 6.28 meters. OLS present larger errors, with OLS having
a mean HPE of 16.04 meters, highlighting its less favorable
performance.

Fig. 4. and Fig. 5. delve into a more granular error analysis.
Fig. 5. compares the trajectories obtained using different
weighting schemes. It is evident that CAPLOC-WLS (depicted
in blue) aligns more closely with the reference trajectory (in
green), whereas the trajectories from other schemes exhibit
greater deviations, particularly in complex paths and sharp
turns.

Fig. 4. further analyzes horizontal errors. CAPLOC-
WLS(blue) demonstrates the smallest error margin, followed
by Sigma-ϵ(cyan), while Elevation-based WLS(Groves)(red)
and OLS(orange) display the highest errors.

Furthermore, CAPLOC-WLS also demonstrates superior



Fig. 6. Fisheye lens image of Fig. 8., where red points represent LOS signals,
blue points represent NLOS signals

performance in the vertical component, reinforcing its overall
performance and robustness in 3D GNSS positioning. These
results collectively affirm that CAPLOC-WLS not only excels
in 2D accuracy and horizontal positioning but also in vertical
accuracy, underscoring its comprehensive performance and
robustness in GNSS localization across all dimensions.

Fig. 6. and Fig. 7. clearly demonstrate the precise marking
of Non-Line-of-Sight (NLOS) signals(blue) achieved by our
detection methodology [2] [9].

Fig. 8. illustrates the GNSS positioning results on a
multi-lane highway. The background satellite image shows
the highway and its surrounding environment. The different
colored dots represent the GNSS positioning results using
various weighting schemes: CAPLOC-WLS(blue), Elevation-
based WLS(Groves)(red), OLS(orange), and Sigma-ϵ(cyan).
The reference trajectory is shown in green (Fig. 9. employ
the same representation method).

The distribution of the dots indicates that the blue and
cyan points are mainly concentrated on one side of the
highway, while the orange and red points are more widely
spread. This suggests that different weighting schemes pro-
duce varying positioning results in the same environment.
The Elevation-based WLS(Groves)(red) positioning results are
close to the reference trajectory. The CAPLOC-WLS(blue)
positioning results and the Sigma-ϵ(cyan) results are closer to
the reference trajectory, indicating higher positioning accuracy
in this environment.

The multi-lane highway has fewer buildings and other
obstacles, allowing various weighting schemes to provide
relatively good positioning results. However, CAPLOC-WLS

Fig. 7. Fisheye lens image of Fig. 9., where red points represent LOS signals,
blue points represent NLOS signals, and green points represent mixed regions
between NLOS and LOS

and Sigma-ϵ demonstrate higher consistency and accuracy
compared to OLS and Elevation-based WLS(Groves), which
show more variation and spread.

In contrast, in an urban environment characterized by high-
rise buildings, as depicted in Fig. 9., the positioning results
exhibit more significant deviations from the reference tra-
jectory compared to the highway environment(see Fig. 8.).
The presence of high-rise buildings creates multipath effects
and signal blockages, leading to larger positioning errors. The
blue points (CAPLOC-WLS) still show relatively better per-
formance, staying closer to the reference trajectory, whereas
the orange, cyan, and red points (OLS, Sigma-ϵ, and Elevation-
based WLS(Groves)) exhibit more significant deviations.

This urban environment demonstrates the challenges posed
by strong urban canyons, where GNSS signals are reflected
and blocked by tall buildings, significantly impacting posi-
tioning accuracy. Despite these challenges, CAPLOC-WLS
shows more robustness in maintaining closer alignment with
the reference trajectory.

V. CONCLUSIONS AND PERSPECTIVES

Positioning performance and robustness are critical metrics
for evaluating GNSS applications in land-based transportation,
such as rail and road. In urban environments, the multipath
effects are a significant source of large positioning errors that
require to be mitigated to reach acceptable performance.

This paper introduces and compares several distinct
weighting schemes, namely CAPLOC-WLS, ELevation-based
WLS(Groves), OLS, and Sigma-ϵ. Our primary focus is on
CAPLOC-WLS.



Fig. 8. Geospatial Trajectory Analysis of GNSS Weighting Schemes on Urban
Motorways

Fig. 9. High-Precision GNSS Path Tracking in Urban Environments: A
Comparative Study

CAPLOC-WLS for GNSS Positioning with Fisheye Cam-
era: The fisheye camera captures images of the sky, which
are then processed by a deep learning algorithm to determine
whether the received signal is line-of-sight (LOS) or non-line-
of-sight (NLOS). A scalar k is subsequently assigned to the
signal based on its state.

The performance analysis in Section 5, which includes
comparisons of error values, ENU trajectories, and satellite
map trajectories, demonstrates that CAPLOC-WLS is a robust
weighting scheme with superior positioning accuracy across
diverse environments, including urban, suburban, and highway
settings. CAPLOC-WLS consistently corrects the positioning
errors that other weighting schemes fail to address, reaching a
mean horizontal error equal to 2.9m compared to the 5.5 and
3.3m obtained with state of the art WLS algorithms.

Robust and accurate positioning in every environment will
enhance GNSS-based solution deployment in various appli-
cations such as autonomous cars, train localisation, robotics
that can frequently occur in constrained environments. The
use of a camera however reveals some issues. For some
applications, as in rail, the need of an external camera still
remains a difficult constraint for maintenance in particular, but
evolution of equipment size may reduce this issue in the future.

Moreover, the use of an optical sensor is dependent on external
factors such as light, meteorological conditions, cleaning, need
for camera calibration... Some of the degradations will be
mitigated by specific algorithms under development. Some
other conditions, as for example, too low lightning conditions
could benefit from the use of other sensors. As a next step, we
plan to investigate the integration of GNSS and Inertial Nav-
igation Systems (INS) to further optimize GNSS positioning
in conjunction with the CAPLOC-WLS weighting scheme.
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