
HAL Id: hal-04780290
https://univ-eiffel.hal.science/hal-04780290v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Schedulability Tests for Fixed Job Priorities:
Addressing Context Switch Costs with Non-Resumable

Delays
Joël Goossens, Damien Masson

To cite this version:
Joël Goossens, Damien Masson. Robust Schedulability Tests for Fixed Job Priorities: Addressing
Context Switch Costs with Non-Resumable Delays. RTNS 2024, Nov 2024, Porto, France. �hal-
04780290�

https://univ-eiffel.hal.science/hal-04780290v1
https://hal.archives-ouvertes.fr

Robust Schedulability Tests for Fixed Job Priorities:
Addressing Context Switch Costs with Non-Resumable

Delays
Joël Goossens, Université libre de Bruxelles (ULB), Brussels, Belgium,

joel.goossens@ulb.be

Damien Masson, Université Gustave Eiffel (UGE), CNRS, LIGM Paris, France,
damien.masson@esiee.fr

Abstract

In this research, we extend the traditional model of recurrent real-time tasks to incorpo-
rate the cost of context switches; we introduce the concept of Non-Resumable delays (i.e.,
loading phases are preemptive, but the processing time already expended in attempting to
load a task is forfeited). We propose a model that addresses previous methodology flaws
regarding the pessimism and scheduling anomalies, which could be implementable on certain
Real-Time Operating System (RTOS) and models high-level abstraction of what is a context
switch activity. We provide two exact schedulability tests for two popular scheduling families
(Fixed Task Priority as Rate Monotonic and Fixed Job Priority as Earliest Deadline First).
These tests are sustainable regarding the execution times and the preemption costs. They
are based on the notion of simulation interval and properties of the schedule repetition. We
conclude with a discussion of the advantages and drawbacks of our model and the future
perspectives it opens up.

Contents
1 Introduction 2

2 Models and notations 3
2.1 Task model . 3
2.2 Scheduler class . 3

3 State of the art 4
3.1 Simulation intervals . 4
3.2 Taking preemptions into account . 5

4 Non-resumable loading and starting delays 6
4.1 Task model with Non-Resumable Loading Delay (NRLD) 7
4.2 Motivating example . 8

5 Properties 10
5.1 Response times . 10
5.2 Simulation interval for Cyclic Fixed Job Priority (CFJP) 11

1

joel.goossens@ulb.be
damien.masson@esiee.fr

5.3 Simulation interval for Fixed Task Priority (FTP) schedulers 15
5.4 Sustainability . 15

5.4.1 Sustainability regarding Worst-Case Execution Time 18
5.4.2 Sustainability regarding Loading Delays 19
5.4.3 Sustainability regarding job arrival times 19

5.5 Robust schedulability tests . 20

6 Conclusion 21

Acronyms 23

References 24

1 Introduction
In this paper, we tackle the challenge of modelling and incorporating the cost of context switches
into the feasibility analysis of real-time systems. Our focus is on uniprocessor platforms where tra-
ditional periodic hard real-time tasks are executed (Liu and Layland implicit deadline tasks [Liu and Layland(1973)]
or Leung et al. constrained deadline tasks [Leung and Whitehead(1982)]).

One of the numerous assumptions commonly found in the literature on real-time scheduling
theory, even back to its roots in [Liu and Layland(1973), Leung and Whitehead(1982)], is that
preemption costs can be integrated into the worst-case execution time (knows as the WCET)
of tasks. The key justification for this assumption is that, if the preemption cost is a constant
within the system or, at least, if an upper bound is known, then under common scheduling
algorithms like FTP or Earliest Deadline First (EDF) a job (a task release) can only preempt
another one once. Therefore, if the cost associated with handling the preemption is attributed
to the preempting task, it is deemed “safe” to include it in the tasks’ worst-case execution time.
Note that this reasoning is not applicable to all schedulers. For example, this is not the case for
Least Laxity First (LLF), where a job can be preempted multiple times by the same job.

Firstly, we observe that this assumption is pessimistic, as not every job release in a system
corresponds to a preemption. One could argue that even in scenarios where the system is idle
upon job release, a Context Switch (CS) remains necessary (at least, the system must prepare
the execution context of the job). We will demonstrate our alignment with this perspective in
our work, wherein we not only address preemption costs but, more broadly, incorporate Loading
Delays (LDs).

We aim to address a second drawback associated with this assumption, namely, preemption is
not equivalent to the “regular” execution of a task as we pointed out in [Goossens and Masson(2022)].
Depending on the considered system, it can be done as an internal routine of the operating system,
or handled with hardware interrupts (e.g., on a bare metal embedded system). In the mentioned
work, we considered the case where these routines or interrupt handlers are non-preemptive. We
exhibited that taking these non-preemptive delays into account leads to scheduling anomalies1

that invalidate classical schedulability analysis results. We tackled the problem by studying a
safe bound on a simulation interval for any work-conserving scheduler, which was unfortunately
pretty much intractable, and we observed that for the specific case where the resuming delays
were equal to one, there was no more scheduling anomalies.

In this paper, we suggest relaxing the non-preemptive assumption slightly and investigate
a model where the code for handling CSs is executed in a Non-Resumable (NR) fashion. This

1A scheduling anomaly is a counter-intuitive phenomenon where a locally faster execution leads to an increase
in the execution/response time of other activities, potentially resulting in a missed deadline.

2

implies that preempting this code is allowed, but the processing time already expended in at-
tempting to load a task is forfeited. We will see that this is not sufficient to get rid of scheduling
anomalies. To do so, we also have to introduce in our model Starting Delays (SDs), i.e., we
have to consider that the CS routines are called not only to resume a job, but also when it
starts its execution. With such a model, having an exact schedulability test based on processing
demand or on worst-case response times would require counting the preemptions. Instead, in
this paper, we demonstrate that the simulation intervals established for FTP and EDF remain
valid. Furthermore, we extend these results to encompass a broader class of schedulers.

Finally, we emphasize that the model we propose is well-suited for incorporating more general
operations that a modern RTOS might perform. For example, as proposed in [Baruah(2022)],
security mechanisms can be implemented, such as clearing the caches during a CS (see Section 4
for details).

Paper organisation The organization of this paper is outlined as follows: in this section
we introduced our work. Section 2 introduces our theoretical framework. Following that, in
Section 3 we present the related results regarding simulation intervals for uniprocessor systems,
and models that take into account CSs. Section 4 is devoted to the presentation of our task
model. The main results are outlined in Section 5, i.e., the two exact schedulability tests and
their sustainability. Finally, we conclude in Section 6.

2 Models and notations
We formalise here the task model and the scheduler class considered.

2.1 Task model
In this paper we consider the scheduling of a set τ of n asynchronous constrained deadline
periodic tasks upon uniprocessor. More formally, a periodic task τi is characterized by the tuple
〈Oi, Ci, Di, Ti〉. Oi (the offset) corresponds to the release time of the first job of the task. Ci

corresponds to the Worst-Case Execution Time (WCET) of the task. Di (the relative deadline)
corresponds to the time-delay between a job release and its corresponding deadline i.e. a job
released at time t must be completed before or at time t + Di. Ti (the period) corresponds
to the exact duration between two consecutive task releases. The deadlines are constrained:
Di ≤ Ti ∀i. The hyper-period, denoted as H, is by definition the least common multiple of the
periods: lcm{Ti | i = 1, . . . , n}.

The model will be completed in Section 4.1, after our state-of-the-art review and before the
presentation of an initial example.

2.2 Scheduler class
In this research, we consider a broad class of schedulers, the CFJP (see Definition 1) which
notably includes Rate Monotonic (RM), Deadline Monotonic (DM), and EDF (at least with a
CFJP tie-breaker when two jobs have the same deadline).

Let Ji,k be the kth job (k = 1, 2, . . .) of task τi, which releases at time Oi+(k−1)Ti. We also
introduce the notation: Ji,k � Jj,` which means that the job Ji,k has a higher priority than the
job Jj,`. Of course, a higher priority will only be effective if the two jobs indeed compete, i.e.,
if there exists a time instant such that both jobs are active. The scheduler is work-conserving
and preemptive. Priorities are fixed at job level but are also cyclic (see Definition 1 for a formal
definition). Furthermore, we assume that job priorities are known at design time, derived from

3

static task and job parameters. It is worth noting that, for periodic tasks, the job release time
is static and known at design time.

Definition 1 (CFJP). A scheduling rule is said to be Cyclic Fixed Job Priority if ∀i, j, k, `:

Ji,k+hi
� Jj,`+hj

⇔ Ji,k � Jj,`

with hi =
H
Ti

and hj =
H
Tj

.

For example, EDF belongs to CFJP if, in the event of multiple jobs having the same absolute
deadline, the tie is broken by assigning a higher priority to the job with the smaller index. FTP
algorithms (for example, RM) also belong to CFJP since different tasks cannot share the same
priority. In the remainder of the paper, we assume CFJP schedulers. Also, by a slight abuse of
language, jobs Ji,k and Ji,k+hi

will be referred to as cousins.

3 State of the art
In this section, we present the state of the art related to simulation intervals as well as models
that take preemption costs into account.

3.1 Simulation intervals
We start with the notion of simulation interval, which served to construct schedulability test
consisting on simulating the system. The interest of these intervals is also to provide a repre-
sentative range in simulations, for example, for statistics or real-time scheduling analysis tool
as Cheddar [Dridi et al.(2021)]. We can also mention the works [Ahmed and Anderson(2021),
Ahmed and Anderson(2022)], which are inspired on the schedule repetition properties to provide
an exact response-time bounds of periodic DAG.

Definition 2 (Simulation interval [Goossens et al.(2016)]). A simulation interval is a finite
interval of the form [0, X) that includes the periodic part (the cycle) of the schedule.

Let us note that we assume here that the task durations (WCET) are constant; we shall
address this matter in the paper when we study sustainability (Section 5.4).

The paper [Goossens et al.(2016)] summarises the different simulation intervals of the litera-
ture depending on the platform (uni or multi-processor), the deadlines (constrained or arbitrary)
and the scheduler type (EDF, RM, fixed priority, dynamic priority).

Table 1: Main results concerning simulation interval

Deadlines Feature Scheduler Interval Ref.
Di ≤ Ti – FJP [0, Omax + 2H) [Leung and Merrill(1980)]
arbitrary – FJP [0, Omax + 2H) [Goossens and Devillers(1999)]
Di ≤ Ti – FTP [0, Sn +H) [Goossens and Devillers(1997)]

Di ≤ Ti

mutual
exclusion,simple

precedence
work-conserving [0, θc +H) [Choquet-Geniet and Grolleau(2004)]

Di ≤ Ti
Non-

Preemptive work-conserving Equation 1 (page 6) [Goossens and Masson(2022)]

4

Table 12 summarises the state of the art regarding uniprocessor systems. In the “Feature”
column, “–” indicates that the authors consider the classical periodic task model. On line 3, note
that Sn is given by the recursive equation S1 = O1, Si = max(Oi, Oi + dmax{0,(Si−1−Oi)}

Ti
eTi).

Only the last line mentions a model (Non-Preemptive) that takes into account preemption costs.
In this research, we will demonstrate that two simulation intervals for two scheduling families

remain valid in our model with preemption costs. We will see that proving these new properties
is far from being incremental. Indeed, we will prove that the results of [Leung and Merrill(1980)]
(line 1 of Table 1), and [Goossens and Devillers(1997)] (line 3) still hold with our model.

3.2 Taking preemptions into account
Numerous studies have explored methods for incorporating scheduling delays, as well as other
overheads associated with the hardware platform or operating system, into scheduling analyses.
Various strategies have been developed for managing this interference. Some involve constraining
these delays to include them in schedulability assessments alongside the WCET or as blocking
factors, assigning cost overheads to either preempted tasks, preempting tasks, or both. Other
approaches suggest alternative task models accompanied by corresponding analyses. Lastly,
certain works modify scheduler algorithms to account for the presence of such delays.

It’s worth noting that some scheduling delays arise from factors external to the selected
scheduling policy, such as overheads imposed by the hardware platform or the operating system.
Despite their origin, these delays must be accounted for in schedulability analyses or, more
broadly, in evaluating scheduler performance. As highlighted by [Goossens and Masson(2022)],
these delays affect the simulation interval and the periodicity of the schedule.

The initial inquiries into the effects of scheduler implementation and the kernel on schedul-
ing were undertaken in [Katcher et al.(1993)]. This study outlines four distinct methodologies
for implementing a scheduler. A detailed analysis of the inherent costs associated with each
methodology is provided and the widely used schedulability condition for FTP (with constrained
deadlines) is extended. Authors incorporate additional costs either in the task execution time
term (Ci) or the blocking time term (Bi) of the schedulability condition.

The work in [Burns et al.(1995)] highlights the pessimism surrounding the sufficient condi-
tions established in previous works and provide a more detailed analysis of the overhead associ-
ated with a scheduler implemented based on the tick scheduling paradigm.

Other approaches (see, for instance, [Baruah(2005), Bertogna and Baruah(2010), Burns(1994),
Wang and Saksena(1999)]) consist in constraining the number of preemptions or in computing
an upper limit on the potential number of preemptions. This latter approach allows for the incor-
poration of a maximum blocking time associated with system interference in the schedulability
analysis.

Another aspect of disturbance associated with preemptions, as examined in the literature,
pertains to the utilization of caches. While caches offer a reduction in response times, they
also introduce a notable source of variability in WCETs due to the possibility of tasks encoun-
tering additional delays resulting from cache misses. The runtime overhead stemming from
cache misses induced by premature preemptions is termed Cache-Related Preemption Delay
(CRPD) [Busquets-Mataix et al.(1996), Lee et al.(1998), Staschulat and Ernst(2005), Altmeyer et al.(2012),
Tomiyama and Dutt(2000), Lunniss et al.(2013)]. It has been demonstrated that optimal schedul-
ing considering CRPD is an NP-hard problem [Phavorin et al.(2015)]. More recently, a feasibility
interval has been provided for this problem [Tran et al.(2021)].

In [Yomsi and Sorel(2007), Meumeu Yomsi(2009)], an approach is proposed to integrate the
expense of reloading a task after a preemption into the feasibility analysis of a system scheduled

2Where θc represents the last acyclic idle time (see [Choquet-Geniet and Grolleau(2004)] for details).

5

with FTP. In the considered model, the preemption duration is the same for all tasks; it is
a system-level parameter. The preemption involves an non-resumable sequence of operations
(called “atomic”, i.e., which can be preempted, but then the entire sequence must be re-executed
later). It is demonstrated that with this model, the critical instant cannot be characterized, the
worst-case response time of a task may occur during the transient phase, and the compatibility
conditions of the Optimal Priorities Assignment algorithm (OPA) are not met [Audsley(1991)].
An optimal Fixed Job Priority (FJP) assignment algorithm is also proposed.

In [Bimbard(2007)] OSEK kernel overheads (utilizing FTP) are investigated, considering
activation, termination, and preemption delays. Activation and termination entail additional
durations added to the WCET of a task, while preemption delays are factored in at each activation
of a higher priority task. A worst-case response time analysis is presented with a constraint on the
number of preemptions, ensuring that the synchronous scenario remains the worst-case scenario
albeit with some level of pessimism.

None of these works take into account the fact that executing RTOS routines to implement
a context switch is not equivalent to normal execution.

We did so in [Goossens and Masson(2022)], proposing a model that takes into account pre-
emption and context switches costs, modelled as non-preemptive sections with a fixed duration
which is a task parameter. That model is subject to scheduling anomalies, particularly exact
schedulability tests with this model are not C-sustainable, i.e., even if the system is deemed
schedulable considering the WCET, an early completion of a job can lead to miss a deadline
(formal definition is given in Section 5.4). In addition to not being C-sustainable, another draw-
back of the test is its reliance on a gigantic simulation interval (see Equation 1 where Lmax

denotes the length of the largest non-preemptive section). Therefore, this method is not appli-
cable, at least in the general case. It remains valid in particular scenarios, such as harmonic
periods.

H · (n+ 1) · (Lmax + 1)

n∏
i=1

(max{0, Oi +Di − Ti}+ 1) (1)

In this paper, to address these drawbacks, we propose an extension of this model where the de-
lays are tackled as non-resumable sequence of operations, like proposed in [Yomsi and Sorel(2007)].
This model is introduced and motivated in the next section.

4 Non-resumable loading and starting delays
The classic way to implement a preemptive scheduler in an operating system is to generate an
Interrupt Request (IRQ) periodically or sporadically. The associated Interrupt Service Routine
(ISR) will apply the scheduling policy to select the next task, and if it is different from the
previous one, it will proceed with the CS: saving the context of the preempted task to load
the context of the new task. Various other actions can also be performed here, as saving and
restoring caches states or changing security mode for example.

Specific implementations in RTOS can, of course, be optimized to avoid some of the IRQs.
It is worth noting that the ISR processing time depends on whether there is a preemption (task
switch) or not.

Incorporating these ISR processing times into the tasks’ WCETs is the approach of the
classic state-of-the-art real-time scheduling analysis. It is a valid approach provided these times
are negligible compared to the WCETs. This applies when considering CS in the raw sense, i.e.,
saving and loading new values for state word registers. However, if we relax this assumption, it
presents two drawbacks.

6

The first is pessimism: the ISR processing time in the event of an actual preemption (with
CS) must be added to the WCET of all tasks, even though not all job released will necessarily
result in an actual preemption. We will illustrate this with an example in Section 4.2.

The second comes from the fact that ISR processing is generally done in non-preemptive
mode. As analysed in our previous works [Goossens and Masson(2022)], unless in the case where
this processing cost is equal to 0 or 1 (time is discrete), this has several disastrous consequences:
classical schedulability analysis, such as response time analysis, is not valid because scheduling
anomalies are possible. We then proposed a bound on the necessary simulation interval to test
the schedulability of the system (see Equation 1). However, this bound is terribly large, making
its practical use almost impossible, except in very specific cases. Moreover, the bound is no longer
valid if we consider systems where tasks can complete their executions before their WCET.

In this work, we propose modelling preemption processing not as non-preemptive code blocks,
but as non-resumable code blocks: they can be interrupted, but must be entirely restarted later.
Although we are unaware of any RTOS where this is implemented in this manner, it is possible
to do so in practice. This requires a system with multiple levels of IRQ priorities (such as
NucleusRTOS [Colin(2021)]). Assuming that CS processing is implemented in non-resumable
ISRs, we then propose a model 1) for which we demonstrate reasonable and practically usable
simulation intervals, and 2) for which these intervals remain valid even if tasks execute for less
time than their WCET.

To demonstrate these properties, we need to consider a non-resumable code block during
each CS, including when starting a new job: we distinguish the initial job loading time from the
resume time. The constraint on these times is that the initial loading time must at least be equal
to the resume time, but it can be longer.

This model is noteworthy from a theoretical perspective as it offers a practical solution to
the problem of incorporating preemption times into schedulability analysis, avoiding pessimism
and scheduling anomalies. Furthermore, it adapts well to modelling higher-level preemption
processing, for instance, if we wish to add security mechanisms, such as erasing a task’s traces
(in caches, for example), as proposed in [Baruah(2022)]. In this work, the authors suggest
inserting a non-preemptive code segment each time a critical task must yield the processor, to
prevent an attacking task from retrieving information about the critical task by clearing the
memory. An equivalent approach would be to systematically add the cleaning operations at the
beginning or resumption of each non-secure (and thus potentially attacking) task. These code
sections could then very logically be NR rather than Non-Preemptive (NP), and the system could
thus be analysed with our methodology.

4.1 Task model with NRLD
We first introduce the term Non-Resumable (NR) operation (Definition 3), followed by the model.

Definition 3 (Non-Resumable). A Non-Resumable (NR) operation is a type of computing op-
eration that can be interrupted. However, if interrupted, the system is required to restart the
operation from its initial state.

In the following, we distinguish between two kinds of Loading Delays (LDs): Starting Delays
(SDs) and Resuming Delays (RDs).

Definition 4 (Starting Delay). The Starting Delay (SD) represents the required time to load a
job for the first time when it becomes ready for execution.

Definition 5 (Resuming Delay). The Resuming Delay (RD) represents the required time to
reload a job after it has been preempted by another job.

7

Definition 6 (Loading Delay). Loading Delay (LD) is a general term to designate either Starting
Delay, Resuming Delay or both.

We consider non-resumable starting and resuming delays upon uniprocessor. We complement
here the model presented in Section 2 by the addition of two further parameters. Each task τi
is characterised by the tuple 〈Oi, Ci, Di, Ti,SDi,RDi〉, where SDi ≥ 0 designates the worst-case
duration of the SD of task τi, and where where RDi ≥ 0 designates the worst-case duration of
the Resuming Delay (RD) of task τi. We consider that the system time is discrete. Without loss
of generality, the parameters of the tasks are therefore integers. In this work we assume that
SDi ≥ RDi ∀i.

The rationale for considering SD to be at least equal to RD is crucial, as this property is
essential for exact schedulability tests to be sustainable with respect to execution times. The for-
mal definition and proof of this property are provided in Section 5.4. Notably, a counterexample
demonstrating the consequences of neglecting SD is presented in Figure 5 on page 16.

The introduction of Non-Resumable Loading Delays (NRLDs) resolves the priority inversion
issue inherent in the model with Non-Preemptive Loading Delays (NPLDs).

We will also use the notation ei,t for the amount of time for which the last job of task τi
released strictly before t has executed at time t. Note that the quantity ei,t does not take loading
times into account, hence we have 0 ≤ ei,t ≤ Ci. We assume that ∀i ei,t = Ci for t ≤ Oi.

In order to define tests that are both exact and robust (without scheduling anomalies), we
will proceed in two steps. First, we will assume that the durations Ci,SDi, and RDi are constants
(these are in fact bounds on the actual durations). Under this assumption, we will define exact
tests based on the repetition of the schedule (simulation interval). Second, we will show that
our analysis is robust with respect to these durations. This means that if the system passes
the test (is schedulable with the constants), it remains schedulable even if the actual durations
are smaller than the bounds. In particular, during the system execution, an SD can be smaller
or even zero compared to the corresponding RD. Thus, we assume until Section 5.4 that the
durations Ci,SDi, and RDi are constants.

4.2 Motivating example
We consider a real-time system composed of two tasks, τ1 and τ2, scheduled with EDF. Task τ1
has a period and a deadline of 5 time units and requires 2 execution time units. Task τ2 has a
period and a deadline of 20 time units and requires 3 execution time units. The CS cost when
loading or resuming a preempted task on the platform is 1 time unit.

Classical methodology incorporates the cost of CSs into the WCETs of the tasks. We will
have C1 = 4, because τ1 requires 2 time units to execute, 1 time unit to load, and 1 time unit to
handle the preemption cost in the case where a job preempts another one (this cost is accounted
to the preempting task rather than the preempted one to easily limit it to one per job). We will
have C2 = 5, because τ2 requires 3 time units to execute, 1 time unit to load, and 1 time unit to
handle a possible preemption cost.

As shown in Figure 1, the resulting system is not schedulable. This is due to an overestimation
of the number of preemptions.

All the scheduling figures in this paper are generated by the open-source tool Draw Schedule,
which can be downloaded or used online directly [Masson(2024)]. Upward arrows represent
activations, downward arrows represent deadlines. Light squares indicate executions, and dark
squares represent loading times.

In our previous work [Goossens and Masson(2022)], we proposed modelling the system pre-
emption costs as non-preemptive sections attributed to the preempted task, thereby modelling
the resuming operation. Applied to our example, this gives us the values C1 = 3 (1 for loading,

8

missed

τ1

0 5 10 15 20

τ2

Figure 1: System modelled to account classical analysis theory is not schedulable (load greater
than 1 and deadline missed at 20).

τ1

0 5 10 15 20

τ2

Figure 2: System is schedulable accounting only real preemption costs (cycle reached at time
20).

2 for executing) and C2 = 4, with an additional non-preemptive execution block of 1 time unit
before each resuming. As shown in Figure 2, this approach is less pessimistic and the resulting
system is now schedulable. However, the analysis associated to this model does not scale, and
the feasibility relies on an online respect of all system parameters: the model is not sustainable
regarding WCETs and LDs.

In this paper, we propose to consider these additional execution blocks as NR (see Definition 3)
and to go further by also modelling SD (see Definition 4) as additional execution blocks separated
from the regular execution accounted in the WCET. Applied to our example, this gives us the
values C1 = 2 and C2 = 3 (execution time only), with a loading time and a resuming time
of 1 for all tasks. Figure 3 illustrates the resulting schedule. The feasibility property is now
sustainable regarding WCETs and LDs, i.e. if these values are lesser than considered during the
schedulability analysis process when the system is executed, the system is guaranteed to remain
feasible. However, the model relies on the capability for the RTOS to implement the CSs in a
NR fashion.

τ1

0 5 10 15 20

τ2

Figure 3: System modelled with SDs and RDs is schedulable (cycle reached at time 20).

9

5 Properties
In this section, we present the important properties of our model, focusing in particular on the
two schedulability tests. We begin by demonstrating that, concerning response times, our model
is strictly superior to the one in [Goossens and Masson(2022)]. We then study the general CFJP
class, which includes EDF as a popular representative. Finally, we examine the specific case
of the FTP class, which includes RM. Afterward, we investigate the sustainability of the tests
concerning execution and loading delays.

5.1 Response times
Considering NRLD model, we prove that response times are always lower or equal than those
with the same scheduler considering NPLD model.

Theorem 1 (Response time). Let J = {J1, J2, J3, . . .} be a set of jobs, let S1 and S2 be two
schedules of J (for the same work-conserving FJP assignment) for NPLD and NRLD, respectively.
Let eSi,t be the cumulative amount of time for which job Ji has executed (loading time excluded)
at time t in the schedule3 S. Then for each job Ji and for each instant t (not smaller than the
release time of Ji):

eS1
i,t ≤ eS2

i,t .

Proof. By contradiction. Let t1 ≥ 0 be the first time instant such that:

∃ i s.t. eS1
i,t1+1 > eS2

i,t1+1 . (2)

Note that trivially, we have eS1
i,0 = eS2

i,0 = 0. Consequently, we know that eS1
i,t1

= eS2
i,t1

and
∀j 6= i, t ≤ t1 eS1

j,t ≤ eS2
j,t. The situation means that at time instant t1 the job Ji is executed in

S1 but not in S2.
Let’s first observe that:

1. i is unique since we consider uniprocessor.

2. The situation cannot be associated with the release of a higher priority job in S2 at time
t1 since this would also be the case in S1 at time t1 (S1 and S2 schedule the same set
of jobs with the same work-conserving FJP scheduler, the only difference being the Non-
Resumable/Non-Preemptive behaviour during load sections).

Also note that if the job Ji is completed at time t1 in S2 we have eS2
i,t1

= eS2
i,t1+1 = Ci (the duration

of the job Ji) consequently eS1
i,t1+1 > Ci which is impossible. Consequently, in the following we

will assume that job Ji is not completed at time t1 in S2. We will distinguish two cases: at time
t1 − 1 the job Ji is executed in S1 or not.

Case 1. If at time t1 − 1 job Ji is executed in S1 then job Ji is executed in both schedules at
time t1 − 1 (this is a consequence of t1 being first time satisfying Equation 2). Consequently, in
both schedules Ji is executed at time t1 since in both schedules we have the same active job with
the highest priority (Ji) and the same remaining execution time at time t1. In this situation we
have to schedule Ji at time t1 in S2 as well, which leads to a contradiction.

Case 2. Job Ji is executed at time t1, but not at time t1 − 1 in S1. We will show that
this situation also leads to a contradiction. First, we consider the situation where Ji is released
at time t1. In this scenario, we know that SDi = 0, and Ji must also be executed at time t1

3eSi,t, which pertains to a set of jobs, should not be confused with ei,t, which is defined for a set of periodic
tasks.

10

in S2, which leads to a contradiction. Now, let’s assume that Ji is released before t1. If we
consider the schedule S1, as job Ji runs for the first time at time t1 or was preempted in the
past, the execution is preceded by a block of loading slot(s) of duration λi (corresponding to its
job/task parameter, here we know that λi > 0 — i.e., λi = SDi > 0 if Ji runs for the first time,
λi = RDi > 0 if Ji was preempted before t1 — otherwise Ji must be executed at time t1 − 1)4.
Moreover, we know that at both t1 − λi and t1, job Ji has the highest priority. Consequently,
there are no new releases of higher priority jobs in S1 in the interval [t1 − λi, t1].

Note that if in S2 the job Ji has the highest priority at time t1 − λi, there are also no new
releases of jobs with higher priority within the interval [t1 − λi, t1]. Consequently, Ji must also
be executed at time t1, which leads to a contradiction. Thus, the only case in which Equation 2
can be verified is the case where, in S2 at time t1 −λi, the job Ji is not the one with the highest
priority ready for execution. Consequently, at time t1 − λi there is another job with higher
priority, say Jk, which is completed in S1 but active (not completed) in S2, which means that:

∃t0 < t1 − λi : e
S1

k,t0+1 > eS2

k,t0+1, (3)

which contradicts the fact that t1 is the first such instant (Equation 2) and proves the property.

5.2 Simulation interval for CFJP
We will generalise the properties of Leung & Merrill [Leung and Merrill(1980)] and show that
[0, Omax+2×H) is a simulation interval for CFJP (which includes EDF) in our framework. The
first property to generalise concerns the progress of cousin jobs. In particular, the oldest cousin
makes at least as much progress than its cousin one hyper-period later:

Lemma 1. Let S be the schedule of an asynchronous periodic task system τ1, . . . , τn constructed
by a Cyclic Fixed Job Priority scheduler considering NRLDs. Then for each task τi and for each
time instant t ≥ Oi, we have ei,t ≥ ei,t+H .

Proof. We will show the property by contradiction. Let t ≥ Oi be the first time instant such
that:

∃ i s.t. ei,t < ei,t+H . (4)

Let’s first observe that i is unique since we consider uniprocessor scheduling. Equation 4
implies that the task τi is active at both instants t− 1 and t+H − 1, and τi is executing at time
instant t+H − 1 but not at time instant t− 1. We will consider all cases where this can happen
with NRLDs. For each case (a–d.5) we will show that the situation is not possible and leads to a
contradiction. But first we introduce an additional notations: S(t) denotes the schedule decision
at time t, S(t) = Ei meaning the execution of τi, S(t) = Li meaning the loading of τi (starting
or resuming), and S(t) = I meaning that the processor is idle. We extend the notation for the
time interval [ta, tb]: S(ta, tb) = [S(ta), S(ta + 1), . . . , S(tb − 1), S(tb)].

Case a. S(t − 1) = Ej , j 6= i (and S(t + H − 1) = Ei), in this case task τj , has an higher
priority job, active at time instant t − 1 but not at time instant t + H − 1. I.e., one hyper-
period later, the cousin job of τj is not active. Keep in mind that we are considering a CFJP
schedulers, and therefore, the relative priorities of jobs remain the same one hyper-period later.
The situation means that ej,t−1 < ej,t+H−1 = Cj , which contradicts the fact that t is the first
instant which satisfies Equation 4.

4It is at this point that we use the assumption that there are starting delays, since otherwise we can easily
identify a counterexample of the property we are proving.

11

insufficient sufficient

t

LiLi · · ·Li6= Li

H

EiLi · · ·Li

t+H

Figure 4: Case d.5, proof of Lemma 1

Case b. S(t − 1) = I (and S(t + H − 1) = Ei), this is impossible since τi is active (not
completed) at time instant t− 1 and the scheduler is work-conserving.

Case c. S(t− 1) = Lj , j 6= i (and S(t+H − 1) = Ei), task τj has a higher priority job, active
at time instant t− 1 but not at time instant t+H − 1. This scenario again contradicts the fact
that t is the first instant which satisfies Equation 4.

Case d. S(t− 1) = Li (and S(t+H − 1) = Ei). This case will require a bit more attention,
especially Case d.5. First notice that since S(t− 1) = Li we know that SDi > 0. Also note that
t − 1 cannot correspond to the release of τi, otherwise it should also be released at t + H − 1
which is not possible since we have S(t + H − 1) = Ei. In other words, τi is released strictly
before t− 1, meaning t− 2 ≥ 0. We have five sub-cases to investigate:

Case d.1. S(t − 2) = Ei. The sequence S(t − 2, t − 1) = [Ei, Li] is impossible since it
is impossible at time t − 1 (and t + H − 1) for a new release of τi to occur since we have
S(t+H − 1) = Ei and a starting delay is required necessarily in our model (since SDi > 0).

Case d.2. S(t − 2) = Ej , j 6= i. Task τj has a higher priority job active at time t − 2 but
completed at time t + H − 2. This again contradicts the fact that t is the first instant which
satisfies Equation 4.

Case d.3. S(t − 2) = I this impossible for a work-conserving scheduler since at time t − 2
there is at least one active task (τi). Let’s recall that it is impossible for a new release of τi to
occur at t− 1 since we have S(t+H − 1) = Ei and a loading delay is required.

Case d.4. S(t− 2) = Lj , j 6= i, the sequence S(t− 2, t− 1) = [Lj , Li] is impossible, since the
sequence means that a new release of τi (a higher priority job) occurs at time instant t− 1 and
consequently also one hyper-period later at time instant t+H−1 but we have S(t+H−1) = Ei

which is not allowed since at time instant t+H − 1 a starting delay is required (since SDi > 0
and SDj > 0).

Case d.5. S(t − 2) = Li. Let’s begin by noting that ei,t−1 = ei,t−1+H because t is the first
time instant which satisfies Equation 4. Also note that for the same reason, it is not possible to
have S(t+H − 2) = Ei. So case Case d.5. corresponds to Figure 4. Firstly, if ei,t−1+H = 0 (and
thus ei,t−1 = 0), it is the first execution of a job of τi. That is, we have a starting block (of size
SDi > 0) immediately followed by the execution of τi, the schedule decision S(t− 1 +H) = Ei.
Since S(t− 1) = Li, we must have p s.t. 1 ≤ p < SDi and S(t− 1− p, t− 2) = [Li, . . . , Li] and
S(t − 2 − p) 6= Li, otherwise at time instant t − 1 task τi must be executed (since the starting
block is completed). The only possibility is to have either S(t− 2− p) = Ej or S(t− 2− p) = Lj

with i 6= j (the cpu cannot be idle). In both cases the situation means that a higher priority job
is active (and not completed) at time t−2−p while one hyper-period later, at time t+H−2−p,
the cousin job is completed, this contradicts again that t is the first time instant which satisfies
Equation 4. Secondly, if ei,t−1+H > 0 (and thus ei,t−1 > 0), for both the cousin jobs of τi at
time t− 1 (and t− 1+H) we need a block of size RDi > 1 before executing the job at time t− 1
(and t− 1+H) but such a block is incomplete right before t− 1. This is similar to the first case
(ei,t−1+H = 0): we encounter the same contradiction once again.

12

We have thoroughly covered all the cases, first for the slot t− 1, with the possibilities being
Ei, Ej , I, Lj , Li. All situations are contradictory: Ei (impossible by assumption), Ej (case a.,
contradiction of Eq. 4), I (case b., contradiction of work-conserving), Lj (case c., contradiction
of Eq. 4). This is independent of what happens in t− 2. The last case Li must be broken down
into 5 sub-cases, based on the possibilities in slot t − 2: Ei, Ej , I, Lj , Li. Again, all 5 cases are
contradictory: Ei (case d.1 requires a release of τi at t−1), Ej (case d.2, contradiction of Eq. 4),
I (case d.3, contradiction of work-conserving), Lj (case d.4, requires a release of τi at t− 1), and
finally Li (case d.5, as illustrated by Figure 4).

The second property concerns the periodicity of CFJP schedulable systems. We begin by
formally defining the notion of idle point.

Definition 7 (Idle point). We say that x ∈ N is an idle point if all the jobs released strictly
before x have completed their execution before or at time x.

Unlike the concept of an idle slot, where the CPU is idle for a unit of time, the idle point
means that the CPU has completed the pending work.

Lemma 2. Let S be the schedule of a task system R constructed by a Cyclic Fixed Job Priority
scheduler with Non-Resumable Loading Delay. If R is CFJP-schedulable, then ∀i and ∀t1 ≥
Omax +H we have ei,t1 = ei,t2 , where t2 = t1 +H, and Omax = maxni=1 Oi.

Proof. We will show the property by contradiction. We assume, for the purpose of the contra-
diction, that ∃ ` and t1 ≥ Omax +H s.t. e`,t1 6= e`,t2 . By Lemma 1, we must have

e`,t1 > e`,t2 (5)

We will first show that during the time interval [t1, t2) there is no idle slot (Subproof A below).
Then we will prove that the number of loading slots in the interval [t2, t3) (one hyper-period
later, where t3 = t2 +H) is greater than or equal to the number of loading slots in the interval
[t1, t2) (see Subproof B below). Finally, (after the two sub-proofs) we combine Eq. 5 and the two
sub-properties to obtain a contradiction.

Subproof A. We will prove that the interval [t1, t2) does not contain any idle slot. We will prove
this by contradiction. For the purpose of the contradiction we will assume an idle slot during
the time-slot [t1 + ∆, t1 + ∆ + 1) (with ∆ < H). This implies that all task computations
requested prior to t1 + ∆ have finished their execution. Consequently, t1 + ∆ is an idle point
and ∀i, ei,t1+∆ = Ci. By definition, we know that for any t, ei,t ≤ Ci; and thus, in particular,
for t = t1 − H + ∆, i.e., ∀i, ei,t1−H+∆ ≤ Ci, by Lemma 1 we have ∀i, ei,t1−H+∆ ≥ ei,t1+∆.
We just proved that ∀i, ei,t1+∆ = Ci. Consequently, ∀i, ei,t1−H+∆ = Ci. In other words, all
task computations requested prior to t1 − H + ∆ have finished their execution, as well. I.e.,
t1 −H +∆ is an idle point as well. Since the task requests in the interval [t1 −H +∆, t1 +∆)
and [t1 + ∆, t2 + ∆) are the same, since ∀i, ei,t1−H+∆ = ei,t1+∆ = Ci, and since we consider
CFJP schedulers, the schedule in the interval [t1 −H +∆, t1 +∆) and [t1 +∆, t2 +∆) must be
identical.

Since t1 ∈ [t1 − H + ∆, t1 + ∆), t2 ∈ [t1 + ∆, t2 + ∆), and t2 − t1 = H; we conclude that
∀i, ei,t1 = ei,t2 contradicting our initial assumption (Eq. 5). We have just proved that if we
assume that ∃ ` s.t. e`,t1 > e`,t2 , there is no idle slot in the time interval [t1, t2). 4

Subproof B. We will prove that the amount of loading slots in the interval [t2, t3) is greater
or equal to the one in the interval [t1, t2). The only factor that changes the amount of loading

13

necessary to serve a job Ji is the number of times it is preempted: each preemption adds a loading
time (RDi). We will prove the property by contradiction. For the purpose of the contradiction
we will assume that the amount of loading slots in the interval [t1, t2) is strictly greater than
the one in the interval [t2, t3), it implies that there exists at least one job Jr of task τr which is
preempted by a job with a greater priority released at time tp < t2 and a cousin job J ′

r of the
same task released on hyper-period later which is not preempted at time tp +H, which is also
the release of a job with a greater priority. There are two cases:

1. J ′
r is completed at time tp+H, i.e., er,tp+H = Cr but this is in contradiction with Lemma 1

since er,tp < Cr (Jr is preempted, not completed).

2. J ′
r is not executing (or reloading/starting) at time tp +H − 1. It implies that it exists a

job J ′
k with a higher priority than J ′

r executing (or reloading/starting), since J ′
r is pending

and not executing. It follows that there must exist a cousin job of τk, the job Jk of priority
higher than Jr completed at time tp − 1 (since Jr is executing or reloading at time tp − 1).
To explain that J ′

k is not completed at time tp + H − 1 but Jk is at time tp − 1, there
must exists δ > 1 such that a job with a higher priority is executing at time tp + H − δ
but a cousin job released one hyper-period before completed at time tp − δ. Repeating the
argument, it exists another δ2 > δ with the same property, again and again, until δh > tp,
which is impossible since no job can be active before time 0.

4

Now, we combine Eq. 5 and the two sub-properties to show that the system is overloaded and
consequently not schedulable which is a contradiction and prove Lemma 2. Indeed, if there is no
idle slot in [t1, t2) and if e`,t1 > e`,t2 we can make three observations: (i) for all jobs released in
[t1, t2), there is a cousin job released one hyper-period later in [t2, t3); (ii) the amount of work
to do in the interval [t1, t2), is composed of the backlog at t1 plus the necessary work to serve
among the jobs released in the interval; that amount of work (including the necessary reloading
slots) is at least equal to H (since [t1, t2) does not contain any idle slot see subproof A); (iii) the
amount of work to execute in [t2, t3) is composed of the backlog at t2, which is greater than the
one at t1 (Eq. 5) plus the necessary work to serve among the jobs released in the interval. This is
composed of the executing part, which is the same as in [t1, t2) plus the reloading slots (which is
at least as large as that of the interval [t1, t2), see subproof B). This implies that the amount of
work to serve in [t2, t3) is strictly greater than the one in [t1, t2). Applying the same arguments
for the subsequent intervals of length H, we conclude that the amount of work to serve is strictly
increasing and so that the system cannot be schedulable, contradicting our hypothesis and proves
Lemma 2.

We now have the material to prove that [0, Omax + 2 × H) is a simulation interval in our
framework.

Theorem 2 (Simulation interval for CFJP). Any Cyclic Fixed Job Priority-schedulable asyn-
chronous constrained-deadline periodic tasks with Non-Resumable Loading Delays upon unipro-
cessor platform reaches a cycle at or prior to: Omax + 2H.

Proof. This is a direct consequence of Lemma 2: if no deadline are missed in [0, Omax+2H), the
system is in the same state at time Omax +H and Omax + 2H and the schedule repeats.

14

5.3 Simulation interval for FTP schedulers
In this section we consider a particular case of CFJP schedulers, the class FTP, where the priority
are fixed at task level as RM. We will generalise the property of Goossens et al. [Goossens and Devillers(1997)]
in our framework. Let’s consider the values Sn defined as follows:

Definition 8 (Sn [Goossens and Devillers(1997)]). S1 = O1, Si = Oi +
⌈
max{0,(Si−1−Oi)}

Ti

⌉
Ti

(i > 1).

Informally speaking, Si corresponds to the release time of the first job of τi at or after time
Si−1.

For FTP schedulers [0, Sn +H) is a simulation interval with NRLD delays with and without
SD. Indeed, since there is no priority inversion (see Definition 9) in our model the inductive proof
can be extended easily in our framework.

Definition 9 (Priority inversion). There is a priority inversion whenever a lower-priority task/job
is executing (or loading) while a higher-priority task/job is blocked and unable to proceed until
the lower-priority one completes.

Theorem 3 (Simulation interval for FTP). Any FTP-schedulable (τ1 � τ2 � · · · � τn) asyn-
chronous constrained deadline periodic tasks with Non-Resumable Loading Delay delays with and
without Starting Delay upon uniprocessor platform reaches a cycle at or prior to: Sn+Hn where
Hn = lcm{Tj | j = 1, . . . , n}.

Proof. Since the proof is practically identical to that published in [Goossens and Devillers(1997)],
we present here a condensed version and invite the reader to consult [Goossens and Devillers(1997)]
for details.

By induction.
Base case: When n = 1, if feasible the schedule for τ1 reaches a cycle at T1 = H1 from the

first release of τ1 (S1 = O1).
Inductive hypothesis: Assume that the theorem holds for some arbitrary value n = k.
Inductive step: We will show that the theorem also holds for n = k+ 1. We know that if the

task set {τ1, τ2, . . . , τk} is FTP-schedulable then the schedule of {τ1, . . . , τk} reaches a cycle is at
Sk with a period of Hk. As there is no priority inversion caused by task τk+1, the schedule and
periodicity of tasks τ1, . . . , τk remain unaffected by the releases made by task τk+1. Let Sk+1

denote the first release of task τk+1 after (or at) Sk (i.e., Sk+1 ≥ Sk). Combining the periodicity
of the schedule of τ1, . . . , τk and the periodicity of τk+1 (from Sk+1 with a period of Tk+1), we
can conclude that the theorem is satisfied for n = k + 1. That is, if τ1, . . . , τk+1 is schedulable,
then its FTP schedule reaches a cycle at Sk+1 with a period of lcm{Hk, Tk+1} = lcm{Tj | j =
1, . . . , k + 1} = Hk+1.

5.4 Sustainability
In this section, we will use the definition of sustainability as introduced in [Baruah and Burns(2006)].

Definition 10 (Sustainable [Baruah and Burns(2006)]). A schedulability test for a scheduling
policy is sustainable if any system deemed schedulable by the schedulability test remains schedulable
when the parameters of one or more individual job[s] are changed in any, some, or all of the
following ways: (i) decreased execution requirements; (ii) later arrival times; (iii) smaller jitter;
and (iv) larger relative deadlines.

15

τ1

0 5 10 15 20

τ2

τ3

(a) Schedulable (a cycle of length 10 begins at time 2)
missed missed

τ1

0 5 10 15 20

τ2

τ3

(b) Not schedulable if τ2 terminates earlier (deadline miss at time 5)

Figure 5: – No C-sustainability without SDs. Sub-figure 5a shows the schedule obtained
with EDF of a system composed of task τ1 = 〈O1 = 2, C1 = 1, T1 = 10, D1 = 3,RD1 = 2〉, τ2 =
〈0, 2, 10, 5, 2〉 and τ3 = 〈1, 2, 10, 4, 2〉. Sub-figure 5b shows the schedule of the same system when
jobs of τ2 terminates after having executing only for 1 time unit, causing the following jobs of τ3
to miss their deadline. The reason for this is that the time slots allocated to τ3 at time 3 (and
13) are normal executions in the first case and RDs in the latter one.

16

τ1

0 5 10 15 20

τ2

τ3

(a) Schedulable (a cycle of length 15 begins at time 3)

τ1

0 5 10 15 20

τ2

τ3

(b) Remains schedulable if τ2 terminates earlier

Figure 6: – C-sustainability with SDs. This figure depicts a situation similar to the one
in Figure 5, but when SDs are considered. Sub-figure 6a presents the schedule of the system
composed by τ1 = 〈O1 = 3, C1 = 1, T1 = 15, D1 = 6,SD1 = 1,RD1 = 1〉, τ2 = 〈0, 2, 15, 9, 1, 1〉
and τ3 = 〈2, 2, 15, 7, 2, 2〉. Sub-figure 6b shows the schedule of the same system when jobs of τ2
terminates after having executing only for 1 time unit. This does not have any effect on τ3’s jobs
response times. The reason for this is that time slots allocated to load τ3 at time 5 are necessary,
as an SD in the first case, as an RD in the latter one. Furthermore, the additional LD at time 3
cannot exceed the time gained by the early completion of τ2.

Considering the NRLD model, we study here the sustainability of the test consisting of
simulating system behaviour over the simulation intervals proven to be correct in Sections 5.2
and 5.3, for CFJP and in the special case of FTP, respectively.

More specifically, we are interested in the sustainability of this test regarding the WCET
(Ci), the duration of LD (SDi and RDi) and the job arrival times (by abuse of language, T -
sustainable in the following). We will refer to these properties with the terms C-sustainability,
LD-sustainability, and T -sustainability, respectively.

First, one can note that without considering SDs, exact tests are not C-sustainable as shown
by counterexample depicted by Figure 5. We can easily construct a similar example where a task
terminates earlier because it was resumed sooner than expected, so exact tests when considering
only RDs are not RD-sustainable neither. We will see that exact tests when considering both
type of delays are however C-sustainable (Section 5.4.1), SD-sustainable, and RD-sustainable
(Section 5.4.2). Finally, exact tests are not T -sustainable with any of the considered models
(Section 5.4.3).

17

5.4.1 Sustainability regarding Worst-Case Execution Time

We prove in this section the C-sustainability property by proving that the completion times of
a collection of jobs can only decrease when some jobs complete having executed for less than
their WCET. This is formalised by Theorem 4. Figure 6 presents an example extended from the
counterexample when SDs are not considered (Figure 5) to provide an intuitive understanding
of what occurs.

The C-sustainability is a particularly important property since our main results in this work
consist on bounding the simulation interval. If simulating the system over the interval was not
a C-sustainable test, considering WCET would not be a conservative approach (the worst-case
scenario would not be covered).

Theorem 4. Considering NRLD model and CFJP scheduler, if any job terminates being executed
for less than its WCET, it cannot results in any increase of any job response time.

Proof. Consider the schedule S where all jobs have a worst-case duration (Ci for each job of τi).
Consider S′ as the schedule for the same set of tasks where all jobs, except for Ji,k, have a worst-
case duration, while the actual execution time of Ji,k is Ci − w (w > 0). Until the completion
time of Ji,k in S′, S and S′ are identical. After the completion of Ji,k in S′, S consists of time
slots allocated to other jobs, slots allocated to load Ji,k (whether successfully or not), and slots
allocated to execute Ji,k. All these time slots previously allocated to Ji,k in S are available for
other jobs in S′. The time slots previously allocated to loading/executing other jobs in S remain
available for the same jobs in S′ until they are completed. This is due to the use of a fixed job
priorities (CFJP) scheduler and the absence of non-preemptive operations in our model, ensuring
no priority inversions occur. As a result, these jobs can complete earlier or at the same time in
S′ as in S.

We must prove that allocating more time slots for executing or loading a job does not increase
its response time. We start by proving that allocating one additional time slot does not increase
the response time. The generalisation is straightforward, as the argument can be applied repeat-
edly. Let us consider a given job J`,m and compare its response time in S and in S′, noting that
in S′ there is an additional slot for it.

Let’s start by noting that an execution slot of J`,m in S cannot become a loading slot in S′.

Subproof. Suppose, for contradiction, that there exists a slot used to execute J`,m in S that
is used to load it in S′. This would mean either that a contiguous sequence of slots used for
loading (a loading block in the following) preceding the concerned execution block (a contiguous
sequence of slots used for executing) in S is interrupted in S′, which is not possible because the
same slots are allocated to J`,m in S and S′, or that the loading sequence is of the same length in
both schedules but is sufficient in S but not in S′ to lead to an execution. The only possibility is
then that the sequence corresponds in S to an RD and in S′ to an SD. For example, this occurs
when the added slot is just before the execution of a higher priority job while J`,m has not yet
started its execution. Even then, this assumes that SD` < RD`, which is impossible under the
task model assumptions (∀i SDi ≥ RDi). 4

Now let us note that the additional time slot in S′ is either isolated (preceded and succeeded
by a slot allocated to another job) or connected to slots already allocated to J`,m. We therefore
have a contiguous sequence of slots (a block in the following) allocated to Ji,k.

There are two cases, depending on the length of this block: (i) it can be less than or equal
to λ` or (ii) greater than λ` where λ` is either equal to SD` when we consider a starting block
or equal to RD` when we consider a resuming block.

18

Case (i): The block is composed exclusively of loading slots, it does not aid the job in
progressing in S′. In S, the block was even shorter and the job was not progressing either. The
remainder of the schedule remains unchanged.

Case (ii): the new block in S′ is of size s > λ`, which means that the first λ` slots are used
in S′ to load the job, while the s−λ` last ones will be available to execute it. In S the block size
was at most s− 1, so the total number of potential execution slots in S′ is necessarily increased
by at least one compared to S. Indeed, all slots used to execute J`,m in S are also available to
execute it in S′ and as previously proved, no execution slot can become a loading one.

Since the total number of execution slots is always equal to C` that implies that the last slot
affected in S for the execution of the job is no longer necessary to complete it, and will so be
made available to other jobs in S′. So J`,m terminates earlier in S′ than in S (not necessarily
one time earlier, because some preceding loading slots can also become irrelevant, e.g. if the last
slots allocated in S is λ` loadings and one unique execution). Note that the consequences of this
early termination on other jobs to consider are exactly the same as for Ji,k early termination.

We so prove that considering an early termination for a job can result in an early termination
of either zero, one or several other jobs.

Note that it is needed to consider Non-Resumable Starting Delays (NRSDs) with ∀i SDi ≥
RDi to have (and prove) this property. Without SDs (or with SD lesser than RD), starting a job
earlier due to early termination of an higher priority job can result in adding a preemption later,
and so an associated loading time (see Figure 5). Moreover with Non-Preemptive Resuming
Delay (NPRD), starting a job earlier can result in starting a non-preemptive block of operations
that will lead to completely change the schedule due to priority inversions.

Theorem 5 (C-sustainability). The test consisting in scheduling the system for its simulation
interval is sustainable regarding the WCET when NRLD preemption model is considered.

Proof. This is a direct consequence of Theorem 4: if all deadlines are met when a collection of
jobs is scheduled according to their WCET for a given interval of time, if some of them terminate
earlier (are executed for less than their WCET or are started earlier), then the completion times
being lesser than or equal to the ones in the initial scenario, the deadlines are met.

5.4.2 Sustainability regarding Loading Delays

We will establish the LD-sustainability, directly stemming from the C-sustainability.

Theorem 6 (LD-sustainability). The test consisting in scheduling the system for its simula-
tion interval is sustainable regarding the SD and RD delays when NRLD preemption model is
considered.

Proof. This is a direct consequence of the C-sustainability. Indeed, when a job is ready for
execution earlier than expected, it will result in an early completion of that same job, since all
the allocated slots until its completion will still be allocated to the same jobs and that the total
number of execution cannot increase (as for the C-sustainability, it is because SD are considered).
The consequences for the remaining of the schedule will be exactly the same as if the job did
execute for less than its WCET. Since the test is C-sustainable, it will also be LD-sustainable.

5.4.3 Sustainability regarding job arrival times

Unfortunately, the test consisting in simulating the system until the end of the simulation interval
is not T -sustainable with the considered framework. That is, if a system passes the test, it may
no longer pass the test if a job is released later than initially (as depicted by counterexample in

19

τ1

0 5 10 15 20

τ2

(a) Schedulable: cycle of size 10 starts at 0
missed missed

τ1

0 5 10 15 20

τ2

(b) A deadline is missed in each cycle

Figure 7: – T -sustainability counterexample. We consider the schedule produced by EDF
of a system composed of task τ1 = 〈O1 = 0, C1 = 1, T1 = 5, D1 = 2, SD1 = 1, RD1 = 1〉 and task
τ2 = 〈0, 2, 10, 5, 1, 1〉. Sub-figure 7a shows the schedule until time 20, which is sufficient to observe
that the system is schedulable since time 10 is equivalent to time 0. However if the first job of
τ1 arrives later, say at time 1 (and the third one at time 11) it leads to the activation scenario
depicted in Sub-figure 7b, which exhibits that in that case the first job of τ2 misses its deadline
(red square at times 5 and 15).

Figure 7). This counterexample also highlight the fact that the synchronous scenario is not the
worst-case scenario. This justifies the interest in studying asynchronous systems for this model
in this work.

5.5 Robust schedulability tests
We now have all the elements needed to establish two exact and robust schedulability tests.

Test 1 (EDF-like schedulers). Let A be an CFJP-scheduler, then any asynchronous constrained
deadline periodic tasks with NRLD upon uniprocessor platform is A-schedulable iff (i) we do not
miss any deadline within the interval [0, Omax + 2H), and (ii) ∀i ei,Omax+H = ei,Omax+2H .

Proof. This is a direct consequence of Theorem 2.

Test 2 (FTP schedulers). Let A an FTP-priority assignment (τ1 � τ2 � · · · � τn), then any
asynchronous constrained deadline periodic tasks with NRLD upon uniprocessor platform (with
and without Starting Delay) is A-schedulable iff (i) we do not miss any deadline within the interval
[0, Sn +H), and (ii) ∀i ei,Sn = ei,Sn+H . (Where Sn is defined inductively in Definition 8.)

Proof. This is a direct consequence of Theorem 3.

Moreover, those tests are robust. This is a consequence of the sustainability properties (the-
orems 4, 5, and 6).

20

missed missed missed

τ1

0 5 10 15 20

τ2

(a) Not EDF-schedulable (deadline miss at 6)

τ1

0 5 10 15 20

τ2

(b) Schedulable with τ1 � τ2 (a 6 length cycle starts at time 0)

Figure 8: – EDF Non Optimality. Sub-figure 8a shows the schedule obtained with EDF of
a system composed of task τ1 = 〈O1 = 0, C1 = 1, T1 = 6, D1 = 6, SD1 = 3, RD1 = 3〉 and task
τ2 = 〈2, 1, 3, 3, 0, 0〉. System is not EDF-schedulable. Sub-figure 8b shows the same system
successfully scheduled under FTP with τ1 � τ2.

6 Conclusion
As observed in Section 4, taking into account the time required for context switches as part
of the WCETs introduces pessimism. Moreover, especially if this time is long compared to the
WCETs (for example, due to additional security operations or other high-level RTOS services),
the classical theoretical results from the literature are no longer applicable.

This is due to the fact that CS operations are implemented as NP code sections within
most RTOS and therefore do not behave like normal executions. Considering this in the task
model, as we have done in [Goossens and Masson(2022)], poses major issues for system analysis:
intractable simulation intervals, scheduling anomalies, and lack of sustainability properties.

The NR model proposed in this paper addresses these issues by introducing a more refined
representation. Unfortunately, the classical theoretical results from the literature are no longer
applicable to this model. Nevertheless, as discussed in Section 5.2 and Section 5.3, it is feasible
to limit the simulation intervals for FTP and EDF with reasonable bounds.

From a theoretical perspective, the model appears promising, particularly owing to its absence
of scheduling anomalies and the sustainability properties of the schedulability tests associated
with a simulation over a finite interval, as demonstrated in Section 5.4. Reducing these bounds
or exploring alternative methods to determine schedulability are short-term open challenges in
this research. This could be investigated by seeking a sufficient condition or calculating bounds
on response times (and certainly on the number of preemptions). Another question raised by
this model would be to propose an effective scheduling algorithm. As illustrated in Figure 8,
EDF is no longer optimal when considering this model with periodic tasks.

The model appears entirely realistic from a practical standpoint as long as an interrupt
handler featuring multiple priority levels is available. Future works will need to demonstrate this
feasibility by implementing this model in an RTOS.

It also appears that this model, defining very generally what constitutes LDs, efficiently

21

models other mechanisms that one might want to include in a modern real-time system. For
example, security mechanisms as described in [Baruah(2022)] where it is considered that for each
preemption, a security handler clears the cache of critical tasks to guard against the risk of a
task attempting to read the data left in the cache.

The main drawback of the approach proposed in this paper for testing schedulability is that
it is not applicable to a sporadic task model.

In conclusion, we thus proposed a realistic task model that considers the costs of preemption
(and loading) that is not subject to scheduling anomalies. This model decreases the pessimism
of classical approaches and permits a correct analysis in the case where LDs are not negligible
parts of WCETs. For this model and classical schedulers (FTP, EDF), we provided a reasonable
simulation interval. This provides exact schedulability tests, sustainable with respect to WCETs
and LDs, taking preemptions into account.

22

Glossary

Acronyms
CFJP Cyclic Fixed Job Priority. 1, 3, 4, 9, 11, 13–16, 18

CRPD Cache-Related Preemption Delay. 5

CS Context Switch. 2, 3, 6–9, 18

DM Deadline Monotonic. 3

EDF Earliest Deadline First. 2–4, 8, 10, 11, 18, 19, 24, 26, 27

FJP Fixed Job Priority. 1, 5, 6, 10

FTP Fixed Task Priority. 1–6, 10, 14, 15, 18, 19, 27

IRQ Interrupt Request. 6, 7

ISR Interrupt Service Routine. 6, 7

LD Loading Delay. 1, 2, 7–9, 15, 17, 19, 25

LLF Least Laxity First. 2

NP Non-Preemptive. 5, 7, 18

NPLD Non-Preemptive Loading Delay. 8, 10

NPRD Non-Preemptive Resuming Delay. 17

NR Non-Resumable. 1–3, 7, 9, 18

NRLD Non-Resumable Loading Delay. 1, 7, 8, 10, 11, 14–18

NRSD Non-Resumable Starting Delay. 17

RD Resuming Delay. 7–9, 16, 17, 24, 25

RM Rate Monotonic. 3, 4, 10, 14

RTOS Real-Time Operating System. 1, 3, 6, 9, 18, 19

SD Starting Delay. 3, 7–9, 15–17, 24, 25

WCET Worst-Case Execution Time. 2–6, 8, 9, 15–19

23

References

References
[Ahmed and Anderson(2021)] Shareef Ahmed and James H. Anderson. 2021. Tight Tardiness

Bounds for Pseudo-Harmonic Tasks Under Global-EDF-Like Schedulers. In 33rd Euromicro
Conference on Real-Time Systems (ECRTS 2021) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 196), Björn B. Brandenburg (Ed.). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 11:1–11:24. https://doi.org/10.4230/
LIPIcs.ECRTS.2021.11

[Ahmed and Anderson(2022)] Shareef Ahmed and James H Anderson. 2022. Exact Response-
Time Bounds of Periodic DAG Tasks under Server-Based Global Scheduling. In Real-Time
Systems Symposium (RTSS). IEEE, 447–459.

[Altmeyer et al.(2012)] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. 2012. Improved
cache related pre-emption delay aware response time analysis for fixed priority pre-emptive
systems. Real-Time Systems 48, 5 (2012), 499–526.

[Audsley(1991)] N. C. Audsley. 1991. Optimal Priority Assignment and Feasibility of Static
Priority Tasks With Arbitrary Start Times. Technical Report YCS-164. Department of
Computer Science, University of York.

[Baruah(2005)] Sanjoy Baruah. 2005. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In 17th Euromicro Conference on Real-Time Systems (ECRTS’05).
137–144. https://doi.org/10.1109/ECRTS.2005.32

[Baruah(2022)] Sanjoy Baruah. 2022. Security-Cognizant Real-Time Scheduling. In 2022 IEEE
25th International Symposium On Real-Time Distributed Computing (ISORC). 1–9. https:
//doi.org/10.1109/ISORC52572.2022.9812766

[Baruah and Burns(2006)] Sanjoy Baruah and Alan Burns. 2006. Sustainable Scheduling Anal-
ysis. In 27th IEEE International Real-Time Systems Symposium (RTSS’06). 159–168.
https://doi.org/10.1109/RTSS.2006.47

[Bertogna and Baruah(2010)] Marko Bertogna and Sanjoy Baruah. 2010. Limited Preemption
EDF Scheduling of Sporadic Task Systems. IEEE Transactions on Industrial Informatics
6, 4 (2010), 579–591. https://doi.org/10.1109/TII.2010.2049654

[Bimbard(2007)] F. Bimbard. 2007. Dimensionnement temporel de systèmes embarqués : appli-
cation à OSEK. PhD thesis. CNAM, Paris, France.

[Burns(1994)] Alan Burns. 1994. Preemptive Priority Based Scheduling: An Appropriate Engi-
neering Approach. In Principles of Real-Time Systems. Prentice Hall, 225–248.

[Burns et al.(1995)] A. Burns, K. Tindell, and A. Wellings. 1995. Effective analysis for engineer-
ing real-time fixed priority schedulers. IEEE Transactions on Software Engineering 21, 5
(1995), 475–480. https://doi.org/10.1109/32.387477

[Busquets-Mataix et al.(1996)] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil, and A.
Wellings. 1996. Adding instruction cache effect to schedulability analysis of preemp-
tive real-time systems. In Real-Time Technology and Applications. 204–212. https:
//doi.org/10.1109/RTTAS.1996.509537

24

https://doi.org/10.4230/LIPIcs.ECRTS.2021.11
https://doi.org/10.4230/LIPIcs.ECRTS.2021.11
https://doi.org/10.1109/ECRTS.2005.32
https://doi.org/10.1109/ISORC52572.2022.9812766
https://doi.org/10.1109/ISORC52572.2022.9812766
https://doi.org/10.1109/RTSS.2006.47
https://doi.org/10.1109/TII.2010.2049654
https://doi.org/10.1109/32.387477
https://doi.org/10.1109/RTTAS.1996.509537
https://doi.org/10.1109/RTTAS.1996.509537

[Choquet-Geniet and Grolleau(2004)] Annie Choquet-Geniet and Emmanuel Grolleau. 2004.
Minimal schedulability interval for real time systems of periodic tasks with offsets. Theo-
retical of Computer Sciences 310 (2004), 117–134.

[Colin(2021)] Walls Colin. 2021. Embedded RTOS Design: Insights and Implementation. Elsevier
Ltd.

[Dridi et al.(2021)] Mourad Dridi, Frank Singhoff, Stéphane Rubini, and Jean-Philippe Diguet.
2021. ECTM: A network-on-chip communication model to combine task and message
schedulability analysis. Journal of Systems Architecture 114 (2021), 101931. https:
//doi.org/10.1016/j.sysarc.2020.101931

[Goossens and Devillers(1997)] Joël Goossens and Raymond Devillers. 1997. The Non-
Optimality of the Monotonic Priority Assignments for Hard Real-Time Offset Free Systems.
Real-Time Syst. 13, 2 (sep 1997), 107–126. https://doi.org/10.1023/A:1007980022314

[Goossens and Devillers(1999)] Joël Goossens and Raymond Devillers. 1999. Feasibility intervals
for the deadline driven scheduler with arbitrary deadlines. In The 6th IEEE International
Conference on Real-time Computing Systems and Applications. 54–61.

[Goossens et al.(2016)] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. 2016.
Periodicity of real-time schedules for dependent periodic tasks on identical multiprocessor
platforms. Real-time systems 52, 6 (2016), 808–832.

[Goossens and Masson(2022)] Joël Goossens and Damien Masson. 2022. Simulation intervals for
uniprocessor real-time schedulers with preemption delay. In The 30th International Con-
ference on Real-Time Networks and Systems (RTNS) 2022. ACM, Paris, France, 36–45.
https://doi.org/10.1145/3534879.3534887

[Katcher et al.(1993)] Daniel I. Katcher, Hiroshi Arakawa, and Jay K. Strosnider. 1993. Engi-
neering and analysis of fixed priority schedulers. IEEE transactions on Software Engineering
19, 9 (1993), 920–934.

[Lee et al.(1998)] Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. 1998. Analysis
of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE Trans.
Comput. 47, 6 (1998), 700–713. https://doi.org/10.1109/12.689649

[Leung and Merrill(1980)] Joseph Y-T Leung and M.L. Merrill. 1980. A note on preemptive
scheduling of periodic, real-time tasks. Information processing letters 11, 3 (1980), 115–118.

[Leung and Whitehead(1982)] Joseph Y-T Leung and Jennifer Whitehead. 1982. On the com-
plexity of fixed-priority scheduling of periodic, real-time tasks. Performance evaluation 2,
4 (1982), 237–250.

[Liu and Layland(1973)] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM 20, 1 (jan 1973), 46–61.
https://doi.org/10.1145/321738.321743

[Lunniss et al.(2013)] Will Lunniss, Sebastian Altmeyer, Claire Maiza, and Robert I Davis. 2013.
Integrating cache related pre-emption delay analysis into edf scheduling. In 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 75–84.

25

https://doi.org/10.1016/j.sysarc.2020.101931
https://doi.org/10.1016/j.sysarc.2020.101931
https://doi.org/10.1023/A:1007980022314
https://doi.org/10.1145/3534879.3534887
https://doi.org/10.1109/12.689649
https://doi.org/10.1145/321738.321743

[Masson(2024)] Damien Masson. 2024. Draw Schedule. https://igm.univ-mlv.fr/~masson/draw-
schedule.

[Meumeu Yomsi(2009)] Patrick Meumeu Yomsi. 2009. Prise en compte du coût exact de la
préemption dans l’ordonnancement temps réel monoprocesseur avec contraintes multiples.
PhD thesis. Université Paris Sud – Orsay, Paris, France.

[Phavorin et al.(2015)] Guillaume Phavorin, Pascal Richard, Joël Goossens, Thomas Chapeaux,
and Claire Maiza. 2015. Scheduling with preemption delays: anomalies and issues. In The
23rd International Conference on Real Time and Networks Systems. 109–118.

[Staschulat and Ernst(2005)] Jan Staschulat and Rolf Ernst. 2005. Scalable precision cache anal-
ysis for preemptive scheduling. In ACM SIGPLAN/SIGBED conference on Languages, com-
pilers, and tools for embedded systems. 157–165.

[Tomiyama and Dutt(2000)] H. Tomiyama and N.D. Dutt. 2000. Program path analysis to
bound cache-related preemption delay in preemptive real-time systems. In Proceedings of
the Eighth International Workshop on Hardware/Software Codesign. CODES 2000 (IEEE
Cat. No.00TH8518). 67–71.

[Tran et al.(2021)] Hai Nam Tran, Stéphane Rubini, Jalil Boukhobza, and Frank Singhoff. 2021.
Feasibility interval and sustainable scheduling simulation with CRPD on uniprocessor plat-
form. Journal of Systems Architecture 115 (2021), 102007. https://doi.org/10.1016/
j.sysarc.2021.102007

[Wang and Saksena(1999)] Yun Wang and M. Saksena. 1999. Scheduling fixed-priority tasks with
preemption threshold. In Sixth International Conference on Real-Time Computing Systems
and Applications. RTCSA’99 (Cat. No.PR00306). 328–335. https://doi.org/10.1109/
RTCSA.1999.811269

[Yomsi and Sorel(2007)] Patrick Meumeu Yomsi and Yves Sorel. 2007. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time systems. In Euromicro Conference
on Real-Time Systems. IEEE, 280–290.

26

https://igm.univ-mlv.fr/~masson/draw-schedule/webapp/ds.php?duration=100&inputfile=3+%3D%3E+number+of+task%0D%0A0+2+10+15+2+cyan+%3D%3E+Task1+%28Oi+Ci+Di+Ti+Li+%5Bcolor1%5D+%5Bcolor2%5D+%5Bcolor3%5D%29%0D%0A2+6+8+11+2+coral+%3D%3E+Task2%0D%0A5+2+15+30+2+%3D%3E+Task3%0D%0A&sched=FP&mode=NPC&variant=LT
https://igm.univ-mlv.fr/~masson/draw-schedule/webapp/ds.php?duration=100&inputfile=3+%3D%3E+number+of+task%0D%0A0+2+10+15+2+cyan+%3D%3E+Task1+%28Oi+Ci+Di+Ti+Li+%5Bcolor1%5D+%5Bcolor2%5D+%5Bcolor3%5D%29%0D%0A2+6+8+11+2+coral+%3D%3E+Task2%0D%0A5+2+15+30+2+%3D%3E+Task3%0D%0A&sched=FP&mode=NPC&variant=LT
https://doi.org/10.1016/j.sysarc.2021.102007
https://doi.org/10.1016/j.sysarc.2021.102007
https://doi.org/10.1109/RTCSA.1999.811269
https://doi.org/10.1109/RTCSA.1999.811269

	Introduction
	Models and notations
	Task model
	Scheduler class

	State of the art
	Simulation intervals
	Taking preemptions into account

	Non-resumable loading and starting delays
	Task model with nrld
	Motivating example

	Properties
	Response times
	Simulation interval for cfjp
	Simulation interval for ftp schedulers
	Sustainability
	Sustainability regarding Worst-Case Execution Time
	Sustainability regarding ld
	Sustainability regarding job arrival times

	Robust schedulability tests

	Conclusion
	Acronyms
	References

