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Abstract

We propose a novel nonlinear topology optimization framework tailored for flexo-
electric soft dielectrics undergoing large deformation. A numerical method based
on Isogeometric analysis (IGA) is introduced to nonlinear soft dielectrics at fi-
nite strain, ensuring the C1-continuity for flexoelectric problems. We outline the
process of consistent linearizations and IGA discretizations. Additionally, we in-
troduce an innovative and efficient Strain Density Function (SDF) interpolation
scheme for optimizing electromechanical coupling factors (ECFs). In this scheme,
the interpolation of electromechanical and hyper-elastic energy terms is grounded
in the SIMP model, while a linear material interpolation model is employed for
the dielectric energy. Our numerical analysis highlights the remarkable perfor-
mance of the proposed SDF interpolation scheme in nonlinear electromechanical
optimization scenarios. An energy remedy scheme is applied to void regions to
eliminate the instability of nonlinear optimization, effectively preventing distor-
tion deformations in low-stiffness elements. Furthermore, we investigate the in-
fluence of size effect and larger deformation on the optimization of flexoelectric
soft materials. The proposed topology optimization framework adeptly leverages
the interplay between size effect and larger deformation, resulting in a notable im-
provement in ECFs within the optimized structures. Finally, the electromechani-
cal coupling factors (ECFs) of the optimized structures in all the examined cases
exhibit enhancements up to 9 times as compared to the reference guess designs.
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deformation, Isogeometric analysis

1. Introduction

In recent decades, the pursuit of harvesting energy from ambient mechanical
vibrations has gained substantial attention. This trend is particularly significant
for micro/nano-electromechanical systems (MEMS/NEMS)[1].The ability to ef-
ficiently convert vibratory energy into electrical energy holds great promise for
reducing dependence on external energy sources. Piezoelectric materials, acting
as transducers that convert mechanical stimuli into electrical signals, have found
widespread applications across various energy harvesting devices[2, 3], sensors[4]
and actuators[5], spanning from macro to micro scales.

In contrast to piezoelectricity, which is confined to non-centrosymmetric mate-
rials and relies on strain, flexoelectricity stands out as an electromechanical phe-
nomenon that couples electric fields with strain gradients and inversely induces
mechanical strain by electric field gradients, demonstrating its prevalence across
all dielectrics. Flexoelectricity was first predicted by Mashkevich and Tolpygo[6]
in the 1950s and then observed experimentally by Scott[7]. Flexoelectricity can
be considered as size-dependent electromechanical coupling due to the fact that
its contribution becomes significant and even dominant at lower scales where the
strain gradient effect becomes more profound as the material dimensions shrink to
micro- and nano-levels. In its initial phases, flexoelectricity did not garner signifi-
cant attention within the realm of hard materials, primarily owing to constraints in
generating larger strain gradient. However, the domain of soft dielectric materials
has revealed a broad spectrum of applications for flexoelectricity, such as biolog-
ical membranes[8, 9, 10, 11], polymers[12, 13, 14] and liquid crystals[15, 16].
Reviews and discussions on flexoelectricity can be found e.g. in[17, 18, 19].

Macroscopic materials, typically stiff solids, face limitation in creating large
strain gradients. Soft dielectrics have become a key focus of research due to their
distinctive capability to undergo extensive deformations. This characteristic holds
the potential for achieving more significant electric responses, attributed to the
presence of larger strain gradients. The resulting mechanical deformations in-
duced by applied electric fields create opportunities for applications such as flex-
ible electronics, soft robotics, and sensing and actuation in various fields[20, 21,
22]. The design of innovative soft dielectric systems with enhanced performance
involves the creation of specific architectures or microstructures, often requiring
the application of numerical methods to address complex challenges across intri-
cate geometries[23]. Clearly, the reduction of structural dimensions to the micro-
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and nanoscale facilitates nonlinearity, enabling the more accessible production of
large strain gradients, thereby contributing to the increasing improvement of the
flexoelectric effect.

The continuum theories of flexoelectricity in bulk solids have been explored[6,
15, 24, 25, 26], while a majority of these studies rely on the assumption of in-
finitesimal deformations, making them primarily applicable to modeling crys-
talline ceramics. The attempts to extend the theory to polymers or elastomers
undergoing large deformations remains limited. In [10], Deng developed a non-
linear theoretical framework for flexoelectricity in soft materials. Liu[27] pro-
posed an energy formulation for continuum electro-elasticity and magnetoelastic-
ity. By applying the principle of minimum free energy, Euler-Lagrange equations
were derived to encompass nonlinear dielectric effects with Maxwell contribu-
tions and flexoelectricity. Wang[28] developed a theoretical model incorporating
both flexoelectricity and piezoelectricity for energy harvesting, accounting for ge-
ometric nonlinearity deformation and damping effects to more accurately predict
the electromechanical behavior of energy harvesters. Some works have demon-
strated that nonlinearity can significantly impact electromechanical coupling be-
havior of micro/nano structures[29, 30]. Additionally, exploring the nonlinear
characteristics can be leveraged to enhance the performance of vibration energy
harvesters[31, 32].

In numerical approaches, a challenge faced by the traditional finite element
formulation when investigating the flexoelectric effect is the necessity for C1 con-
tinuity to interpolate the strain gradient from the displacement variable. Several
investigations have concentrated on addressing the fourth-order partial differential
equations associated with flexoelectricity in solids. These efforts include analyti-
cal models applied to simplified geometries[25, 26, 33] and numerical techniques
applied to more complex geometries [34, 35, 36, 37, 38, 39]. Recently, several
studies have concentrated on tackling the complexities of flexoelectricity with
large deformation. Yvonnet[23] proposed a numerical finite element framework
aimed at modeling and solving the response of nonlinear soft dielectrics, con-
sidering the effects of Maxwell stress and flexoelectricity at finite strains, where
the Argyris triangular elements were utilized to ensure C1-continuity. Tran Quoc
Thai[40] presented an isogeometric analysis for flexoelectricity in soft dielectric
materials subjected to finite deformations, taking into account Maxwell stresses on
the surface between two different media. After then, a staggered explicit-implicit
isogeometric formulation based on large strain kinematics was proposed for soft
dielectrics[41]. Codony[42] developed equilibrium equations describing the flex-
oelectric effect in soft dielectrics under large deformations based on isogeometric
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analysis. Deng[43] studied the impact of geometric nonlinearity on flexoelec-
tricity in soft dielectrics under large deformation by using a mixed finite element
formulation.

The intriguing challenges in the field of flexoelectricity revolve around the ex-
ploration of advanced materials featuring heightened flexoelectric properties and
the creation of engineered structures that optimize electromechanical coupling
through a synergistic utilization of both flexoelectric and piezoelectric effects.
Various strategies have been suggested to enhance flexoelectric constants in solids,
including the electrets[44] and architected materials[45, 46, 47, 48]. A more re-
cent development involves the application of topology optimization (TO) as a
promising method for enhancing apparent flexoelectricity and Electromechanical
Coupling Factors in structures exhibiting both piezoelectric and flexoelectric char-
acteristics. Topology optimization, boasting a lengthy and successful history in
determining optimal material distribution to maximize specific properties[49], can
be broadly categorized into two families: density-based methods and boundary-
based methods. Density-based methods encompass the Solid Isotropic Material
with Penalization (SIMP) method [49, 50, 51] and the Evolutionary Structural Op-
timization (ESO) method [52]. On the other hand, boundary-based methods in-
clude the Level Set Method (LSM)[53, 54], the phase field method [55] and Mov-
ing Morphable Components/Voids (MMC/V) method [56, 57]. More recently,
there have been increasing attention on integrating machine learning/deep learning
with topology optimization (see e.g.[58]). Among these mentioned methods, the
SIMP method stands out for its simplicity of implementation and has been widely
applied across numerous physical problems. TO has been applied to increase
the apparent flexoelectric properties[59, 60], energy conversion in flexoelectric
structures[61, 62, 63, 64, 65] and both[66]. Ortigosa[67] developed framework
for the design of flexoelectric energy harvesters at finite strains using topology
optimization. Zhuang[68] proposed a numerical framework for optimizing the
energy converting factor for nonlinear geometric flexoelectric structures.

At the micro/nanoscale, the electromechanical coupling behaviors of nanos-
tructures are notably influenced by both flexoelectricity and nonlinearity. Con-
sequently, it becomes crucial to explore the structural configurations of soft di-
electrics that fully leverage both flexoelectricity and nonlinearity to enhance the
electromechanical coupling behaviors in micro/nano energy harvesters. In this
paper, we propose a nonlinear topology optimization framework for the soft di-
electrics at finite strain. A numerical framework for nonlinear dielectrics at fi-
nite strain is derived. The C1-continuity is satisfied by Isogeometric analysis
(IGA)[69, 70]. The procedure for consistent linearizations and IGA discretiza-

4



tions is presented. We put forward a novel and efficient strain density function
(SDF) interpolation scheme, where the electromechanical and hyper-elastic en-
ergy terms are respectively interpolated based on SIMP model but the linear ma-
terial density model is employed on dielectric one. As widely recognized, the
essence of mechanical stiffness penalization is to ensure that the final topology
converges to 1 or 0. However, the penalty for dielectric properties is not necessary.
In our numerical analysis, we illustrate the good performance of the proposed SDF
interpolation scheme in nonlinear electromechanical optimization scenarios. An
energy remedy scheme[71] for void region is extended to optimization of soft
dielectrics to avoid the distortion deformation in low-stiffness elements. The op-
timization solely based on the objective of the electromechanical coupling factor
may lead to the formation of disconnected structures due to the neglect of mechan-
ical stiffness considerations. To ensure the design of physically viable optimized
structures, we incorporate a compliance constraint to regulate mechanical stiff-
ness, thereby preventing the occurrence of disconnected domains. The influence
of size effect on the optimization of flexoelectric soft materials is studied. In the
numerical investigation, our proposed topology optimization framework for non-
linear flexoelectric soft materials fully leverages the interplay between size effect
and larger deformation, resulting in a significant improvement in the electrome-
chanical coupling factors within the optimized structures.
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Figure 1: A solid domain: (a) reference (undeformed) configuration; (b) current (deformed) con-
figuration

2. Flexoelectricity for soft materials at finite strains

A solid domain Ω0 ∈Rd is considered in the reference (undeformed) configu-
ration, as schematically illustrated in Fig.1. The boundary ∂Ω0 of Ω0 is composed
of mechanical and electrostatic boundary. The mechanical boundary includes
Dirichlet and Neumann portions, represented respectively by ∂Ω0u and ∂Ω0t ,
where the displacement and traction are imposed such that ∂Ω0u ∪ ∂Ω0t = ∂Ω0
and ∂Ω0u ∩∂Ω0t = /0. While the electrostatic one is composed of electric Dirich-
let boundary ∂Ω0φ and Robin boundary ∂Ω0D, which are prescribed such that
∂Ω0φ ∪ ∂Ω0D = ∂Ω0 and ∂Ω0φ ∩ ∂Ω0D = /0. The solid domain in current (de-
formed) configuration is denoted as Ω, and the counterparts of quantities are de-
fined similarly by omitting the index 0. The deformation map χ : Ω0 → Ω maps
every material point (or Lagrangian coordinate) X ∈ Ω0 to the spatial point (or
Eulerian coordinate) x, i.e. x= χ(X).

Here, the relevant quantities and notations are defined. The deformation gradi-
ent is defined as F = ∇X(χ) and ∇X(·) denotes gradient with respect to reference
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configuration. C = FT F is the right Cauchy-Green strain tensor. The Jacobian is
defined as J = det(F). The divergence operator Div = ∇X · (·) is related to refer-
ence configuration. The electric field, electric displacement, polarization and the
first Piola-Kirchhoff stress in current configuration are denoted respectively as E,
D, P and Σ, while their counterparts in the reference configuration are expressed
as Ẽ, D̃, P̃ and Σ̃, respectively. These quantities are related according to[27]:

D̃ = JF−1D, Ẽ = FT E, (1)

Σ̃= JΣF−T , P̃ = JP (2)

and

Ẽ =−∇X φ (3)

F = I+
∂u
∂X

(4)

with electric potential φ and unit matrix I.
In this work, isotropic bulk flexoelectricity at finite strain is assumed, and

surface effects are neglected. The total internal energy density of the system, en-
compassing contributions from elastic, flexoelectric, dielectric and linear gradient
elastic portions, is provided as[23]:

Ψ = Ψelast +Ψ f lexo +Ψdiel +Ψ
grad
elast (5)

In this work, the Ψelast is considered as Mooney-Rivlin hyper-elastic model,
and all the energy terms are given as

Ψelast =
µ

2
(J−

2
3 Σαλ

2
α −3)+

κ

2
(J−1)2 (6)

Ψdiel =
1
2J

(RT · P̃) ·A · (RT · P̃) (7)

Ψ f lexo = fi jklP̃iG jkl (8)

Ψ
grad
elast =

gi jklmn

2
Gi jkGlmn (9)

where µ and κ are the Lame’s constants such that µ = E
2(1+ν) and κ = E

3(1−2ν) ,

with E being the Young’s modulus and ν is Poisson’s ratio. λ 2
α (α = 1,2,3)

is the eigenvalue of right Cauchy-Green tensor C, G is second-order gradient of
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displacement, G=∇X(∇X(u)), R is the rotation tensor with the property R ·RT =
I, f is a flexoelectric coefficient, g is a couple strain gradient constant and A is the
second order dielectric tensor. For an isotropic dielectric medium, it is defined as

A =
1

ε − ε0
I (10)

where ε0 is the vacuum electric permittivity.
By the principle of frame indifference, the energy functions Ψ f lexo and Ψ

grad
elast

satisfy[27]:

Ψ f lexo(G, P̃) = Ψ f lexo(RG,RP̃),∀R ∈ So(3) (11)

Ψ
grad
elast(G,G) = Ψ

grad
elast(RG,RG),∀R ∈ So(3) (12)

where So(3)⊂ R3×3 is the group consisting of all rigid rotations. Then using the
property of the material symmetry, we have

Ψ f lexo(G, P̃) = Ψ f lexo(RG′,RP̃′),∀Q ∈ G (13)

Ψ
grad
elast(G,G) = Ψ

grad
elast(RG′,RG′),∀Q ∈ G (14)

where G′
i jk = GimnQm jQnk and P̃′

i = P̃ jQ ji. Let G ⊂ R3×3 be the material sym-
metry group. For isotropic medium, i.e. G = So(3), any isotropic tensor, as well
as higher-order tensors such as fi jkl and gi jklmn, can be represented as linear com-
binations of some isomers[72]. The general bilinear forms that fulfill the above
identity (11)-(14) have been systematically derived in [72]. For simplicity, special
forms for Ψ f lexo and Ψ

grad
elast with a single parameter, employed in [27] are used

here:

Ψ f lexo = f P̃iGikk (15)

Ψ
grad
elast =

g
2

GikkGill (16)

The first Piola-Kirchhoff stress Σ̃ is expressed by:

Σ̃=
∂Ψelast

∂F
=−µ

3
J−

2
3 F−T

Σαλ
2
α +µJ−

2
3 F+κ(J−1)JF−T (17)

The third-order hyperstress S is defined as

Si jk =
∂Ψ

∂Gi jk
=

g
2

δmiδk jGmll +
g
2

Gmnnδmiδk j + f P̃mδmiδ jk

= gGillδ jk + f P̃iδ jk (18)
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where δi j is Kronecker delta.
The mechanical and electric equilibrium equations for flexoelectricity with

boundary conditions are defined as[27]
F−T ∇X φ + ∂Ψ

∂ P̃ = 0 in Ω0

Div D̃ = ρ̃e in Ω0, D̃ =−ε0JC−1∇X φ +F−1P̃
Div(Div∂Ψ

∂G)−Div∂Ψ

∂F − f̃e = 0 in Ω0

(19)

with{
(∂Ψ

∂F )N− (Div ∂Ψ

∂G)N− τ − t̃e = 0 on ∂Ω0

(∂Ψ

∂G)N⊗N = 0 on ∂Ω0
(20)

where N is the unitary normal vector to the boundary ∂Ω0. f̃e and t̃e denote body
force and traction, respectively. The components of the vector field τ are given by
[27]:

τk = [Ski jN j(δim −NiNm)],m − [Ski jN j −NiNm],nNnNm (21)

Here, τ = 0. According to (7), we can obtain

∂Ψ

∂ P̃
=

1
J

RART P̃ (22)

Substituting (10) and (22) into the first formula of (19), we have

P̃ =−J(RART )−1[ f Gikk +F−T
∇X φ ] =−J(ε − ε0)( f Gikk +F−T

∇X φ) (23)

From the second row of (19) and (23), then omitting the term P̃e, we arrive at

D̃ =−JεC−1
∇X φ − J f (ε − ε0)F−1Gikk (24)

The strong forms of the boundary values problems are provided as follows.
The dielectric problem with Dirichlet and/or Robin boundary conditions is defined
as:

∇X · D̃ = ρ̃e in Ω0

φ = φ e on ∂Ω0φ

Ñ · D̃ = Db on ∂Ω0D

(25)
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The mechanical problem with Dirichlet and Neumann boundary conditions is
expressed as:

∇X · Σ̃−∇X · (∇X · S)+ f̃e = 0, in Ω0

Σ · Ñ− (∇X · S) · Ñ− t̃ = 0 on ∂Ω0t

SÑ⊗ Ñ = 0 on ∂Ω0

u = ub on ∂Ω0u

(26)

3. Weak forms of flexoelectric equilibrium equations

To be handled by discrete numerical methods, such as IGA method employed
here, the above boundary values problem defined in (25)-(26) must be recast into
weak forms. The weak formulations for electric and mechanical equilibrium are
derived by employing the principle of virtual work. The electric potential is de-
fined as φ ∈ {φ = φ̄∗ on ∂Ω0φ ,φ ∈ H1(Ω0)} and its corresponding test function
as δφ ∈ {φ = 0 on ∂Ω0φ ,φ ∈ H1(Ω0)}. Multiplying the first row of (25) by the
test function δϕ and integrating over Ω0, we obtain the dielectric problem as∫

Ω0

∇X · D̃ ·δφdΩ0 =
∫

V0

ρ̃
e ·δφdΩ0 (27)

By using the divergence theorem, we have∫
Ω0

−D̃ ·∇X(δφ)dΩ0 =
∫

Ω0

ρ̃
e
δφdΩ0 −

∫
∂Ω0

D̃ ·NδφdΩ0 (28)

As φ = 0 on ∂Ω0φ , introducing the last two rows of (25), we obtain∫
Ω0

−D̃ ·∇X(δφ)dΩ0 =
∫

Ω0

ρ̃
e
δφdΩ0 −

∫
∂Ω0D

Db
δφdΩ0 (29)

Substituting (24) into (29), we arrive at∫
Ω0

JεC−1
∇X φ ·∇X(δφ)dΩ0 +

∫
V0

J f (ε − ε0)F−1Gikk ·∇X(δφ)dΩ0

=
∫

Ω0

ρ̃
e
δφ −

∫
∂Ω0D

Db
δφdΩ0 (30)

In the mechanical problem, we assume the displacement u∈{u= ū∗ on ∂Ω0u,u∈
H2(Ω0)}. Multiplying the first equation in (26) by the test function δu ∈ {u =
0 on ∂Ω0u,u ∈ H2(Ω0)}, integrating over Ω0, we have∫

Ω0

∇X · Σ̃ ·δudΩ0 −
∫

Ω0

∇X · (∇X · S) ·δudΩ0 +
∫

Ω0

f̃δudΩ0 = 0 (31)
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Using integral by part, we obtain∫
Ω0

∇X · (Σ̃δu)dΩ0 −
∫

Ω0

Σ̃ : ∇X δudΩ0 −
∫

Ω0

∇X · ((∇X · S)δu)dΩ0

+
∫

Ω0

(∇X · S) : ∇X δudΩ0 +
∫

Ω0

f̃ ·δudΩ0 = 0 (32)

By Gauss’s theorem and ∇X δu = δF, we have∫
Ω0

Σ̃ : δFdΩ0 −
∫

Ω0

(∇X · S) : δFdΩ0 =
∫

Ω0

f̃ ·δudΩ0 +
∫

∂Ω0

(Σ̃N−∇X · SN) ·δudΩ0

(33)

Considering the boundary condition defined in the second row of (26), it
yields:∫

Ω0

Σ̃ : δFdΩ0 −
∫

Ω0

(∇X · S) : δFdΩ0 =
∫

Ω0

f̃ ·δudΩ0 +
∫

∂Ω0t

t̃ ·δudΩ0

(34)

The third-order tensor U and second-order tensor V have the property ∇ · (U :

V) = (∇ · U) : V+U ...∇V. By introducing this property into the second term of
(34), we obtain∫

Ω0

Σ̃ : δFdΩ0 +
∫

Ω0

S...δGdΩ0 −
∫

∂Ω0

SN : δFdΩ0 =
∫

Ω0

f̃ ·δudΩ0 +
∫

∂Ω0t

t̃ ·δudΩ0

(35)

Assuming the boundary condition SN = 0 on ∂Ω0, we finally obtain the weak
form of the mechanical equilibrium equation as:∫

Ω0

Σ̃ : δFdΩ0 +
∫

Ω0

S...δGdΩ0 =
∫

Ω0

f̃ ·δudΩ0 +
∫

∂Ω0t

t̃ ·δudS (36)

4. Consistent linearization of flexoelectric weak-form equations

The linearization is as follow. The residuals are calculated by,{
Rφ (u,φ) = q(u,φ)−qext = 0
Ru(u,φ) = f(u,φ)− fext = 0

(37)
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where

q(u,φ) =
∫

Ω0

−D̃ ·∇X(δφ)dΩ0

=
∫

V0

JεC−1
∇X(δφ) ·∇X φdV0 +

∫
V0

J f (ε − ε0)F−1Gikk ·∇X(δφ)dΩ0

(38)

f(u,φ) =
∫

Ω0

Σ̃ : δFdΩ0 +
∫

Ω0

S...δGdΩ0 (39)

qext =
∫

Ω0

ρ̃
e
δφdΩ0 −

∫
∂Ω0D

Db
δφdΩ0 (40)

fext =
∫

Ω0

f̃ ·δudΩ0 +
∫

∂Ω0

t̃ ·δudΩ0 (41)

Their Taylor expansions are respectively given as{
Rφ (u+∆u,φ +∆φ) = Rφ (u,φ)+D∆uRφ (u,φ)+D∆φ Rφ (u,φ) = 0
Ru(u+∆u,φ +∆φ) = Ru(u,φ)+D∆uRu(u,φ)+D∆φ Ru(u,φ) = 0

(42)

The solution for the next increment in an iterative Newton-like procedure con-
sists in solving the linearized problems for ∆u and ∆φ and to update the field
variables for the next iteration through uk+1 = uk +∆u and φ k+1 = φ k +∆φ . For
the sake of clarity, the superscript k is omitted. Let us group all unknown quanti-
ties, respectively the displacement vector u and the potential φ in a vector v. The
directional derivatives of f (v) in the direction of ∆v is defined as:

D∆v f (v) =
[

d
dα

{ f (v+α∆v)}
]

α=0
(43)

We obtain ∆F=∇X(∆u) and ∆G=∇X(∇X(∆u)). Thus, the directional deriva-
tives of the residuals R(u,φ) = [Rφ (u,φ);Ru(u,φ)] with respect to ∆φ and ∆u are
provided, respectively, as{

D∆φ R(u,φ) = ∂R
∂φ

∆φ = ∂R
∂∇X φ

∂∇X φ

∂φ
∆φ =

∂Rφ

∂∇X φ
∇X(∆φ)

D∆uR(u,φ) = ∂R
∂u ∆u = ∂R

∂F
∂F
∂u ∆u+ ∂R

∂G
∂G
∂u ∆u = ∂R

∂F ∆F+ ∂R
∂G∆G

(44)
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Substituting (37)-(42) into (44) and assuming constant external forces (dead
loads), we obtainD∆φ Rφ (u,φ) =

∫
Ω0

∇X(δφ) · ∂ (−D̃)
∂∇X φ

·∇X(∆φ)dΩ0

D∆uRφ (u,φ) =
∫

Ω0
{∇X(δφ) · ∂ (−D̃)

∂F : ∆F+∇X(δφ) · ∂ (−D̃)
∂G

...∆G}dΩ0

(45)

andD∆φ Ru(u,φ) =
∫

Ω0
δG

... ∂S
∂∇X φ

·∇X(∆φ)dΩ0

D∆uRu(u,φ) =
∫

Ω0
δF : ∂Σ̃

∂F : ∆FdΩ0 +
∫

Ω0
δG

...∂S
∂F : ∆FdΩ0 +

∫
Ω0

δG
... ∂S
∂G

...∆GdΩ0

(46)

Here, we recall the derivatives of deformation gradient F, inverse deformation
gradient F−1 and the right Cauchy-Green strain with respect to the deformation
gradient that will be used in the following formulas:

Fi jkl =
∂F−1

i j

∂Fkl
=−F−1

ik F−1
l j (47)

F̃i jkl =
∂F−T

i j

∂Fkl
=−F−1

li F−1
jk (48)

Ãi jkl =
∂C−1

i j

∂Fkl
=−F−1

ik C−1
jl −C−1

il F−1
jk (49)

For the polarization defined in (23), its derivatives with respect to the defor-
mation gradient F, electric potential gradient ∇X φ and the second-order gradient
of displacement G can be obtained as:

∂ P̃i
∇mφ

=−J(ε − ε0)F−1
mi

∂ P̃i
∂Fkl

=−J(ε − ε0)( f F−1
lk Gipp +F−1

lk F−1
mi ∇mφ + F̃imkl∇mφ)

∂ P̃i
∂G jkl

=−J(ε − ε0) f δi jδkl

(50)

The electric displacement in (24) with respect to the three fields F, ∇X φ and
G, is derived according to:

∂ D̃i
∂∇mφ

=−JεC−1
im

∂ D̃i
∂Fkl

=−Jε(F−1
lk C−1

im −F−1
ik C−1

ml −C−1
il F−1

mk )∇mφ − J f (ε − ε0)(F−1
im F−1

lk +Fimkl)Gmpp
∂ D̃i

∂G jkl
=−J f (ε − ε0)F−1

i j δkl

(51)
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We obtain the derivatives of hyperstress given in (18) as:
∂Si jk
∂∇lφ

=−J f (ε − ε0)F−1
li δ jk

∂Si jk
∂Flm

=− f δ jkJ(ε − ε0)( f F−1
ml Gipp +F−1

ml F−1
ni ∇nφ −F−1

mi F−1
nl ∇nφ)

∂Si jk
∂Glmn

= gδilδ jkδmn − J f 2(ε − ε0)δilδ jkδmn

(52)

As the first Piola-Kirchhoff stress defined in (17) is only related to the defor-
mation gradient F, then we have

∂ Σ̃i j

∂Fkl
=

2µ

9
J−

2
3 F−1

ji F−1
lk Σαλ

2
α +

µ

3
J−

2
3 F−1

li F−1
jk Σαλ

2
α

− 2µ

3
J−

2
3 F−1

ji Fkl −
2µ

3
J−

2
3 F−1

lk Fi j +µJ−
2
3 δikδ jl

+κ(2J−1)JF−1
ji F−1

lk −κ(J−1)JF−1
li F−1

jk (53)

5. IGA Discretization

The fundamental concept of isogeometric analysis is the use of NURBS not
only as a means of discretizing geometry, but also as a tool for discretizing partial
differential equations[69, 70]. The NURBS basis functions with higher continuity
are employed here to solve the fourth-order flexoelectric PDEs. For the sake of
simplicity, we restrict the developments to 2D, even though extension to 3D is
straightforward. The basis function for NURBS surfaces is defined as:

Rp,q
i, j (ξ ,η) =

Ni,p(ξ )M j,q(η)wi, j

∑
n
î=1 ∑

m
ĵ=1 Nî,p(ξ )M ĵ,q(η)wî, ĵ

(54)

where the knots ξ = {ξ1,ξ2, ...,ξn+p+1}, η = {η1,η2, ...,ηm+q+1}, p and q are
the polynomial orders, n and m are the number of basis function, wi, j are posi-
tive weights, Ni,p(ξ ) and Mi,q(η) are univariate B-Spline basis of order p and q
corresponding to knot vectors ξ and η, respectively, and are recursively defined
as[73]

Ni,0 =

{
0, i f ξi ≤ ξ ≤ ξi+1
1, otherwise. (55)
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and for p = 1,2, ..., we have

Ni,p(ξ ) =
ξ −ξi

ξi+p −ξi
Ni,p−1(ξ )+

ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ) (56)

The polynomial orders of NURBS mesh are chosen as p = q = 3 for all nu-
merical cases. The discretization of the electric potential ϕ and displacement u
can be defined as

ϕ(x) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)φ e = Nφϕ

e (57)

u(x) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)ue

i j = Nuue (58)

The test function, potential increment and their corresponding gradient are ap-
proximated by

δφ = Nφ δϕe, ∆φ = Nφ ∆ϕe

∇X(δφ) = Bφ δϕe, ∇X(∆φ) = Bφ ∆ϕe (59)

Similarly, the test function, displacement increment and their corresponding
gradient are obtained as:

δu = Nuδue, ∆u = Nu∆ue

δF = Buδue, ∆F = Bu∆ue (60)

The vector forms of deformation gradient tensor and strain gradient are given,
respectively, by

[∆F] =


∆F11
∆F21
∆F12
∆F22

=


∂∆u1
∂X1

∂∆u2
∂X1

∂∆u1
∂X2

∂∆u2
∂X2

 (61)
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and

[G(∆u)] =


G111(∆u)
G112(∆u)
G211(∆u)
G122(∆u)
G212(∆u)
G222(∆u)

=



∂ 2∆u1
∂X2

1
∂ 2∆u1

∂X1∂X2
∂ 2∆u2
∂X2

1
∂ 2∆u1
∂X2

2
∂ 2∆u2

∂X1∂X2
∂ 2∆u2
∂X2

2


(62)

Then the discrete form of the strain gradient is obtained as:

[G(∆u)] = Hu∆ue, [δG] = Huδue (63)

Above, Nφ = Nu are the discrete interpolation shape functions, their gradients
Bφ and Bu, and second gradient Hu. These matrices are defined as (n is the number
of control points for every element):

Bφ =

∂N1
φ

∂X1
· · ·

∂Nn
φ

∂X1
∂N1

φ

∂X2
· · ·

∂Nn
φ

∂X2

 , Bu =


∂N1

u
∂X1

· · · ∂Nn
u

∂X1
0 · · · , 0

0 · · · 0 ∂N1
u

∂X1
· · · ∂Nn

u
∂X1

∂N1
u

∂X2
· · · ∂Nn

u
∂X2

0 · · · , 0

0 · · · 0 ∂N1
u

∂X2
· · · ∂Nn

u
∂X2

 (64)

Hu =



∂ 2N1
u

∂X2
1

· · · ∂ 2Nn
u

∂X2
1

0 · · · 0
∂ 2N1

u
∂X1∂X2

· · · ∂ 2Nn
u

∂X1∂X2
0 · · · 0

0 · · · 0 ∂ 2N1
u

∂X2
1

· · · ∂ 2Nn
u

∂X2
1

∂ 2N1
u

∂X2
1

· · · ∂ 2Nn
u

∂X2
1

0 · · · 0

0 · · · 0 ∂ 2N1
u

∂X1∂X2
· · · ∂ 2Nn

u
∂X1∂X2

0 · · · 0 ∂ 2N1
u

∂X2
2

· · · ∂ 2Nn
u

∂X2
2


(65)

Introducing the approximation (57)-(60) and (63) into (45)-(46), then substi-
tuting into (42), we finally obtain the discrete form of the linearized equations:[

Kφφ (φ ,u) Kφu(φ ,u)
Kuφ (φ ,u) Kuu(φ ,u)

][
∆ϕ
∆u

]
=−

[
Rφ (φ ,u)
Ru(φ ,u)

]
(66)
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where

Kφφ (φ ,u) =
∫

Ω0

BT
φ

∂ (−D̃)

∂∇φ
Bφ dΩ0 (67)

Kφu(φ ,u) =
∫

Ω0

{
BT

φ

∂ (−D̃)

∂F
Bu +BT

φ

∂ (−D̃)

∂G
Hu

}
dΩ0 (68)

Kuφ (φ ,u) =
∫

Ω0

HT
u

∂S
∂∇φ

Bφ dΩ0 (69)

Kuu(φ ,u) =
∫

Ω0

{
BT

u
∂ Σ̃

∂F
Bu +HT

u
∂S
∂F

Bu +HT
u

∂S
∂G

Hu

}
dΩ0 (70)

6. Nonlinear topology optimization formulation for soft dielectrics with flex-
oelectricity

6.1. Strain Density Function (SDF) interpolation scheme by SIMP method and
linear material interpolation model

Topology optimization (TO) consists in finding the optimum distribution of
materials in a given structural domain and maximizing specific physical proper-
ties. In the SIMP framework used, structural topology can be represented by local
material densities, and material properties are interpolated with respect to local
density in a continuous manner, with penalty exponents used to force local densi-
ties to converge to 1 or 0 (so-called "black-white designs"). Then, the following
interpolation scheme is adopted:

Ψ(ρ) =[min +(1−min)ρ
pc ](Ψelast +Ψ

grad
elast)+ [min +(1−min)ρ

p f ]Ψ f lexo

+[min +(1−min)ρ]Ψdiel (71)

It is worth noting that in the above, the interpolation related to the term Ψdiel
is linear. We have observed that this linear term improves the convergence of the
topology optimization scheme in the present context. On the other hand, larger
values of this exponent are not necessary to define a material density between
zero and 1, as this property is provided by the exponents of the other terms.

The electric displacement D̃ defined in (24) is interpolated as:

D̃(ρ) =−[ε0 +(ε − ε0)ρ]JC−1
∇X φ −ρ

p f J f (ε − ε0)F−1Gikk (72)

where the small value min = 1× 10−9 is employed to mimic the properties of
void phase, ε is electric permittivity of solid material, ε0 is the vacuum electric
permittivity, and pc and p f are penalty exponents, taken as pc = p f = 3 in the
following numerical examples.
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6.2. Energy remedy for void region
To circumvent the numerical instability induced by excessive deformations

in low stiffness regions, an energy remedy scheme proposed by Wang[71] is ex-
tended to nonlinear electromechanical system. The energy density is interpolated
between the nonlinear energy density and the linear energy density. The energy
remedy form can be defined as:

Ψ̂(ϕ,u) = Ψ
NL(ϕ,θu)−Ψ

L(ϕ,θu)+Ψ
L(ϕ,u) (73)

where ΨNL is defined in terms of (5)-(9), and

Ψ
L(ϕ,u) =

1
2

λε
2
kk +µεi jεi j︸ ︷︷ ︸

linear elast

+
1
2

Ai jPL
i PL

j︸ ︷︷ ︸
dielectric

+
g
2

GikkGill + f PL
i Gikk︸ ︷︷ ︸

f lexoelectric

(74)

λ = Eν

1−ν2 . By linear form of the first equation in (19), i.e. ∇X φ + ∂ΨL

∂ P̃L = 0, we
obtain the PL

i as

PL
i =−(ε − ε0)( f Gikk +∇iφ) (75)

then

DL
i =−ε∇iφ − f (ε − ε0)Gikk (76)

Σ
L
i j = λεkkδi j +2µεi j (77)

SL
i jk = gGippδ jk + f P̃L

i δ jk (78)

The interpolation parameter θ = 1 for solid region and θ = 0 for void region.
It suggests that the stored electromechanical energy corresponds to the non-linear
one for solid phase(θ = 1) and the linear one for void phase(θ = 0). To ensure
differentiability, θ in (73) is defined by a smoothed Heaviside projection function,

θ =
tanh(β1α)+ tanh(β1(ρ̃ −α))

tanh(β1α)+ tanh(β1(1−α))
(79)

When β1 → ∞, θ = 1 if ρ̃ > α , θ = 0 if ρ̃ < α . We state that the symbols with
subscript ’L’ correspond to linear terms, while the symbols with subscript ’NL’
correspond to non-linear ones, and the symbols with subscript ’θ ’ represent the
terms where the displacements are interpolated by θ defined in (79).
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Using (73), the flexoelectric boundary values problems are given:{
∇X · D̂ = ρ̂e in Ω0,

∇X · Σ̂−∇X · (∇X · Ŝ)+ f̂e = 0, in Ω0
(80)

and

D̂ = DNL,θ −DL,θ +DL (81)

Σ̂=ΣNL,θ −ΣL,θ +ΣL (82)

Ŝ = SNL,θ −SL,θ +SL (83)

where ΣNL,θ , SNL,θ and DNL,θ are respectively defined in (17), (18) and (24)
with the displacements u interpolated by θ . In the above, DL,θ , ΣL,θ and SL,θ are
respectively given using (76), (77) and (78) and the displacement interpolation
parameter θ .

The residuals are calculated by{
R̂φ (u,φ) = q̂(u,φ)− q̂ext = qNL,θ (u,φ)−qL,θ (u,φ)+qL(u,φ)− q̂ext = 0
R̂u(u,φ) = f̂(u,φ)− f̂ext = fNL,θ (u,φ)− fL,θ (u,φ)+ fL(u,φ)− f̂ext = 0

(84)

where

qNL,θ (u,φ) = q(θu,φ) (85)

fNL,θ (u,φ) = f(θu,φ) (86)

qL(u,φ) =
∫

Ω0

−DL ·∇X(δφ)dΩ0 (87)

fL(u,φ) =
∫

Ω0

ΣL : δudΩ0 +
∫

Ω0

SL...δGdΩ0 (88)

The following discrete system associated with the linearized problem in the
Newton algorithm is obtain as:[

K̂φφ (ϕ,u,θ) K̂φu(ϕ,u,θ)
K̂uφ (ϕ,u,θ) K̂uu(ϕ,u,θ)

][
∆ϕ
∆u

]
=−

[
R̂φ

R̂u

]
(89)
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where

K̂φφ (ϕ,u,θ) =
∂qNL,θ

∂ϕ
− ∂qL,θ

∂ϕ
+

∂qL

∂ϕ
= KNL,θ

φφ
−KL,θ

φφ
+KL

φφ (90)

K̂φu(ϕ,u,θ) =
∂qNL,θ

∂u
− ∂qL,θ

∂u
+

∂qL

∂u
= KNL,θ

φu −KL,θ
φu +KL

φu (91)

K̂uφ (ϕ,u,θ) =
∂ fNL,θ

∂ϕ
− ∂ fL,θ

∂ϕ
+

∂ fL

∂ϕ
= KNL,θ

uφ
−KL,θ

uφ
+KL

uφ (92)

K̂uu(ϕ,u,θ) =
∂ fNL,θ

∂u
− ∂ fL,θ

∂u
+

∂ fL

∂u
= KNL,θ

uu −KL,θ
uu +KL

uu (93)

KNL,θ
φφ

=
∫

Ω0

BT
φ

∂ (−D̃NL,θ
i )

∂∇mφ
Bφ dΩ0 (94)

KNL,θ
φu =

∫
Ω0

{
BT

φ

∂ (−D̃NL,θ
i )

∂Fkl
Bu +BT

φ

∂ (−D̃NL,θ
i )

∂G jkl
Hu

}
θdΩ0 (95)

KNL,θ
uφ

=
∫

Ω0

HT
u

∂SNL,θ
i jk

∂∇lφ
Bφ dΩ0 (96)

KNL,θ
uu =

∫
Ω0

{
BT

u
∂ Σ̃

NL,θ
i j

∂Fkl
Bu +HT

u

∂SNL,θ
i jk

∂Flm
Bu +HT

u

∂SNL,θ
i jk

∂Glmn
Hu

}
θdΩ0 (97)

KL
φφ = KL,θ

φφ
=

∫
Ω0

BT
φ εδi jBφ dΩ0 (98)

KL
uφ = KL,θ

uφ
=−

∫
Ω0

HT
u f (ε − ε0)δilδ jkBφ dΩ0 (99)

KL
φu =

∫
Ω0

BT
φ f (ε − ε0)δi jδklHudΩ0 (100)

KL
uu =

∫
Ω0

{
BT

u [λδi jδkl +µ(δikδ jl +δilδ jk)]Bu +HT
u [g− f 2(ε − ε0)]δilδmnδ jkHu

}
dΩ0

(101)

KL,θ
φu =

∫
Ω0

BT
φ f (ε − ε0)δi jδklHuθdΩ0 (102)

KL,θ
uu =

∫
Ω0

{
BT

u [λδi jδkl +µ(δikδ jl +δilδ jk)]Bu +HT
u [g− f 2(ε − ε0)]δilδmnδ jkHu

}
θdΩ0

(103)
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After solving the linearized equation (89), the nodal electric potentials and
displacements are updated through

ϕk+1 = ϕk +∆ϕ

uk+1 = uk +∆u (104)

until a convergence criterion is reached. The algorithm for solving the nonlinear
problem (84) is illustrated in Algorithm.1. It is important to note that the equations
for the optimization model are calculated using the final converged state variables
of the structural equilibrium residual vectors defined in (84).

Algorithm 1 The algorithm for nonlinear problem (84)

Initialize: [u(0);ϕ(0)] = 0, tol = 10−8;
for n = 1 to N (Loop over all load increments) do

Initialize: err = 1, k = 0;
u(k,n) = u(n−1), ϕ(k,n) = ϕ(n−1);
while err > tol do

Compute tangent stiffness K̂tan(ϕ
(k,n),u(k,n)) from (90)-(103);

Compute residual R̂(ϕ(k,n),u(k,n)) from (84);
Compute ∆u(k,n) and ∆ϕ(k,n) from (89);
Update u(k+1,n) = u(k,n)+∆u(k,n), ϕ(k+1,n) = ϕ(k,n)+∆ϕ(k,n);
err = ∥R̂(k,n)∥;
k = k+1;

end while
u(n) = u(k,n), ϕ(n) = ϕ(k,n);

end for
return u = u(k,N), ϕ= ϕ(k,N);

6.3. Optimization problem formulation
Here we formulate the topology optimization problem to maximize the elec-

tromechanical coupling factor (ECF) of non-linear flexoelectric structures:

Minimize : J = 1
k2

e f f
= Πm

Πe

Subject to :


1
|Ω|

∫
Ω

ρ̄dΩ− v f ≤ 0

R̂(ϕ,u) = 0
Ĉ(ρ)≤ Ĉmax

0 ≤ ρe ≤ 1,

(105)
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where

Πm = (̂fext)T u (106)

Πe =
1
2
ϕT K̂φφϕ (107)

and R̂(ϕ,u) = [R̂φ ; R̂u] is the residual vector of the structural equilibrium defined
by (84). Ĉ(ρ) = Πm is the average compliance of the structure, which it is ex-
pected to eliminate disconnected domain by ensuring a minimal stiffness to the
structure.

The continuous density design variable ρ in the optimization formulation (105)
yields a ill-posed problem, inducing checkerboards and mesh-dependence. In or-
der to enforce its well-posedness (smoothness and mesh-independence), a projec-
tion filter [49, 74] is defined by a convolution of the density ρ with a non-negative
smooth kernel h(x, x̄), such that ρ can inherit the smoothness characteristics of
the kernel.

ρ̄(x) =
∫

Ω

h(x, x̄)ρ(x̄)dx̄,
∫

Ω

h(x, x̄)dx̄= 1 (108)

The discretization of projection in (108) can be expressed as:

ρ̄ j =
ns

∑
ī=1

ψ(ρī)ρī =
∑

ns
ī=1 w(rī)ρī

∑
ns
î=1

w(rî)
(109)

where the weight function w(r) can be defined as a compactly supported radial
basis functions (RBFs) with higher-order continuity and non-negativity[75]:

w(r) = (1− r)6
+ · (35r2 +18r+3), r = d/rmin (110)

where the symbol (1− r)+ = max(0,1− r). d is the Euclidean distances between
the current nodal density and the neighborhood nodal density lying within the
local support domain, and rmin denotes the radius of the local support domain.

A smoothed Heaviside projection is used to map the intermediate density to 1
or 0 by a prescribed threshold value. It is defined as:

ρ̃ =
tanh(βρ0)+ tanh(β (ρ̄ −ρ0))

tanh(βρ0)+ tanh(β (1−ρ0))
(111)

where β controls the sharpness of the projection, and ρ0 is the threshold value.
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6.4. Sensitivity analysis
The adjoint method is employed to derive the sensitivity of electromechanical

coupling factor with respect to local densities ρ̃:

dJ
dρ̃

=
1

Π2
e
(
dΠm

dρ̃
Πe −Πm

dΠe

dρ̃
) (112)

We construct the Lagrangian equations for mechanical and electric energy,
respectively as:

Πm = Πm −λT R̂ (113)

Πe = Πe −µT R̂ (114)

As the residual vector R̂ = 0 holds, the adjoint vectors λ and µ are arbitrary
vectors.

The derivatives of the Lagrangian equations with respect to density can be
obtained as:

dΠm

dρ̃
=

∂Πm

∂ ρ̃
+

∂Πm

∂Z
· ∂Z

∂ ρ̃
−λT (

∂ R̂
∂ ρ̃

+
∂ R̂
∂θ

· ∂θ

∂ ρ̃
+

∂ R̂
∂Z

· ∂Z
∂ ρ̃

)

=−λT (
∂ R̂
∂ ρ̃

+
∂ R̂
∂θ

· ∂θ

∂ ρ̃
)+(fT −λT ∂ R̂

∂Z
)
∂Z
∂ ρ̃

(115)

dΠe

dρ̃
=

∂Πe

∂ ρ̃
+

∂Πe

∂Z
· ∂Z

∂ ρ̃
−µT (

∂ R̂
∂ ρ̃

+
∂ R̂
∂θ

· ∂θ

∂ ρ̃
+

∂ R̂
∂Z

· ∂Z
∂ ρ̃

)

=
1
2
ϕT ∂ K̂φφ

∂ ρ̃
ϕ−µT (

∂ R̂
∂ ρ̃

+
∂ R̂
∂θ

· ∂θ

∂ ρ̃
)

+

{[
ϕT K̂φφ ,

1
2
ϕT ∂ K̂φφ (u)

∂u
ϕ

]
−µT ∂ R̂

∂Z

}
∂Z
∂ ρ̃

(116)

where Z = [ϕ;u] and

∂ R̂
∂Z

=

[
K̂φφ K̂φu

K̂uφ K̂uu

]
(117)

∂ R̂
∂θ

=

[
KNL,θ

φu −KL,θ
φu

KNL,θ
uu −KL,θ

uu

]
u (118)
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The adjoint vectors can be calculated by the following adjoint equations, in
order to eliminate the implicit term ∂Z

∂ ρ̃
in (115) and (116):

λT ∂ R̂
∂Z

= fT (119)

µT ∂ R̂
∂Z

=

[
ϕT K̂φφ ,

1
2
ϕT

∂KNL,θ
φφ

(u)
∂u

ϕ

]
(120)

where

∂KNL,θ
φφ

(u)
∂u

=
∫

Ω0

BT
φ

∂ 2(−D̃NL,θ
i )

∂ (∇ jφ)∂uk
Bφ dΩ0 (121)

and

∂ 2(−D̃NL,θ
i )

∂ (∇ jφ)∂uk
= Jεθ(C−1

i j F−1
lk −F−1

ik C−1
jl −C−1

il F−1
jk )∇l (122)

7. Numerical examples

7.1. Bending cantilever beam
In this first example, we consider a cantilever beam subjected to bending de-

formation, as shown in Fig.2. The left end is fixed and the bottom is grounded,
while the force is imposed on the top-right point. The dimension of the beam
is h1 × L1 = 0.2µm× 0.8µm. The material of the beam is polyvinylidene fluo-
ride (PVDF), which is a widely studied polymer in soft dielectrics and nonlinear
flexoelectricity[10, 28, 43, 68]. Its parameters are[10]: Young’s modulus E = 3.7
GPa, Poisson’s ratio ν = 0.3, dielectric permittivity ε = 9.2ε0, flexoelectric coef-
ficient f = 179 V. Here, the couple strain constant is taken as g = 4×10−6 N. The
vacuum electric permittivity is ε0 = 8.854× 10−12 F/m. The isotropic material
assumption is taken account. The IGA discretization for beam is 124×31 control
points. The variation of electromechanical coupling factors (ECFs) for bending
cantilever beam with respect to the mesh refinement is analyzed in Fig.3. We can
note a tendency to convergence, even though this one is quite slow, in view of the
low difference between the initial and final values.

The topology optimization of the cantilever beam is performed under the force
F1=-0.1 N, F1=-1 N, F1=-2 N, F1=-2.5 N and F1=-3 N, respectively. The volume
fraction constraint, defined as the quantity of material as compared to the design
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Figure 2: Bending beam-like soft dielectrics with open circuit boundary conditions: design domain

domain volume h1 × L1 is set as v f =0.6 for all load cases. The parameters of
Heaviside projection function (79) in energy remedy formulation are chosen as
α = 0.1 and β1 = 500. The compliance constraint in (105) is set to Ĉmax = 4Π1,
where Π1 is the strain energy of the undesigned flexoelectric beam, i.e. the beam
with all the relative densities ρ = 1. For comparison, a guess design consisting
into a rectangular beam with 4 holes as depicted in Fig.4(a) is analyzed. The holes
radii are R = 0.3568h1 corresponding to a volume fraction equal to 0.6. This
structure will serve as a reference to be compared with the optimized designs.
The penalty exponents used in the TO numerical procedure (see Eqs.(71)-(72))
are chosen here as pc = p f = 3.

We carry out the optimization of the cantilever beam, where the initialization
of the densities is performed by setting them uniformly to ρi = 0.6, (i = 1, ...,Ncp)
in the rectangular design domain defined in Fig. 2. Ncp denotes the number of con-
trol points in IGA. At the initial stage of optimization, uniform structural densities
lead to a significant degradation in the overall mechanical strength of the mate-
rial, making it prone to excessive deformation and unable to be optimized as the
force increases. To address this issue, a heuristic continuation scheme is imple-
mented on the mechanical penalty factor pc. In this study, the updating scheme
for the mechanical penalty factor pc is set as pc = min(pc +∆p,3) every 3 steps
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Figure 3: Electromechanical coupling factors (ECFs) for bending cantilever beam with respect to
the mesh refinement

after the iteration has exceeded 10, with ∆p = 0.1 and initial pc = 1 . The final
optimized geometries, obtained respectively for the force magnitudes F1=-0.1 N,
F1=-1 N, F1=-2 N, F1=-2.5 N and F1=-3 N, are depicted in Fig.4. Observing the
topology figures, we can see that the optimum structures contain no holes and that
the distribution of materials is more concentrated. Different initializations have
been tested: uniform densities and circular voids. Numerical investigations, not
shown here, have concluded that they both converged to the same topology. The
optimization of electromechanical coupling factors (ECFs) for different forces is
given in Fig.5. All the iteration curves show that the optimization process is sta-
ble. The corresponding electromechanical coupling factors (ECFs) are listed in
Table 1. The ECFs of the optimized structures for forces F1=-0.1 N, F1=-1 N,
F1=-2 N, F1=-2.5 N and F1=-3 N increase by factors of 9.2638, 9.4201, 9.1106,
8.9157 and 8.7066 times, respectively, as compared to the reference design in
Fig.4(a). It can be seen that in the present example, the optimal electromechanical
coupling factors first increase slightly, then decrease significantly as the external
forces applied for optimization increase.

The distribution of electric potentials and deformed configurations for opti-
mal structures under different forces is illustrated in Fig.6. We can see that the
optimized structure produces very large deformations under the increased loads.
In particular, the potential in the upper left part of the beam is more pronounced.
Furthermore, it can be clearly seen that the amplitudes of the electrical potentials
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Figure 4: Reference structure and optimized designs for beam-like soft dielectrics by different
loads, with beam size h1 ×L1 = 0.2µm× 0.8µm: (a) reference structure; (b) optimal design by
load F1 = −0.1N; (c) optimal design by load F1 = −1N; (d) optimal design by load F1 = −2N;
(e) optimal design by load F1 =−2.5N; (f) optimal design by load F1 =−3N

increase with increasing loading.
The influence of size effect on the topology optimization of nonlinear soft

dielectrics under large deformation is also examined in the context of a flexo-
electric cantilever beam. We perform the optimization for the flexoelectric beam
under the same boundary conditions, but the dimension of the beam is changed
as h1 ×L1 = 1µm×4µm. The optimal designs achieved by forces F1 =−3N and
F1 = −5N are depicted in Fig.7. There are some holes in the optimal topology,
and they present a significant geometric difference from the optimal structures
of beam with size h1 × L1 = 0.2µm× 0.8µm. The electromechanical coupling
factors (ECFs) of optimal structures by the forces F1 = −3N and F1 = −5N are
obtained as 0.04641 and 0.04887, respectively. Compared to the previously men-
tioned smaller-sized beam, the ECFs are smaller for this larger-sized beam, which
shows size effect of the optimization for flexoelectric energy harvesters.

The distribution of electric potentials and deformed configuration for optimal
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Figure 5: Iteration process of Electromechanical coupling factors (ECF) for bending beam-like
soft dielectrics under different loads

Table 1: Electromechanical coupling factors (ECF) of optimal designs for flexible nanobeams
under different loads

Force ECF ECF Gain:
(optimized) (reference) ECFopt /ECFre f

-0.1 N 0.07007 6.8272×10−3 10.2638
-1 N 0.07072 6.7865×10−3 10.4201
-2 N 0.06754 6.6801×10−3 10.1106

-2.5 N 0.06550 6.6056×10−3 9.9157
-3 N 0.06329 6.5200×10−3 9.7066

structures of beam with size h1 ×L1 = 1µm×4µm is illustrated in Fig.8. We ob-
serve that the magnitudes of electric potential for both sizes of beams are similar
when the prescribed loads are the same. A beam with a smaller size can produce
deformations that are significantly larger in magnitude compared to the structural
dimensions. However, in flexoelectricity, the size effect plays a beneficial role
in enhancing the electromechanical response. Striking a balance between both
the effects is essential for optimal performance. Soft materials capable of large
deformations can serve as a bridge in achieving this equilibrium. Larger deforma-
tions contribute to the enhancement of electromechanical coupling factors. Con-
sequently, the improvement in electromechanical coupling factors for optimized
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Figure 6: Distribution of electric potentials and deformed configuration for optimal structures of
flexoelectric nano beam under different forces, with beam size h1 × L1 = 0.2µm× 0.8µm: (a)
optimal design by load F1 =−0.1N; (b) optimal design by load F1 =−1N; (c) optimal design by
load F1 =−2N; (d) optimal design by load F1 =−2.5N; (e) optimal design by load F1 =−3N

structures stems from the interaction of size effects and large deformations.

7.2. Bending double-clamped beam
In this example, a double-clamped beam undergoing bending deformation is

investigated, as illustrated in Fig.9. The dimensions of the beam are h2 × L2 =
2µm× 8µm. Both ends are fixed, the load is imposed in the middle three points
while the bottom surface is connected to the ground. The material is the same as
in the previous example, i.e. PVDF. The volume fraction constraint is here set as
f2 = 0.6. The compliance constraint in (105) is set as Ĉmax = 4Π2, where Π2 is
the strain energy of the double-clamped beam design domain with all ρ = 1. The
parameters for energy remedy formulation are set as α = 0.2 and β1 = 500. It is
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(a) (b)

Figure 7: Optimal designs of flexoelectric nano beam with size h1 ×L1 = 1µm×4µm, optimized
by different loads: (a) optimal design by load F1 =−3N; (c) optimal design by load F1 =−5N

worthwhile noted that an increase in α to 0.2 enhances the load-carrying capacity
of control points characterized by weak densities, thereby enabling optimization
under larger deformations without excessive distortion. A reference guess design
is outlined in Fig.10(a), comprising a double-clamped beam with four circular
voids each having a radius R = 0.3568h2, equivalent to a volume fraction of 0.6.
The penalty exponents for the SDF interpolation scheme in Eqs.(71)-(72) are also
chosen as pc = p f = 3.

The topology optimization of the double-clamped beam is performed under
the forces values F2=-1 N, F2=-10 N, F2=-20 N, F2=-25 N, F2=-30 N and F2=-35
N, respectively. As an initial step in the optimization algorithm, the design vari-
ables values are uniformly set to ρi = 0.6 (i = 1, ...,Ncp). The same continuation
scheme of the mechanical penalty factor pc is utilized. The final optimal designs
obtained by the forces F2=-1 N, F1=-10 N, F2=-20 N, F2=-25 N, F2=-30 N and
F2=-35 N, respectively, are presented in Fig.10. We can observe the variation of
topology, where the holes in the optimal designs decreases in size, and the rods at
the bottom-left and right become thinner as the force increases. The electrome-
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(a) (b)

Figure 8: Distribution of electric potentials and deformed configuration for optimal structures of
flexoelectric nano beam with dimension h1×L1 = 1µm×4µm, under different forces: (a) optimal
design by load F1 =−3N; (c) optimal design by load F1 =−4N

chanical coupling factors (ECFs) of optimal structures under different forces are
presented in Table.2. Notably, the ECFs of the reference structure in Fig.10(a)
increase with the increase of force magnitude. Specifically, for the forces F2=-1
N, F2=-10 N, F2=-20 N, F2=-25 N, F2=-30 N, and F2=-35 N, the ECFs improve
by factors of 0.6806 1.0630, 1.6878, 1.9005, 2.0496, and 2.2166, respectively,
compared to the reference design. The gain in ECFs raises with the increase in
force, illustrating here again the nonlinear effects, and in particular the impact of
the finite strains on the ECFs gains.

Table 2: Electromechanical coupling factors (ECF) of optimal designs for flexoelectric double-
clamped beam under different loads

Force ECF ECF Gain:
(optimized) (reference) ECFopt /ECFre f

-1 N 0.02420 0.01441 1.6806
-10 N 0.02820 0.01367 2.0630
-20 N 0.03278 0.01220 2.6878
-25 N 0.03325 0.01146 2.9005
-30 N 0.03290 0.01079 3.0496
-35 N 0.03274 0.01018 3.2166

The distribution of electric potentials and deformed configuration are illus-
trated for optimal structures of flexoelectric double-clamped beam obtained by
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Figure 9: Bending double-clamped beam-like soft dielectrics with open circuit boundary condi-
tions: design domain

different forces in Fig.11. We can see that the local large deformation or strain
occurs, due to the concentration force imposed on the top-mid area. The localized
nature of the strain typically gives rise to substantial deformations and signifi-
cant strain gradients occurring within the specific region. It also results in the
concentrated distribution of large electric potentials. Similarly, an increase in the
force applied on optimization will elevate the amplitude of the distributed electric
potentials.

To further investigate the mechanism behind the improvement in the elec-
tromechanical coupling factors (ECFs) of the flexoelectric double-clamped beam,
we depict the variation of ECFs for the optimized structures in relation to the vol-
ume fraction. This analysis is conducted for the case of the force F2 = −10N,
as shown in Fig.12, where the topology configuration, distribution of electric po-
tentials and deformations are illustrated. We observe an increase in the ECFs for
the optimized structures of the flexoelectric double-clamped beam as the volume
fraction rises. Significant local deformation and electric potential are concentrated
near the load sites. When the volume fraction is minimal, the support configura-
tion near the loading site on the optimized structure takes on a triangular shape,
leading to challenges in generating large deformations at that specific site. As the
volume fraction increases, the hole of support structure adjacent to the loading
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Figure 10: Reference structure and optimized designs for flexoelectric double-clamped beam un-
der different forces: (a) reference structure; (b) optimal design by load F2 = −1N; (c) optimal
design by load F2 = −10N; (d) optimal design by load F2 = −20N; (e) optimal design by load
F2 =−25N; (f) optimal design by load F2 =−30N; (g) optimal design by load F2 =−35N

site approximates a polygonal shape (quadrilateral or hexagonal), facilitating the
generation of substantial local deformations.

7.3. Compressed truncated pyramid
In this example, a truncated pyramid-like soft dielectrics is considered, as

shown in Fig.13. This particular shape is frequently selected in flexoelectric sys-
tems to induce strain gradient in compression [76]. The size of the truncated
pyramid is h1 = 2µm, a1 = 2µm and a2 = 6µm. A spatially uniform pressure is
applied on the top surface along the X2−direction and the displacement DOFs on
the bottom surface are fixed. The material parameters of PVDF are also employed
here. The volume fraction constraint is set as f3 = 0.7. The compliance constraint
defined in (105) is here chosen as Ĉmax = 3Π3, where Π3 is the strain energy of
the truncated pyramid design domain with all ρ = 1. The parameters for energy
remedy formulation in (73) are set as α = 0.2 and β1 = 500. A reference guess de-
sign is depicted in Fig.13(a), representing a truncated pyramid with semi-circular
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Figure 11: Distribution of electric potentials and deformed configuration for optimal structures of
flexoelectric double-clamped beam under different forces: (a) optimal design by load F2 = −1N;
(b) optimal design by load F2 =−10N; (c) optimal design by load F2 =−20N; (d) optimal design
by load F2 =−25N; (e) optimal design by load F2 =−30N; (f) optimal design by load F2 =−35N

voids on the bottom surface, with a radius R = 0.6180h3, corresponding to a vol-
ume fraction of 0.7. The penalty exponents for the SDF interpolation scheme in
Eqs.(71)-(72) are set as pc = p f = 3.

The topology optimization of the truncated pyramid-like soft dielectrics is per-
formed under the forces values F3=-0.5 N, F3=-1 N, F3=-2 N and F3=-2.5 N, re-
spectively. As an initial step in the optimization algorithm, the design variables
are uniformly assigned values of ρi = 0.7 (i = 1, ...,Ncp). The same continuation
scheme of the mechanical penalty factor pc is also utilized here. The final opti-
mal designs obtained by the forces F3=-0.5 N, F3=-1 N, F3=-2 N and F3=-2.5 N,
respectively, are presented in Fig.14. It is observed that the height and area of
the holes in the optimal designs decreases as the force increases. The electrome-
chanical coupling factors (ECFs) of optimal structures under different forces are
summarized in Table.3. In this example, the ECFs of the reference structure in
Fig.14(a) decrease when the magnitude of the force increases. The ECFs of the
optimized structures increase by factors of 6.3446, 6.0646, 6.1426 and 4.7234 for
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Figure 12: Electromechanical coupling factors for optimized structures of flexoelectric double-
clamped beam with respect to the volume fraction, and the force F2 =−10N

the forces F3=-0.5 N, F3=-1 N, F3=-2 N and F3=-2.5 N, respectively, compared to
the reference design.

We notice that in some situations (Beam problem, Table 1, and truncated pyra-
mid, Table 3), the gain increases then decreases in Table 1 and decreases in Table
3 as the magnitude of the force increases, while we observe an opposite trend for
the double-clamped beam problem (Table 2). The origin of this trend is not easy
to explain, as it involves a complex combination of boundary conditions, load and
final topology and nonlinear material response. One interesting topic for future
studies would be to optimize the gain in combination with the force amplitude, to
possibly harvest higher amount of energy. Such study is out of the present work.

The distribution of electric potentials and deformed configuration for optimal
structures of flexoelectric truncated pyramid achieved by different forces are pre-
sented in Fig.15. It is clear that localized large deformations occurring on the top

35



a1

a2

h3

V
p3

X1

X2

Figure 13: Compressed truncated pyramid-like soft dielectrics with open circuit boundary condi-
tions: design domain

surface of the holes lead to a concentrated distribution of large electric potentials.
An increase in the force applied during optimization will amplify the amplitude
of the distributed electric potentials.
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Figure 14: Reference structure and optimized designs for truncated pyramid obtained by different
loads: (a) reference structure; (b) optimal design by load p3 =−0.5N; (c) optimal design by load
p3 =−1N; (d) optimal design by load p3 =−2N; (e) optimal design by load p3 =−2.5N

Table 3: Electromechanical coupling factors (ECF) of optimal designs for flexoelectric truncated
pyramid under different loads

Force ECF ECF Gain:
(optimized) (reference) ECFopt /ECFre f

-0.5 N 0.01877 2.5551×10−3 7.3446
-1 N 0.01970 2.7881×10−3 7.0646
-2 N 0.02108 3.4313×10−3 6.1426

-2.5 N 0.02242 3.9178×10−3 5.7234
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(a) (b)
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Figure 15: Distribution of electric potentials and deformed configuration for optimal structures of
truncated pyramid under different forces: (a) optimal design by pressure p3 =−0.5N; (b) optimal
design by pressure p3 = −1N; (c) optimal design by pressure p3 = −2N; (d) optimal design by
pressure p3 =−2.5N
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8. Conclusion

In this study, a nonlinear topology optimization framework has been proposed
for flexoelectric soft dielectrics subjected to large deformations. A numerical
framework for finite-deformation nonlinear dielectrics was first derived, ensur-
ing C1-continuity for fourth-order flexoelectric partial differential equations using
iso-geometric analysis (IGA). We have described the procedure for coherent lin-
earizations and IGA discretizations. At the topology optimization stage, an inno-
vative and efficient stress density function (SDF) interpolation scheme has been
proposed. In this scheme, the electromechanical and hyperelastic SDFs were in-
terpolated on the basis of the SIMP model, while a linear material interpolation
model was used for the dielectric component.

Throughout our numerical analysis, we have demonstrated the good perfor-
mance of the proposed stress density function (SDF) interpolation scheme in non-
linear electromechanical optimization scenarios. We have extended an energetic
remedy scheme[71] for void regions, to the optimization of soft dielectrics, pre-
venting distorting deformations in low stiffness elements. Furthermore, optimiza-
tion based solely on the electromechanical coupling factor objective can lead to
the formation of disconnected structures if mechanical stiffness considerations are
not taken into account. To ensure the generation of physically acceptable optimal
structures, we introduced a compliance constraint to regulate mechanical stiffness,
thus preventing the appearance of disconnected domains.

The influence of large deformations on the optimization of flexible flexoelec-
tric materials has been demonstrated, as well as their effects on the gains obtained.
Size effects have also been shown in this context. The topology optimization
framework we have proposed for nonlinear flexible flexoelectric materials takes
full advantage of large deformations, resulting in a significant improvement in the
electromechanical coupling factors in the optimized structures. The electrome-
chanical coupling factors (ECF) of optimized structures in all the above cases
show improvements of up to 9 times over those of reference designs. It has been
shown that in some situations, non-linear effects, i.e. the magnitude of the pre-
scribed load, can increase the gains in electromechanical coupling factors, while
they can reduce them in other cases. Proposing a framework for generally im-
proving ECFs as a function of applied forces is an interesting avenue to explore in
future studies.
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