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Abstract

The main novelty of this paper consists in presenting a statistical Artificial Neural Network (ANN) based model for
a robust prediction of the frequency-dependent aeroacoustic liner impedance using an Aeroacoustic Computational
Model (ACM) dataset of small size. The model, focusing on Percentage of Open Area (POA) and Sound Pressure
Level (SPL) at a zero Mach number, takes into accounts uncertainties using a probabilistic formulation. The main
difficulty in training an ANN-based model is the small size of the ACM dataset. The probabilistic learning carried out
using the Probabilistic Learning on Manifold (PLoM) algorithm addresses this difficulty as it allows constructing a
very large training dataset from learning the probabilistic model from a small dataset. A prior conditional probability
model is presented for the PCA-based statistical reduced representation of the frequency-sampled vector of the log-
resistance and reactance. It induces some statistical constraints that are not straightforwardly taken into account when
training such an ANN-based model by classical optimizations methods under constraints. A second novelty of this
paper consists in presenting an alternate solution that involves using conditional statistics estimated with learned
realizations from PLoM. A numerical example is presented.
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Nomenclature

[CH|W(w)] Conditional covariance matrix of H given W = w
[CQ] Covariance matrix of Q
[CR|W(w)] Conditional covariance matrix of R given W = w
[CV|W(w)] Conditional covariance matrix of V given W = w
E{·} Mathematical expectation operator
J(θ1, θ2) Cost function for ANN training
nd Number of values inDw
nw Number of control parameters
nω Number of sampled frequencies
pQ|W, pR|W, pV|W Conditional probability density functions
pW Probability density function of W
r acm(ω; w) Resistance from ACM
s Silverman bandwidth
v acm(ω; w) Reactance from ACM
µ j j-th realization of conditional mean
Q,R,V Random vectors for impedance, resistance, and reactance
q Empirical mean value of Q
q acm, j j-th frequency-sampled impedance from ACM
q j,k k-th realization of frequency-sampled impedance given W = w j

qℓar ℓ-th additional realization of frequency-sampled impedance
r acm, j j-th frequency-sampled resistance from ACM
w = (w1,w2) Control parameters (POA and SPL)
w j j-th realization of control parameters
w j,k Rewritting (with repitition) of w j,k = w j

wℓar ℓ-th additional realization of control parameters
W Random vector of control parameters
z acm(ω; w) Frequency-dependent acoustic impedance from ACM
ζ j j-th realization of covariance matrix parameters
[λ] Diagonal matrix of eigenvalues
[ϕ] Matrix of eigenvectors
H Normalized random vector from PCA
µH|W(w; θ1) ANN output for conditional mean of H given W = w
ζH|W(w; θ2) ANN output for vectorized upper triangular elements of

the matrix logarithm of [CH|W(w)]
L(θ1, θ2) Negative log-likelihood
ω Frequency (rad/s)
θ1, θ2 Parameters of the ANN

ACM Aeroacoustic Computational Model
ANN Artificial Neural Network
BPF Blade Passing Frequency
GKDE Gaussian Kernel Density Estimation
MaxEnt Maximum Entropy
PCA Principal Component Analysis
PLoM Probabilistic Learning on Manifold
POA Percentage of Open Area
SPL Sound Pressure Level
UHBR Ultra-High Bypass Ratio

D acm ACM dataset
D∗acm Training dataset
D∗ar Learned dataset
D∗H|W GKDE-based estimates dataset
Dw Set of control parameter values
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1. Introduction

We are interested in the aircraft noise in the context of green aviation. This includes both external and internal
noise relative to the aircraft for certification purposes. In modern turbofan engines, especially those with an ultra-high
bypass ratio (UHBR), fan noise is a major contributor to overall noise. Fan noise comprises broadband and tonal
noise. To attenuate the tonal noise component, particularly at blade passing frequency (BPF), targeted acoustic lin-
ers are used, while modifications to the liners geometry and intrinsic properties help dissipate the broadband noise
component. For effectiveness, it is crucial to study liners under various operating conditions, including different flight
scenarios. The design of liners is critically important and has been extensively studied (see [1, 2, 3, 4, 5, 6, 7]).
Liner acoustic impedance can be calculated by using an Aeroacoustic Computational Model (ACM), which is com-
putationally expensive and prohibitive high-fidelity computational model for optimizing aeroacoustic performances
of the liners using a numerical optimization solver. Such ACM have been developed to predict liner performance, as
detailed in [8, 9, 10, 11, 12, 13]. An uncertain ACM of the liner system, which allows for quantifying uncertainties in
aeroacoustic models of liner performance, was also developed in [6].

The objective of this paper is to construct a statistical metamodel for which the outputs are the frequency-sampled
impedance of the liner and the inputs are the control parameters that are the design parameters. The metamodel should
have a low-computational cost to enable its usage in optimization of liners aeroacoustic performance via a numerical
optimization solver. In addition, the gradients of the metamodel with respect to its inputs (the control parameters)
should also have a low-computational cost.

In this paper, we construct the metamodel using a dataset, referred to as the ACM dataset, which includes samples
of control parameters and the corresponding acoustic impedance, numerically simulated by ACM. Consequently, the
dataset is small due to the prohibitive computational cost of ACM, which prevents the construction of a large dataset.

As only the components of control parameter are inputs to the metamodel, all other ACM parameters are unob-
served (thus uncontrolled) and should be treated as random latent variables. Therefore, the liner acoustic impedance
at any frequency should also be modeled as a random variable. A first novelty contribution of this paper is the
methodology for constructing such a statistical metamodel that is driven by the physics contained in the small ACM
dataset.

In this paper, the statistical metamodel is defined by the conditional probability distribution of frequency-sampled
vector of the random acoustic impedance at sampled frequencies, given the control parameter. The MaxEnt principle,
applied with the available information, is used to construct an informative prior model of this conditional probability
distribution. It should be noted that the hyperparameters of the probabilistic model depend on the values of the
control parameter and are modeled using fully connected feedforward neural networks yielding a statistical ANN-
based metamodel. Such a statistical ANN-based metamodel is fitted on an ad hoc training dataset using the maximum
likelihood principle.

A principal component analysis (PCA) is conducted on the outputs (frequency-sampled acoustic impedance) of
the metamodel. This is not only for potential statistical reduction but also because decorrelation and centering of
outputs enhance numerical conditioning, thereby facilitating the optimization process for fitting such a statistical
ANN-based model to the training dataset. However, such a statistical decorrelation and centering of the outputs
introduce constraints on the hyperparameters of the statistical metamodel and consequently, on the parameters of
the statistical ANN-based metamodel. Therefore, given that these hyperparameters are modeled by fully connected
feedforward networks, some deterministic constraints must be considered, yielding the development of constrained
training algorithm for such networks. Such a constrained training algorithm is challenging and complex when dealing
with mini-batches, and might rely on techniques such as Lagrange multipliers, penalization approaches, correction
formulations, etc. A second novelty of this paper is the presentation of an unconstrained formulation for a statistical
ANN-based metamodel that takes into account the statistical constraints arising from the PCA-based reduction. This
is achieved by generating an ad hoc training dataset using Probabilistic Learning on Manifold [14, 15, 16, 17] and
using the learned dataset for estimating conditional statistics in a nonparametric framework, based on Gaussian Kernel
Density Estimation (GKDE) method. Finally, the statistical metamodel can be used to generate additional realizations
of the frequency-sampled acoustic impedance vector, thereby mitigating missing data in the set of control parameters.
Compared to the previous work [18], this ANN-based surrogate model is actually a complement. First, it does not
require the training dataset for offline use, significantly reducing memory requirements. Second, it allows for more
efficient computation of gradients with respect to input parameters, which is crucial for optimization problems.
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Figure 1: Schematic of the acoustic liner (adapted from [8]).

Figure 2: Reduced domain of the computational model (adapted from [8]).

Note that the objective of the paper is not to improve the ANN algorithms, but is to present a novel methodological
application of ANNs to probabilistic ACM datasets for aeroacoustic liner impedance simulations. The novelty lies
in how ANNs are used to model the hyperparameters of the probabilistic model (Sections 4.1 and 4.2) and in how
to train this model using a learned GKDE-based estimates dataset by PLoM (Section 4.3). This approach allows us
to effectively deal with small and probabilistic dataset, which is a significant challenge in this field and has not been
widely addressed in the literature yet.

The paper is organized as follows: (1) Section 2 briefly defines the control parameters and the ACM for calculating
the frequency-sampled vector of acoustic impedance, which is to be used for constructing the ACM dataset (small
size). (2) Section 3 is dedicated to the parametric probabilistic modeling of the conditional probability distribution
of the frequency-sampled vector of acoustic impedance given the control parameter. (3) Section 4 focuses on the
statistical ANN-based metamodel given the control parameter. (4) Section 5 presents a numerical example, along
with a discussion of the results.

2. Control parameters and ACM dataset

In this paper, the considered system is an acoustic liner consisting of a perforated plate, a honeycomb structure,
and a rigid backing plate, as depicted in Fig. 1. The Mach number is assumed to be equal to zero, that is relevant
for the ground configuration. Incorporating non-zero Mach numbers require additional analyses beyond the scope of
this paper. A reduced domain, as described in [8], is used for the computational model (see Fig. 2). In this paper
and for sake of simplicity, the liner system is parameterized by nw = 2 parameters (the control parameters) that are
the Percentage of Open Area (POA) and the Sound Pressure Level (SPL), represented by w = (w1,w2), where w1
corresponds to POA and w2 to SPL.

For such a reduced domain, the frequency-dependent acoustic impedance is denoted as ω 7→ z acm(ω; w), where
ω is the frequency (rad/s). Specifically, z acm(ω; w) = r acm(ω; w) + ι v acm(ω; w), in which r acm(ω; w) represents the
resistance that is positive, v acm(ω; w) the reactance that is real, ι =

√
−1. Control parameter w belongs to an admissible

set. The computational domain is centered around the resonator, within which the Navier-Stokes equations are solved.
The computational model consists of 278 514 degrees of freedom. For given control parameter w, and for each
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sampled frequency ωk = (k − 1)∆ω with k = 1, . . . , nw where nω = 7, the ACM computes the resistance r acm(ωk; w)
and the reactance v acm(ωk; w). The Navier-Stokes equations are solved using the numerical method presented in [8]
for w = (w1,w2) ∈ [0.03, 0.1] × [130, 145]. As discussed in [18], ACM simulations are performed for nd = 48 values
w1, . . . ,wnd of w, which constitute the set Dw. These points in Dw are considered as realizations of a random vector
W whose probability density function, pW, is unknown.

The ACM datasetD acm is then defined as the set of points (w j, r acm, j, v acm, j) in Rnw×nω×nω for j = 1, . . . , nd, in which
r acm, j = (r acm(ω1; w j), . . . , r acm(ωnω ; w j)) and v acm, j = (v acm(ω1; w j), . . . , v acm(ωnω ; w j)). For each j = 1, . . . , nd,
we introduce the 2 nω-dimensional vector of frequency-sampled impedance q acm, j = (log r acm, j, v acm, j) in which
log r acm, j = (log r acm(ω1; w j), . . . , log r acm(ωnω ; w j)).

The model uncertainties are due to random latent parameters that, consequently, cannot be defined as control
parameters. In order to take into account these model uncertainties, the random vectors Q,R, and V are introduced
whose conditional probability density functions, given W = w j, are denoted by q 7→ pQ|W(q |w j), pR|W(r |w j),
and pV|W(v |w j). These conditional probability density functions are constructed as explained in [18]. For instance,
the conditional mean value of Q given W = w j is chosen as q acm, j for j = 1, . . . , nd; the conditional dispersion
coefficient given W = w j has been identified using experimental data. We then generate md = 15 statistically
independent realizations q j,1, . . . ,q j,md from pQ|W given W = w j. Hence, training dataset D∗acm is made up of a total
of n acm = nd × md realizations (w j,k,q j,k) with j = 1, . . . , nd and k = 1, . . . ,md, in which w j,k is a rewriting of w j that
is independent of k (we introduce a repetition). For the sake of simplicity, all the realizations are rewritten as (w j, q j)
with j = 1, . . . , n acm.

In [18], the PLoM (Probabilistic Learning on Manifold) is carried out to learn the joint probability density function
pQ,W of random vectors Q and W using D∗acm as a training dataset. PLoM also allows nar additional statistically
independent realizations {(wℓar, qℓar) , ℓ = 1, . . . , nar} to be generated, which constitute the learned datasetD∗ar.

3. Prior probabilistic model of the frequency-sampled impedance vector

In [18], the conditional probability density function pQ|W is estimated with the Gaussian Kernel Density Estimation
(GKDE) using additional realizations (generated by PLoM) of Q and W. In the context of the construction of a
statistical metamodel based on a neural network, we need to introduce an algebraic representation of the conditional
probability distribution of Q given W, depending on hyperparameters. In this paper we have chosen a Gaussian model
for which the hyperparameters are conditional mean value and the conditional covariance matrix of Q given W. The
neural network will be used for predicting these conditional hyperparameters. In this section, we then present the
construction of the algebraic prior probabilistic model of pQ|W. Nevertheless, since Q is in high dimension, we will
introduce a statistical reduction H of Q using a PCA. Within Section 3.2, the conditional hyperparameters associated
with such a prior probabilistic model are represented as functions of w. The modeling of these functions is carried
out using fully connected feedforward networks that are trained to map control parameter w onto a corresponding set
of hyperparameters of the prior probabilistic model.

3.1. PCA-based statistical reduction H of Q
A PCA is used to construct the statistical reduction of Q, yielding a normalized random vector H (centered

with identity covariance matrix). Random vector H is therefore written as H = [λ]−1/2 [ϕ]T (
Q − q

)
, in which q =

(1/nar)
∑nar
ℓ=1 qℓar is the empirical mean value of random vector Q, [λ] is a (m×m) diagonal matrix, and [ϕ] is a (nq×m)

matrix whose columns are orthonormal vectors, and are such that [CQ][ϕ] = [ϕ][λ]. The estimate of the (nq × nq)
covariance matrix of Q is [CQ] = (nar − 1)−1 ∑nar

ℓ=1(qℓar − q) (qℓar − q)T . The diagonal entries of [λ] are the m-largest
eigenvalues of [CQ]. By construction, the Rm-valued random variable H is such

E{H} = 0m , E{H ⊗H} = [Im] . (1)

3.2. Prior conditional probabilistic density function of H given W
Let η 7→ pH|W(η|w) be the conditional probability density function of H given W. The prior conditional probabil-

ity density function pH|W is constructed using the MaxEnt principle (see for instance [19]) with the following available
information: (1) the support of η 7→ pH|W(η|w) is Rm, (2) the conditional mean value and the conditional covariance
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matrix of H given W = w are the vector µH|W(w) and the matrix [CH|W(w)], which are estimated using the training
dataset D∗ar for each given value of w. Therefore, H given W = w is a multivariate Gaussian random variable with
mean value µH|W(w) and covariance matrix [CH|W(w)].

For any given w in its admissible set, the estimate of hyperparameters µH|W(w) and [CH|W(w)], constructed using
GKDE from nonparametric statistics and datasetD∗ar, are written as

µH|W(w) =

∑nar
ℓ=1 η

ℓ
ar exp

(
− 1

2s2 (w − wℓar)
T [CW]−1 (w − wℓar)

)∑nar
ℓ=1 exp

(
− 1

2s2 (w − wℓar)T [CW]−1 (w − wℓar)
) , (2)

[CH|W(w)] =

∑nar
ℓ=1 η̃

ℓ
ar(w) (η̃ℓar(w))T exp

(
− 1

2s2 (w − wℓar)
T [CW]−1 (w − wℓar)

)∑nar
ℓ=1 exp

(
− 1

2s2 (w − wℓar)T [CW]−1 (w − wℓar)
) , (3)

where (1) the (nw × nw) matrix [CW] = (nar − 1)−1 ∑nar
ℓ=1(wℓar − w) (wℓar − w)T is the estimate of the covariance matrix

of W in which w = (1/nar)
∑nar
ℓ=1 wℓar is the estimate of the mean value of W; (2) for all ℓ = 1, . . . , nar, we have

ηℓar = [λ]−1/2[ϕ]T (qℓar − q) and η̃ℓar(w) = ηℓar − µH|W(w); (3) s is the Silverman bandwidth given by

s =
{

4
nar(2 + n)

}1/(n+4)

, n = m + nw (4)

Due to Eqn (1), µH|W(w) and [CH|W(w)] have to satisfy the following equations,

E{µH|W(W)} = 0m , (5)

E
{

[CH|W(W)] + µH|W(W)µH|W(W)T} = [Im] . (6)

With the proposed methodology, these two equations will automatically be satisfied.

3.3. Statistically independent realizations of R and V given W
For given w, let R(w) and V(w) be the Rnω -valued random variables defined in Section 2. For any given w in

its admissible set, N statistically independent realizations η1(w), . . . , ηN(w) of H given W = w are generated using
the multivariate Gaussian random distribution whose mean value is µH|W(w) and covariance matrix is [CH|W(w)].
We then deduce N statistically independent realizations q1(w), . . . ,qN(w) of random vector Q given W = w such
that, for j = 1, . . . ,N, q j(w) = q + [Φ] [λ]1/2 η j(w). For j = 1, . . . ,N, the block decomposition of vector q j(w)
is written as (q j

R(w), v j(w)) with q j
R and v j(w) being two nω dimensional vectors. Obviously, v1(w), . . . , vN(w) are

statistically independent realizations of V(w) and the statistically independent realizations r1(w), . . . , rN(w) of R(w)
are such that q j

R(w) = log(r j(w)). Note that, for given w, conditional mean vectors µR|W(w) and µV|W(w), and the
conditional covariance matrices [CR|W(w)] and [CV|W(w)] are estimated using the statistically independent realizations
r j(w), . . . , rN(w) and v j(w), . . . , vN(w). Note that vector µR|W(w) and matrix [CR|W(w)] can also be written as

µR|W(w) = exp
(
µQR |W(w) +

1
2

diag [CQR |W(w)]
)

, (7)

[CR|W(w)] = exp
(
[CQR |W(w)] − 1

)
⊙
(
µR|W(w)µR|W(w)T) , (8)

where [A] ⊙ [B] stands for Hadamard product of matrices [A] and [B]; exp([A]) is the element-wise exponential and
diag [A] is the vector made up of the diagonal entries of a given matrix [A]. The block decomposition of µQ|W(w) =
q + [Φ] [λ]1/2 µH|W(w) into nω dimensional vectors µQR |W(w) and µV|W(w), is written as

µQ|W(w) = (µQR |W(w), µV|W(w)) . (9)

The block decomposition of matrix [CQ|W(w)] = [Φ] [λ]1/2 [CH|W(w)] [λ]1/2 [Φ]T into (nω × nω) matrices [CQR |W(w)],
[C(w)], and [CV|W(w)], is written as

[CQ|W(w)] =

 [CQR |W(w)] [C(w)]

[C(w)] [CV|W(w)]

 . (10)

Concerning the random frequency-sampled vector V(w), vector µV|W(w) and matrix [CV|W(w)] are directly obtained
from block decomposition of vector µQ|W(w) and matrix [CQ|W(w)] given by Eqs. (9) and (10).
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4. Statistical ANN-based metamodel

4.1. Fully connected feedforward neural network
Deterministic mappings w 7→ µH|W(w) and w 7→ [CH|W(w)] may have a complex behavior, not only because their

supports are multidimensional, but also because the underlying physical process is complex. In such a case, fully
connected feedforward neural network is well adapted to represent such deterministic mappings. We then consider
a fully connected feedforward neural network µH|W(w θ1) with parameter θ1, which is constructed in order to model
deterministic mapping w 7→ µH|W(w). However, a representation of w 7→ [CH|W(w)] by a fully connected feedforward
network is not straightforward because, for each given w, the output has to be a positive-definite matrix. To circumvent
this apparent difficulty, the matrix logarithm of the (m × m) symmetric covariance matrix [CH|W(w)] is calculated for
each given w, which yields a (m × m) symmetric matrix [log CH|W(w)]. If all the m(m + 1)/2 entries of the upper
triangular block of matrix [log CH|W(w)] are collected into the m(m + 1)/2 dimensional vector ζH|W(w) then, a fully
connected feedforward network ζH|W(w θ2) with parameter θ2 is constructed for modeling the deterministic mapping
w 7→ ζH|W(w). Then, for a given w, the output of ζH|W(w; θ2) with parameter θ2 is used in order to assemble
matrix [log CH|W(w; θ2)]. Then, matrix [CH|W(w; θ2)] is calculated as the matrix exponential of [log CH|W(w; θ2)].
We then defined as the statistical ANN-based metamodel, the probabilistic model in Section 3 where µH|W(w; θ1)
and [CH|W(w; θ2)] are used for modelling µH|W(w) and [CH|W(w)]. Consequently, the statistical ANN-based model is
defined as the probability density function η 7→ pH|W(η|w; θ1, θ2) that is a multivariate Gaussian probability density
function with mean value µH|W(w; θ1) and covariance matrix [CH|W(w; θ2)].

This ANN-based approach is actually a complement to the model presented in [18]. The previous model relies
on conditional statistics based on the PLoM generation of the learned dataset requiring the training dataset. The
proposed ANN-based model, once trained, can make predictions without referencing the learned dataset, at the price
of introducing a probabilistic simplification concerning the probability distributions. This feature significantly reduces
the computational resources required for deployment. In addition, the ANN-based model can be viewed as another
type of representation of the surrogate model in [18].

4.2. Statistical ANN-based metamodel for regression with the learned datasetD∗ar

As it is usually the case for most regression problems, parameters θ1 and θ2 are adjusted by fitting the statistical
ANN-based metamodel to a suitable training dataset. In this paper, such fitting is carried out in minimizing with
respect to θ1 and θ2 the negative-log-likelihood L(θ1, θ2) of the statistical ANN-based model. Obviously, D∗acm and
D acm are not suitable as training datasets for such fitting process since their sizes are small (less than one hundred
elements). It is well known that, in the framework of statistical ANN-based modeling (as well for deterministic ANN-
based modeling), small training datasets yields overfitting models that are unable to predict their targets well enough
for unseen values of their inputs. On the other hand, since the size nar of learned dataset D∗ar is as large as needed,
such dataset is completely suitable as a training dataset. Using learned dataset D∗ar, the negative-log-likelihood to be
minimized is written as

L(θ1, θ2) = −

nar∑
ℓ=1

log pH,W(ηℓar, wℓar; θ1, θ2) , (11)

= −

nar∑
ℓ=1

log
(

pH|W(ηℓar|w
ℓ
ar; θ1, θ2) pW(wℓar)

)
, (12)

= −

nar∑
ℓ=1

log pH|W(ηℓar|w
ℓ
ar; θ1, θ2) −

nar∑
ℓ=1

log pW(wℓar) . (13)

Minimizing L(θ1, θ2) with respect to θ1 and θ2 is equivalent to minimizing the cost function J(θ1, θ2) defined by

J(θ1, θ2) =
1
2

nar∑
ℓ=1

log
(

det [CH|W(ηℓar; θ2)]
)

+
1
2

nar∑
ℓ=1

(
ηℓar − µH|W(wℓar; θ1)

)T [CH|W(wℓar; θ2)]−1(ηℓar − µH|W(wℓar; θ1)
)
. (14)
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Note that such minimization should be performed under the constraints defined by Eqs. (5) and (6). Classically, such
constraints would be taken into account introducing Lagrange multipliers [20, 21, 22], augmented Lagrangian [21, 22],
penalty methods [20, 21, 22], barrier methods [22], projected gradient methods [23] or Sequential Quadratic Program-
ming [22]. It is not straightforward to implement such methods in the framework of fully connected feedforward neural
network training when mini-batch are required due to constraints on RAM availability due to CPU or GPU limitations.
In this paper and as explained in Section 4.3, we take advantage of the PLoM in order to fit the probabilistic model by
adjusting θ1 and θ2 such that constraints defined by Eqs. (5) and (6) are automatically satisfied.

4.3. Statistical ANN-based metamodel for regression with a learned GKDE-based estimates dataset

It should be noted that minimizing J(θ1, θ2) with respect to θ1 and θ2 under constraints defined by Eqs. (5) and (6)
is equivalent to construct the likelihood-based statistical estimators of conditional mean and conditional covariance
matrix of H given W = w. Such statistical estimators are different from the GKDE-based statistical estimators defined
by Eqs. (2) and (3). Therefore, in the context of constructing µH|W(w; θ1) and ζH|W(w; θ2), an alternative strategy
to the typical approach of minimizing the negative-log-likelihood L(θ1, θ2) in regression problems, as presented in
Section 4.2, is proposed. This alternative entails generating a GKDE-based estimates dataset D∗H|W made up of pre-
calculated estimates of conditional mean and conditional covariance of H given W, using GKDE-based estimators
as defined by Eqs. (2) and (3). Then, parameters θ1 and θ2 are adjusted such that statistical ANN-based metamodel
defined by µH|W(w; θ1) and ζH|W(w; θ2) fits dataset D∗H|W. Such a strategy requires a very large dataset D∗ar in order
to construct a large enough dataset D∗H|W using GKDE-based estimators. Such an adapted very large dataset D∗ar can
easily be constructed by PLoM. Therefore, datasetD∗H|W consists of ν < nar elements (µ1, ζ1), . . . , (µν, ζν) defined as
follows. For all j = 1, . . . , ν,

µ j =

∑nar
ℓ=ν+1 η

ℓ
ar exp

(
− 1

2s2 (w j
ar − wℓar)

T [CW]−1 (w j
ar − wℓar)

)
∑nar
ℓ=ν+1 exp

(
− 1

2s2 (w j
ar − wℓar)T [CW]−1 (w j

ar − wℓar)
) , (15)

and the m(m + 1)/2 dimensional vector ζ j collects all the entries of the upper triangular part of the matrix logarithm
[log C j] of the matrix [C j], defined as

[C j] =

∑nar
ℓ=ν+1 η̃

ℓ
ar(w

j
ar) (η̃ℓar(w

j
ar))T exp

(
− 1

2s2 (w j
ar − wℓar)

T [CW]−1 (w j
ar − wℓar)

)
∑nar
ℓ=ν+1 exp

(
− 1

2s2 (w j
ar − wℓar)T [CW]−1 (w j

ar − wℓar)
) . (16)

Note that nar−ν is the number of realizations used for the GKDE-based estimates of conditional mean and conditional
covariance of H given W = w j

ar. Hence, the least-square estimation of parameters θ1 and θ2 is obtained as the
parameters that minimize the cost function J(θ1, θ2) that is written as

J(θ1, θ2) =
ν∑

j=1

∥µ j − µH|W(w j
ar; θ1)∥2 +

ν∑
j=1

∥ζ j − ζH|W(w j
ar; θ2)∥2 , (17)

This optimization problem is solved using ADAM (ADAptive Moment estimation) algorithm [24] with a learning rate
γ scheduler that adjusts the learning rate over the course of training as

γ(k) = max(γo α
(k−1)/∆, γmin) , (18)

where k is the epoch, γo is the initial learning rate (default value is γo = 0.001), α = 0.95 is the decay factor, ∆ = 5
is the decay period, and γmin = 1 × 10−7 is the minimum leaning rate. For the ADAM algorithm, the parameters are
fixed as β1 = 0.9, β2 = 0.99, and ϵ = 1 × 10−8.
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Figure 3: Statistical convergence analysis of the GKDE estimator for the conditional covariance matrix [CH|W(w)] of H given W = w. Graph of
nar 7→ (nar − ν + 1)−1 ∑nar

j=ν+1 ∥ [CH|W(w j
ar)] ∥2. Horizontal axis: nar − ν.

5. Numerical applications

5.1. Architecture of the statistical ANN-based metamodel

Concerning the architecture of the statistical ANN-based metamodel, rather than constructing two multi-outputs
fully connected feedforward networks (one for µH|W(w; θ1) and one for ζH|W(w; θ2)), we choose to construct m
single output fully connected feedforward networks {µH|W(w; θ1,1)}1, . . . , {µH|W(w; θ1,m)}m and d = m(m+1)/2 single
output fully connected feedforward networks {ζH|W(w; θ2,1)}1, . . . , {ζH|W(w; θ2,d)}d, where θ1 is rewritten as θ1 =

(θ1,1, . . . , θ1,m) and θ2 is rewritten as θ2 = (θ2,1, . . . , θ2,d). The training is carried out in parallel on a cluster of 3 Tesla
V100 GPUs. For each fully connected feedforward network, there are four hidden layers, the number of units is 20,
250, 75 and 25 respectively. This architecture implies a total number of 26 314 parameters (biases and weights). For
the first and the fourth layer, Glorot [25] initialization is used and for the second and third layer, He [26] initialization
is used. Rectified linear unit (ReLU) activation functions is used for each of the four hidden layers.

5.2. Statistical convergence analysis for the learned GKDE-based estimates dataset

A statistical convergence analysis is carried out with respect to number ν (see section 4.3). Figure 3 shows the
graph of nar 7→ (nar − ν + 1)−1 ∑nar

j=ν+1 ∥ [CH|W(w j
ar)] ∥2 in which ∥ · ∥ is the Frobenius norm. The horizontal axis of

Fig. 3 is the number nar − ν statistically independent realizations used in order to construct the GKDE-based estimates
of conditional covariance of H given W = w with ν = 60 000. It can be shown that convergence is reached for
nar − ν = 200 000, that is to say nar = 260 000.

5.3. Conditional covariance matrices of R and V given W
Using the database D∗ar and conditional statistics based on GKDE estimation, the (m × m) conditional covari-

ance matrix [CQ|W(w)] can be calculated. The expression is not included in this paper but is similar to Eq. (3)
using q j

ar instead of η j
ar and with a Silverman bandwidth n = nq + nw in Eq. (4). Using Eqs. (7) to (10) allow

for calculating conditional covariance matrices of resistance [CR|W(w)] and reactance [CV|W(w)] for given W = w.
Furthermore, as explained in Section 3.3 and given models µH|W(w; θ1) and ζH|W(w; θ2), conditional covariance
matrix [CR|W(w; θ1, θ2)] (resp. [CV|W(w, θ2)]) of R(w) (resp. V(w)) can be constructed for given W = w. The
entries of matrices [CR|W(w)] and [CV|W(w)] (calculated by GKDE) are displayed in Fig. 4. The entries of matrices
[CR|W(w; θ1, θ2)] and [CV|W(w; θ2)] (calculated using the statistical ANN-based metamodel) are displayed in Fig. 5.
The frequency-sampled resistance is displayed in Figs 4a to 4d and in 5a to 5d. The frequency-sampled reactance is
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Figure 4: Conditional covariance matrices with GKDE-based estimation of the conditional covariance of resistance (Figs.4a to 4d) and reactance
(Figs. 4e to 4h) given four different values of w
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Figure 5: Conditional covariance matrices with statistical ANN-based metamodel estimation of the conditional covariance of resistance (Figs.5a to
5d) and reactance (Figs. 5e to 5h) given four different values of w

displayed in Figs 4e to 4h and 5e to 5h. It should be noted that the considered values of the control parameters are
indicated in each sub-figure. It can be seen that the matrices are not diagonal and that a correlation exits between
the different frequency points of the frequency-sampled impedance. It can also be seen that GKDE-based estimate in
Fig. 4 and statistical ANN-based metamodel estimate in Fig. 5 of the covariance matrices are quantitatively the same.

5.4. Frequency-sampled impedance using the statistical ANN-based metamodel

For any value of w in its admissible set, the conditional statistics (mean values and confidence regions) of
R(w) and V(w) are estimated using the statistically independent realizations r1(w; θ1, θ2), . . . , rN(w; θ1, θ2) and
v1(w; θ1, θ2), . . . , vN(w; θ1, θ2) as presented in Section 3.3 and obtained using µH|W(w; θ1) and ζH|W(w; θ2) as ex-
plained in Section 4.1.

Figures 6 shows 10 realizations of frequency-sampled resistances (Figs 6a to 6d) and 10 corresponding realizations
of frequency-sampled reactance (the values of the control parameters are indicated in each sub-figure). The dashed
blue line (resp. the blue domain) is the conditional mean value (resp. the conditional confidence region) of the
frequency-sampled resistance (Figs. 6a to 6d) and reactance (Figs. 6a to 6d).

The conditional mean value and the conditional confidence region with probability level Pc = 98%, of the
frequency-sampled impedance given W = w, corresponding to the statistical ANN-based metamodel, are presented
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(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)
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Figure 6: Random generations of frequency-sampled impedance using the statistical ANN-based metamodel. Conditional mean value (dashed blue
line) and conditional confidence region (blue region) with a probability level Pc = 98% for the resistance ((a) to (d)) and reactance ((e) to (h)).
The 10 thin black lines represent realizations of the frequency-sampled impedance generated by the statistical ANN-based metamodel for given w.
Horizontal axis is the frequency in Hz

in Figs. 7 and are compared with results presented in [18] (GKDE based estimates). Figures 7a to 7d correspond to
the resistance and Figures 7e to 7h correspond to the reactance (the values of the control parameters are indicated in
each sub-figure). The red dashed line (resp. the red domain) shows the conditional mean value (resp. the confidence
region) from [18]. The blue dashed line (resp. the blue domain) shows the conditional mean value (resp. confidence
region) from the statistical ANN-based metamodel. It can be seen that, concerning the conditional mean values of
the frequency-sampled impedance, there is a good match between the statistical ANN-based metamodel presented in
this paper and the previous results presented in [18]. The statistical ANN-based metamodel, which has been fitted on
the learned GKDE-based estimates datasetD∗H|W (with 60 000 realizations), shows conditional confidence region that
are quantitatively the same as those calculated by GKDE-based estimate using the learned ACM datasetD∗ar (260 000
realizations) with manually adjusted Silverman bandwidth s to the value 0.1186.

6. Conclusions and perspectives

In this paper, a statistical ANN-based metamodel of the frequency-sampled liner acoustic impedance has been
presented, for which only a small ACM data is available to fit its parameters. The control parameters are the POA
and SPL with Mach number being kept at zero. The latent (unobserved) parameters introduce uncertainties that are
taken into account by a probabilistic model introduced in [18]. The construction of the statistical metamodel uses a
PCA to construct a statistical reduced representation of the frequency-sampled vector of the random log-resistance
and the random reactance. For fitting the statistical ANN-based metamodel, a big training dataset is constructed using
probabilistic learning on manifolds (PLoM). A prior conditional probability distribution of the reduced representa-
tion given the control parameters is then constructed and assumed to be Gaussian, yielding a multivariate log-normal
distribution for the resistance and a multivariate Gaussian distribution for the reactance. The metamodels of the hy-
perparameters of such conditional probabilistic model is presented as fully-connected feedforward neural networks.
As the reduced representation is modeled by a centered and normalized random vector, some constraints have to be
taken into account in the minimization of the negative-log likelihood when fitting the parameters (biases and weights)
of the neural network. The constrained problem is transformed in an unconstrained one, requiring the construction of
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(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)

(e) (POA,SPL)=(0.045,133) (f) (POA,SPL)=(0.045,141) (g) (POA,SPL)=(0.075,133) (h) (POA,SPL)=(0.075,141)

Figure 7: Conditional mean values and conditional confidence region with a probability level Pc = 98% of the frequency-sampled impedance, for
the resistance ((a) to (d)) and reactance ((e) to (h)). The red dashed curve and the red zone represent the conditional mean values and conditional
confidence intervals estimated from [18] and the Silverman bandwidth fixed at s = 0.1186 for all the figures. The blue dashed curve and the
blue zone represent the conditional expectation and conditional confidence intervals estimated using the statistical ANN-based metamodel of liner
impedance. Horizontal axis is frequency in Hz.

a second training dataset to estimate the conditional mean vectors and conditional covariance matrices for which the
learned realizations are generated using PLoM. The novelty of this paper lies in the methodology used to construct a
statistical ANN-based metamodel of liner acoustic impedance, which can be used as a low-computational cost meta-
model to predict the confidence interval and the mean value of the impedance given any value of the control parameter.
The gradients of the mean values and confidence regions can also easily be derived using classical backpropagation
algorithms for very cheap computational cost. The statistical ANN-based metamodel presented in this paper is a
complement to the model proposed in [18]. Firstly, it allows for offline use, as it does not require access to the learned
dataset for making predictions. Secondly, the gradient computations with respect to input parameters are expected to
be computationally cheaper, facilitating its use in optimization problems. These improvements, combined with the
ANN ability to capture complex, multidimensional relationships, make this new model a flexible and efficient tool for
optimizing liner acoustic impedance across the parameter space. Such work can be extended to non-zero Mach in the
ACM dataset.
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