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Abstract

This work aims to optimize the driver control along a track to ensure minimal energy
consumption. The focus is on optimizing a control system, which requires a dynamic
model to feed an energy model. This will enable the linking of control and consump-
tion while checking operational constraints such as punctuality and safety that apply
to the dynamics of the train. In both models it is necessary to determine parameters
that are not directly measurable and potentially variable from one trip to another (such
as the mass of the passengers). As we have both expert knowledge and real measure-
ments, this work focuses on Bayesian calibration to deduce an a posterior distribution;
from this distribution, we will extract the maximum from this a posteriori distribution
in order to perform deterministic optimization. The conclusion of this work is that
energy can be reduced. However, the robustness of the model is not sufficient, since
a small variation of variable parameters (passenger mass or wind) could cause the
operational constraints to be violated.

Keywords: optimization, Bayesian calibration, energy economy, driving assistance,
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1 Introduction

Limiting energy consumption is one of the challenges facing rail operators. Of the
various ways of meeting these two challenges, it has been decided to focus on the
dynamics of the train. This lever has been studied in the past, as done by [1], focusing
on the optimization of the speed profile. However, the resulting acceleration profile is
not continuous. In addition, the model does not take into account the energy recovery
capacity of electric train. As a result, the proposed formulation is not adequate. To
overcome these problems, we focus on the driver control. So we want to build a
control guide that is valid for a large proportion of trains and that minimizes energy
while respecting operational constraints.

Assuming that the set of the parameters describing a given train can be represented
by a vector z∗ and letting S be a track, we want to find the control u∗ ∈ Uadm that
minimizes the energy consumed where Uadm is the set of controls satisfying the oper-
ational constraints (punctuality and safety). Note that Uadm ⊂ U where U is the set of
control functions.

The consumed energy will be written as the integral of the consumed power h along
the track such that

u∗ ∈ arg min
u∈Uadm

(∫
S

h(s; z,x, u)ds

)
, (1)

where the state vector x is the solution of a deterministic parametric equation

∀s ∈ S, ẋ(s) = f(x(s), u, z∗). (2)

For a given control u and a given train z, it is assumed that function f is such that
equation (2) has a unique solution written as

x(·;u, z) :
{
S → U

s 7→ x(s;u, z)
. (3)

In this work, we restrict the context to a single train moving forward on a single
track. The interactions between multiple trains are not taken into account. We also
assume that there are not any ”unexpected event” along the track.

In the next sections, we give a brief overview of the considered models and the
underlying hypotheses. We also provide a brief description of the Bayesian calibration
process and conclude with a vision of the problem solution.

2 Driver control optimization

In this section we will briefly review the methodology used to solve the optimization
problem. In the following it is assumed that the train moves from a position 0 to a
position sf on a given fixed track.
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2.1 Physical model

The very first point of interest in this work is the definition of a physical model. This
physical model will then be evaluated on numerous occasions during its calibration or
even during numerical experiments. We therefore need a model that is both sufficiently
accurate to represent the phenomena of interest and sufficiently coarse to ensure our
ability to calibrate the parameters of this model. In this sense, a full rigid-body dy-
namic model of the train such as those constructed with Vampire®software [2] will
not be considered because of their large number of parameters.

As this work focuses on energy consumption, the longitudinal dynamic model is
an appropriate model [3], which has been used by the literature [4, 5]. Under this
consideration, the state vector x is a spatial function that returns both the position and
the speed of the leading car.

According to [4], the driver control can be defined as a function

u : [0; sf ] → [−1; 1] , (4)

which models the decision of the driver to use a certain part of the traction / brak-
ing capacity of the train such that −1 represents a braking at full capacity (excluding
emergency braking) and 1 represents traction at full capacity . Note that for electric
trains, which have both dynamic braking (motor inversion) and pneumatic braking,
algorithms are used to switch from one type of braking to the other, so that it is pos-
sible to define two functions ud(s;u) and up(s;u) representing the effective control
for dynamic braking and the effective control for pneumatic braking. Let ftraction(ṡ)
be the speed-dependent traction force,fd(ṡ) be the speed-dependent dynamic braking
force,fp(ṡ) be the speed-dependent pneumatic braking force and fdriver the driver force

fdriver(s;u, ṡ) =

{
ftraction(ṡ)u(s) if u(s) > 0,

fd(ṡ)ud(s;u) + fp(ṡ)up(s;u) if u ≤ 0.
(5)

Apart from the driver force, the train suffers from running resistance, which can
be model by using the Davis’ law [6] that synthesizes all friction (solid and fluid)
phenomena by a function fdavis taking three coefficients a, b, and c as parameters such
that

fdavis(s, ṡ; a, b, c) = a1(ṡ) + bṡ+ c (ṡ− vwind(s)) |ṡ− vwind(s)| , (6)

where vwind is the longitudinal wind speed of the train that is supposed steady but not
uniform and 1 is the characteristic function that returns 1 if ṡ is strictly positive and 0
otherwise.

To refine the model, we consider that each car can have its own contribution espe-
cially for curves and slopes in the track. Let the train have n cars. Let θ(s) be the
declivity at s, r(s) be the absolute curvature radius at s, mi be the mass of the i-th car
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from the head car, and δsi the spacing between the i-th car and the head car. Then

fweight(s;m) = g

n∑
i=1

miθ (s− δsi) + g

n∑
i=1

kcmi

r (s− δsi)
, (7)

where g is the gravity acceleration and kc is a corrective coefficient.

Newton’s second law enables us to write

ki

n∑
i=1

mis̈ = fdriver(s;u, ṡ)− fdavis(s, ṡ; a, b, c)− fweight(s;m), (8)

where the mass of the motor cars are known and where the mass of the passenger cars
are supposed uniform over the cars such that the distribution of mass is reduced to the
knowledge of the total mass denoted by m.

As we want to work on energy, an energetic model of the train will be depicted by
a power balance. Let h be the consumed power, pt be the traction power, ηt be the
yield of the traction electro-mechanical chain, pr be the recuperated power by motor
inversion, ηr the yield of the recuperation power. Then

h(s; ·,x, u) = pt
ηt

− ηrpr + paux, (9)

where paux is the auxiliary power assumed to be constant according to [4]. In this
work, the yields are taken to be linear functions of the power according to [4] such
that

pt = ftraction(ṡ)u(s), (10)
pr = fd(ṡ)ud(s;u), (11)

ηt = aη
pt
pt,N

+ bη, (12)

ηr = cη
pr
pr,N

+ dη, (13)

where aη,bη, cη, and dη are yield coefficients that should be determined but that are
constrained by the definition of a yield (i.e. (ηt, ηr) ∈ [0; 1]2) and pt,N and pr,N are
nominal power defined to make yield coefficients dimensionless.

We call ”train” a vector z such that

z =
[
m a b c aη bη cη dη paux

]
.

Only these parameters are considered uncertain and will be calibrated; all other pa-
rameters, such as traction capacity, are assumed to be known.
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2.2 Bayesian calibration

In the following, we assume that we have a collection of measures υ which, for a
given unknown train z∗, represents a collection of journeys made on possibly different
tracks at different times. For each measure, we have access to the elapsed time, the
instantaneous speed, and the power consumed. For them, we deduce the instantaneous
position and the energy consumed. We also have access to the knowledge of the SNCF
experts. From these measures, the problem is to determine the train that best matches
the measures while respecting the expert knowledge.

The aim is to combine the two sources of information - an a priori knowledge of
the train and the measurements - in the most representative way possible, while taking
account of the simplified nature of the models. The Bayesian calibration formalism
will be used (see [7–10]). The general applied methodology is inspired from those
depicted by [11]. The available information is used to obtain the prior probability
density function pprior

Z . A likelihood function L(z) = pY |Z (υ|z) is defined using mea-
sures υ which are considered to be realisations of a random variable Y . Note that the
likelihood function will integrate model errors. The Bayes formula gives a relation
including the posterior probability density function ppost

Z such that

ppost
Z ∝ L× pprior

Z . (14)

In this work, we consider that uncertainty arises from the measures (measurement
errors) and from the models (model errors). In this way, we define measurement
errors on both the speed and the consumed power that are supposed given and we
also define the model errors on both force and power. These four errors are assumed
to be additive, Gaussian, and centered. The variances of each measurement error are
supposed known while the variances of each model error are unknown and denoted by
σ2
f and σ2

p .
Let q be the vector of quantities of interest (here the concatenation of the velocity

vector with the consumed energy vector). The model error associated with the simu-
lated vector of quantities of interest qsimu appears to be Gaussian, centered in qmeas the
measured vector of quantities of interest, and with a covariance matrix [cmod] (σ

2
f , σ

2
p)

depending on the variances of the model errors. The likelihood function can therefore
be written as

L (z) =

exp

(
−1

2

∥∥∥(qsimu − qmeas)
(
[cmod] (σ

2
f , σ

2
p)
)− 1

2

∥∥∥2
)

(
√
2π)9

√
det [cmod] (σ2

f , σ
2
p)

, (15)

where ∥ · ∥ is the Euclidean norm.

The model errors being defined by variances σ2
f and σ2

p , it is necessary to find those
variances. The method used to determine such parameters will not be depicted here.

The prior probability distribution of vector z is constructed using the maximal en-
tropy principle (see [12–15]) such that
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Figure 1: Histogram of the different normalized marginal laws for each parameter of
the train z for a population of 50 000 realisations

1. The mean and variance of A, B, and C are known and we know that they should
be positive, which yields a Gamma distribution for the prior probability model;

2. The support is known for M , Aη, Bη, Cη, and Dη, which yields a uniform
distribution for the prior probability model.

Note that the yields being constrained, we have constrained the slope of each yield
(Aη/Cη) by the origin of each yield (Bη/Dη) such that

Aη ∈ [0; 1−Bη] , (16)
Cη ∈ [0; 1−Dη] . (17)

For approximating the real train z∗, the set of parameters that will be used is the
maximum zMAP, of the posterior distribution, defined by,

zMAP ∈ argmax
z∈Z

(
ppost
Z (z)

)
. (18)

where Z is the support of the probability density function ppost
Z . Note that we expect

to find a unique zMAP. In the following, we suppose that this problem was solved and
that we know zMAP.
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2.3 Deterministic optimization

Given our access to zMAP, our goal is to determine uMAP such that

uMAP ∈ arg min
u∈Uadm

(∫ sf

0

h (s; zMAP,x, u) ds

)
. (19)

The first step is to define the admissible control set Uadm. In our case, a control
is said admissible if it allows the train to reach the arrival within the arrival time tf
and with an admissible arrival speed, while respecting the speed limit during all the
travel. Note that the control is supposed spatially defined such that the speed can be
null only at the extremities of the track; during simulations, if the tested control return
a zero speed in the middle of the track, the simulation will stop with a final position
s−1, which is inferior to sfinal; this underlines another constraint in the problem. The
admissible control set will hereafter be defined as

Uadm =

u ∈ U

∣∣∣∣∣∣
s−1 ≥ sf
t(sf ) ≤ tf

∀s ∈ [0; sf ] , ṡ(s) ≤ vlim(s)

 . (20)

where vlim is the speed limit assumed to be known along the track. To release some
constraints in the optimization problem, the track that is considered does not take
account for the part of the track that is near the station. Indeed, this part (a few
hundred meters before the station) is significantly constrained in terms of speed, to
the extent that energy efficiency is no longer the top priority.

In terms of optimization, the problem we face is a derivative-free constrained
problem in infinite dimension. The infinite dimension is handled by discretization
and interpolation; an infinite-dimensional problem is exchanged for a highly finite-
dimensional one. The interpolation process will not be described here. To solve this
derivative-free constrained problem in high dimension, we use the CMA-ES algorithm
introduced by [16], whose performance is widely recognized as reviewed by [17]. It
has also been shown that this algorithm is robust to ill-conditioned problems [18] and
to multimodal cost functions [19], two difficulties that may arise from the given for-
mulation.

The constraints will be handled using an augmented Lagrangian [20] formulation
adapted to CMA-ES [21]. The tuning of this algorithm is set as proposed by [21].

Using the CMA-ES with augmented Lagrangian allows for solving the initial prob-
lem. It is therefore possible to optimize control by using the maximum a posteriori
zMAP as the parameter set for the train.

This methodology is then applied to the case of a given train on a real track with
known variable declivity and curvature. During the journey, the wind speed is also
assumed to be known. An arrival time is set. The convergence of the algorithm can be
seen in Figure 2. In this figure, each black dot corresponds to a tested command. Each
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point cloud corresponds to a normalized constraint or to the normalized cost. The red
line on all the constraint graphs corresponds to the boundary of the admissible domain
set at zero; a constraint is respected if it lies in the negative. For each one of the curves,
three distinct phases can be observed: an initialization phase where the algorithm
recalibrates the various parameters, an exploration phase where the algorithm allows
itself to explore interesting parts of the inadmissible domain and an exploitation phase
where the algorithm effectively converges. Firstly, the observed cost is normalized in
relation to a real measurement carried out on a similar route under similar conditions;
in the studied case, it is possible to observe a gain of 25% in energy compared with the
measurement. In this case, we can also see that the punctuality constraint is restrictive,
since the algorithm searches for a solution at the boundary of the admissible domain
in terms of punctuality (the optimal command is therefore one that takes all the time
it is given to arrive). It should be noted that in this case, the safety constraint of speed
limit only comes into play at the final position of the train (maximum and minimum
final speed), the constraint being respected throughout the journey.

The output of the algorithm includes the optimized velocity profile together with
the optimal control, shown in Figure 3. For each graph, the translucent black lines
represent the mean of each generation of the CMA-ES, providing an insight into the
intensity of the exploration phase. It is noteworthy that the operational constraints
significantly restrict the controls, thus limiting the feasible control space. The final
average of the algorithm is represented by the purple curve. An interesting observa-
tion is the relative shift between the early iterations (isolated and transparent black
curves) and the purple curve. This observation indicates that the algorithm finds it ad-
vantageous to achieve higher speeds at the beginning of the trajectory and is willing to
accept a lower speed towards the end of the journey, probably due to operational con-
straints. Similarities between the profile and the literature, such as [1], are observed.
Consequently, a distinct initial phase is identified where the control is set to 1, repre-
senting maximum traction. This is followed by a free-wheeling phase of the train with
intermittent traction phases corresponding to the declivity. This variable declivity is
also reflected in the oscillations of the speed profile. The final phase involves brak-
ing, which can be divided into two phases: an initial soft braking phase to maximize
energy recovery, followed by a more intense braking phase using pneumatic braking.

The presented methodology, as demonstrated in the industrial case study above,
enables a substantial reduction in energy consumption during transportation while en-
suring compliance with operational constraints. It is possible to identify the different
phases that make up the empirically established economic profiles, while taking into
account the newly observed energy recovery phenomenon.

3 Conclusions

The objective of this work was to solve an optimization problem involving a nonlinear
system of coupled equations with uncertain parameters and nonlinear constraints.
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Figure 2: The evolution of cost and constraints as optimization takes place. For each
plot, a black dot is a control. The red line is the zero line (limit of accept-
ability) for each constraint. The cost decreases monotonically, knowing that
a cost of one would mean that we have consumed the same energy as the
measure.

Overall, the proposed methodology enabled the problem to be solved in three key
steps. In the first step, a parametric model was chosen in accordance with the phenom-
ena relevant to the study and the available computational capabilities. In the second
step, a calibration step was implemented using a Bayesian formalism in order to make
the best use of all the available information. This calibration made it possible to ex-
tract the parameters corresponding to the mode of the a posteriori distributions, i.e.
the most probable set of parameters for the train of interest. Finally, a determinis-
tic optimization was carried out on the control system using an adapted evolutionary
strategy (CMA-ES) coupled with an augmented Lagrangian algorithm to manage the
constraints. The algorithm was then applied to an industrial application.

The results of this method ensure energy optimization of up to several tens of per-
cent. The Bayesian calibration study is also likely to provide us with objective infor-
mation on the variability of the parameters due to uncertainty.

However, this method does not guarantee the admissibility of the optimal control
for the real train (it only guarantees the admissibility and optimality of the control
found for the train corresponding to the modal parameter set of the posterior distri-
bution). Furthermore, the calculation time resulting from the use of an evolutionary
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Figure 3: The result of the optimization for one case makes it possible to reconstruct
the empirical speed profile of [1] with a full traction phase, a free running
phase, and a braking phase. Note that the braking phase is not at full power
to ensure maximum energy recovery. Also note that the control is not exactly
zero throughout the free-wheeling phase as the environment (wind, slope,
curvature) changes.

strategy is problematic insofar as it is not possible to recalculate an optimal control in
the event of a last-minute change (missing passenger, wind, etc.).

One strategy could be to apply an algorithm to adapt the command in case of vari-
ation, as suggested by [11]. It is also interesting to try to maintain a probabilistic
framework, coupled with the use of onboard sensors in the train to provide real-time
adaptations.
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