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Probabilistic learning inference constrained by
an uncertain model and a target: A general
method with application to elasticity
homogenization without scale separation

Christian Soize

Abstract We present a probabilistic learning inference that assimilates data (tar-
get set) into a parameterized large stochastic computational model resulting from
discretizing a stochastic boundary value problem (BVP). A target is imposed on a
vector-valued random quantity of interest (QoI), observed as the stochastic solution
of the BVP. The probabilistic inference estimates the posterior probability model,
which is constrained both by the second-order moment of the random residue of
the BVP stochastic equations and the target set composed of statistical moments of
the QoI. We assume that evaluating a single realization of the BVP is computation-
ally expensive, so the training dataset comprises only a few points differing from
big data approaches. The presented application contributes to three-dimensional
stochastic homogenization of heterogeneous linear elastic media, specifically when
the mesoscale and macroscale are not separated.

1 Introduction

(i) Objective. This paper addresses an important question concerning probabilistic
learning algorithms that allow data (target dataset) to be assimilated into predictive
models. These models have a small training dataset and the target dataset consists
of statistical moments of quantities of interest (QoI). It assumes that these statis-
tical moments, such as mean values and second-order moments, were estimated
using realizations (samples) that are no longer available. This situation often oc-
curs when the data is lost, deteriorated, not commented on, no longer exists, or is
inaccessible. However, some statistical moment values may have been published or
provided in technical reports. Additional physics-based constraints are simultane-
ously considered, consisting of controlling the learning process with the model to
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minimize the mean-square norm of the random normalized residue of the stochas-
tic partial differential equation of the boundary value problem (BVP). These two
types of constraints are both defined by an implicit function denoted as h𝑐, for
which an algebraic representation is unavailable. They ensure that the algorithm
aims to bring the statistical moments closer to their targets while maintaining a
small residue of the BVP stochastic equations. The framework presented uses a
computational model with a computationally expensive single evaluation. There-
fore, the training set comprises a small number of samples (or points), differing
from big data approaches. The presented general method for probabilistic learning
inference is applied to three-dimensional stochastic homogenization, specifically in
scenarios where the mesoscale and macroscale are not separated. It is worth not-
ing that stochastic homogenization has been extensively studied in numerous works
(e.g., [35, 1, 13, 5]), with particular attention given to analyzing the size of the
representative volume element (RVE) (see [21, 19, 24, 4]), and the morphological
models of random structures (see [11, 12]). The presented application focuses on
the stochastic homogenization of a random linear elastic medium at the mesoscale,
defined on the domain Ω ⊂ R3 of the microstructure. It is assumed that this domain
is not a RVE, which means that there is no scale separation between the mesoscale
and the macroscale. Since there is no scale separation, the macroscale is in fact
another mesoscale at a larger scale than the initial mesoscale, which is described
by random effective/apparent quantities. For the construction of the posterior prob-
ability measure using the proposed probabilistic learning inference, the constraints
are defined by both a target set consisting of given statistical moments of the ran-
dom effective/apparent elasticity tensor and the second-order moment of the random
normalized residue of the BVP stochastic equations.

(ii) A few words on the main methodologies allowing for addressing the problem.
The main statistical methods for addressing this type of problems are the following.
The Bayesian method estimates the posterior probability measure of the control pa-
rameter using prior probability and a target dataset of realizations for the quantity
of interest (QoI). However, this article introduces a different hypothesis that does
not necessitate knowledge of realizations, which are assumed to be unavailable. It
is important to note that Bayesian inference can be challenging to use, especially in
high dimensions [20]. The maximum-likelihood method is employed to estimate the
hyperparameters of a probability measure using a target dataset of realizations. Sim-
ilar to Bayesian inference, the maximum-likelihood method is an effective statistical
approach for estimating hyperparameters, but it relies on realizations as the target.
The parameterized functional representations of random quantities, whether in finite
or infinite dimensions, such as spectral methods like polynomial chaos expansions
([7, 27, 34]), facilitate the integration of data into predictive models. Bayesian in-
ference, maximum likelihood, and least-square approaches are commonly used to
identify the parameters of these representations. The deep machine learning method,
which relies on Artificial Neural Networks (ANNs), has gained considerable recog-
nition in diverse scientific and engineering disciplines. However, it is important to
note that ANNs usually rely on large datasets for accurate parameter identification
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[22] and may not be straightforward to use within a comprehensive probabilistic
framework, such as the one proposed in this paper.

(iii) Proposed methodology. In this work, we present a probabilistic learning
method under implicit constraints. The Kullback-Leibler minimum principle [16,
14, 3] is employed to estimate the posterior probability measure that satisfies the
constraints. This principle uses the prior probability measure and constraints related
to statistical moments, given as targets. The Kullback-Leibler minimum principle
has been used in previous works [29, 31, 32, 26]. The posterior probability measure
is represented by an algebraic expression involving the prior probability measure
and a Lagrange multiplier vector, 𝝀, associated with the function h𝑐. The optimal
value of the Lagrange multipliers, 𝝀sol, is obtained as the limit of a sequence {𝝀𝑖}𝑖 ,
allowing for the construction of a sequence of probability measures, where the
limit corresponds to the desired posterior probability measure. Due to the high-
dimensional framework and a small training dataset, the Probabilistic Learning on
Manifolds (PLoM) [28, 30, 33] is used to generate the constrained learned dataset
for each value of 𝝀𝑖 . The generation is based on a Markov Chain Monte Carlo
(MCMC) method employing a nonlinear Itô stochastic differential equation (ISDE)
associated with a nonlinear stochastic dissipative Hamiltonian dynamical system.
The inclusion of a dissipative term allows for the rapid elimination of the transient
part and facilitates the attainment of the stationary response associated with the
invariant measure. Evaluating the drift vector of the ISDE involves computing the
gradient of function h𝑐 multiple times. As an algebraic expression of this gradient
is not available, direct numerical calculations considering the high dimensionality
are not feasible. In [26], a method is proposed to construct an explicit statistical
surrogate model, h𝑁 , of implicit function h𝑐. The surrogate model depends on the
number 𝑁 of points generated in the constrained learned dataset, and its gradient has
an explicit algebraic representation.

(iv) Difficulties and novelties. In the broader context of the proposed methodology,
this statistical inverse problem poses several challenges. Firstly, there is a significant
computational cost associated with evaluating a large Stochastic Computational
Model (SCM) resulting form the discretization of the stochastic BVP. Consequently,
a limitation arises from the availability of a small training dataset. Secondly, the
random parameters contribute to a high stochastic dimensionality. Additionally,
the constraints are defined by an implicit, nonlinear mapping operating in a high-
dimensional space. To overcome each of these challenges, the author provides a brief
overview of the recently proposed probabilistic learning methodology [26]. This
general method is applied to 3D elasticity homogenization without scale separation.

2 Formulation of the probabilistic learning inference using the
Kullback-Leibler divergence

(i) Stochastic boundary value problem and quantity of interest. All the random quan-
tities are defined on a probability space (Θ,T ,P). We consider a stochastic elliptic
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BVP on the open bounded domain Ω ⊂ R𝑑 (for instance, 𝑑 = 3), whose partial
differential equation (PDE) is written as N (Y,G,W) = 0 𝑎.𝑠. The unknown is the
non-Gaussian vector-valued field {Y(𝝃), 𝝃 ∈ Ω} that satisfies the boundary condi-
tions. The coefficients of the stochastic elliptic operator depend on a non-Gaussian
second-order vector-valued random field G and on a random vector-valued control
parameter W. It is assumed that the weak formulation of this stochastic BVP admits
a unique strong stochastic solution Y = f (G,W) that is a second-order random field.
The mapping f is not explicitly known. An approximation is constructed, on the one
hand by using the finite element method to discretize the weak formulation, and on
the other hand by using the numerical method of Monte Carlo to approximate the
strong stochastic solution. The quantity of interest (observation) is a second-order
vector-valued random variable Q = O (X) with X = (Y,G,W), and where the
observation operator, O , is a given measurable mapping. This parameterization is
summarized in Fig. 1.

(ii) Construction of the small training dataset. A prior probability model of {G,W},
represented by the joint probability measure 𝑃

prior
G,W, is constructed, along with its

generator of independent realizations. The subscript ”𝑑” designates the quanti-
ties related to the training dataset, which is constructed by using the Monte Carlo
numerical simulation method. Let {g1

𝑑
, . . . , g𝑁𝑑

𝑑
} and {w1

𝑑
, . . . ,w𝑁𝑑

𝑑
} independent

realizations of {G,W}, generated using the prior probability model of {G,W}.
Each realization y 𝑗

𝑑
is computed by solving the weak formulation of the PDE

N (y 𝑗

𝑑
, g 𝑗

𝑑
,w 𝑗

𝑑
) = 0 with the boundary conditions. Consequently, 𝑁𝑑 indepen-

dent realizations {y 𝑗

𝑑
, 𝑗 = 1, . . . , 𝑁𝑑} of the random field Y are computed, where
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𝑑
= f (g 𝑗

𝑑
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𝑑
). The 𝑁𝑑 independent realizations {q 𝑗

𝑑
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observation Q are deduced as q 𝑗

𝑑
= O (x 𝑗

𝑑
), where x 𝑗

𝑑
= {y 𝑗

𝑑
, g 𝑗

𝑑
,w 𝑗

𝑑
} is the realiza-

tion of X = {Y,G,W}. The training dataset is then composed of a small number
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Fig. 1 Diagram illustrating the parameterization of the stochastic boundary value problem and
the quantity of interest Q. The prior probability model is defined by the joint probability measure
𝑃G,W, which is transported into the measure 𝑃X and further transported into the joint probability
measure 𝑃Q,X.
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𝑁𝑑 of points x 𝑗

𝑑
for 𝑗 = 1, . . . , 𝑁𝑑 , which represent 𝑁𝑑 independent realizations

of X. It is assumed that the BVP can only be solved a limited number of times.
This implies that the training dataset is a small dataset (in contrast to a big dataset).
Therefore, the posterior model is constructed using a learning tool to generate the
constrained learned realizations of X without solving the BVP, but solely using the
training dataset.

(iii) Finite reduced-order representation and training dataset D𝑁𝑑
(𝜼). Let us as-

sumed that X = {Y,G,W} is a second-order random quantity (random fields and
random variable) defined on (Θ,T ,P), and that its covariance operator is a Hilbert-
Schmidt [6], symmetric, positive operator in a Hilbert space X equipped with the
inner product ⟨x , x′⟩X. Therefore, X can be approximated by the truncated Karhunen-
Loève expansion X(a) [15, 17] of X,

X(a) = x +
a∑︁

𝛼=1

√
^𝛼 𝝋𝛼 𝐻𝛼 , (1)

where the eigenvalues of the covariance operator are ^1 ≥ . . . ≥ ^a ≥ . . . = 0 with∑+∞
𝛼=1 ^

2
𝛼 < +∞. The family of the eigenfunctions {𝝋𝛼}𝛼 is a Hilbert basis of X,

where x = 𝐸{X}, and where H = (𝐻1, . . . , 𝐻a) is a second-order, centered, Ra-
valued random variable whose covariance matrix is the identity matrix [𝐼a] in Ma .
For 𝛼 ∈ {1, . . . , a}, the component 𝐻𝛼 is written as 𝐻𝛼 = ^

−1/2
𝛼 ⟨X − x , 𝝋𝛼⟩X.

The training set D𝑑 related to H consists of the 𝑁𝑑 independent realizations
{𝜼 𝑗

𝑑
, 𝑗 = 1, . . . , 𝑁𝑑} such that 𝜼 𝑗

𝑑
= ^

−1/2
𝛼 ⟨x 𝑗

𝑑
− x , 𝝋𝛼⟩X. We assume that the

kernel of the covariance operator is unknown. Therefore, we can only obtain an
approximation of the covariance operator using an empirical estimator built with the
𝑁𝑑 points {x 𝑗

𝑑
, 𝑗 = 1, . . . , 𝑁𝑑}. Under these conditions the largest value of a will be

𝑁𝑑 − 1 and the discretization of Eq. (1) will simply correspond to a normalization
of the points that constitute the training set D𝑑 . If a can be chosen as 𝑁𝑑 − 1, then
X(a) is a reduced-order representation of X.

(iv) Probabilistic learning inference under implicit constraints. We introduce the
superscript ”𝑐” to designate the solution with the constraints, which corresponds
to the posterior model. Let X𝑐 = (Y𝑐,G𝑐,W𝑐) and Q𝑐 = O (X𝑐) be the posterior
probability model of the prior probability model of X = (Y,G,W) with Y = f (G,W)
and Q = O (X), respectively. Let 𝑅𝑐 = 𝑟 (X𝑐) be the positive-valued random variable
representing the norm of the random residue of the PDE. The probabilistic learning
inference belongs to the class of the statistical inverse problems. The prior probability
model of {G,W} is given and we are interested in estimating the posterior probability
model in order that the second-order moment 𝐸{(𝑅𝑐)2} of 𝑅𝑐 be as small as possible
and that some statistical moments of the posterior observations Q𝑐 are close to some
given targets. Using Eq. (1), the implicit function 𝜼 ↦→ h𝑐 (𝜼) from Ra into R𝑛𝑐 ,
which globally defines the constraints, yields the constraints equation,

𝐸{h𝑐 (H𝑐)} = b𝑐 , (2)
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in which b𝑐 ∈ R𝑛𝑐 is the target and h𝑐 is an implicit mapping.

(v) Formulation using the Kullback-Leibler divergence minimum principle. We use
the Kullback-Leibler divergence minimum principle [16, 14, 3] for estimating the
posterior probability measure 𝑃H𝑐 (𝑑𝜼) = 𝑝H𝑐 (𝜼) 𝑑𝜼 onRa of theRa-valued random
variable H𝑐 = (𝐻𝑐

1 , . . . , 𝐻
𝑐
a). This estimation of 𝑃H𝑐 is performed using the prior

probability measure 𝑃H (𝑑𝜼) = 𝑝H (𝜼) 𝑑𝜼 on Ra in which 𝑝H is estimated with a
modified (see (vi) below) Gaussian KDE method [2] using the points {𝜼1

𝑑
, . . . , 𝜼𝑁𝑑

𝑑
}

of the training dataset D𝑑 , and using the constraint defined by Eq. (2). Therefore,
the probability density function 𝑝H𝑐 on Ra , which satisfies the constraint defined by
Eq. (1) and which is closest to 𝑝H, is the solution of the optimization problem

𝑝H𝑐 = arg min
𝑝∈Cad, 𝑝

∫
Ra

𝑝(𝜼) log
(
𝑝(𝜼)
𝑝H (𝜼)

)
𝑑𝜼 , (3)

in which the admissible set Cad, 𝑝 is defined by

Cad, 𝑝 =

{
𝜼 ↦→ 𝑝(𝜼) : Ra → R+ ,

∫
Ra

𝑝(𝜼) 𝑑𝜼 = 1 ,
∫
Ra

h𝑐 (𝜼) 𝑝(𝜼) 𝑑𝜼 = b𝑐

}
. (4)

(vi) Lagrange multipliers associated with the constraints and solution of the func-
tional optimization problem. As explained in Section 1-(iii), the constraints within
the admissible set Cad, 𝑝 are taken into account by introducing the Lagrange mul-
tipliers _0 − 1 with _0 ∈ R+ (associated with the normalization condition of the
pdf) and 𝝀 ∈ Cad,𝝀 ⊂ R𝑛𝑐 (associated with the imposed constraints defined by the
implicit function h𝑐). It has been proven [26] that 𝝀sol and the pdf 𝑝H𝑐 of H𝑐 can be
constructed as follows. For 1 ≤ 𝑛𝑐 ≤ a, let us assume that h𝑐 ∈ 𝐶1 (Ra ,R𝑛𝑐 ) and
there exist constants 𝛼 > 0, 𝛽 > 0, 𝑐𝛼 > 0, and 𝑐𝛽 > 0, independent of 𝜼, such
that for ∥ 𝜼 ∥ → +∞, ∥ h𝑐 (𝜼) ∥ ≤ 𝑐𝛼 ∥ 𝜼 ∥ 𝛼 and ∥ [∇𝜼h𝑐 (𝜼)] ∥𝐹 ≤ 𝑐𝛽 ∥ 𝜼 ∥ 𝛽 in
which [∇𝜼h𝑐 (𝜼)] ∈ Ma,𝑛𝑐 with [∇𝜼h𝑐 (𝜼)]𝛼𝑘 = 𝜕ℎ𝑐

𝑘
(𝜼)/𝜕[𝛼, and where ∥ . ∥𝐹 is

the Frobenius norm. Then, the admissible set Cad,𝝀 of 𝝀 is a convex open subset of
R𝑛𝑐 . For all 𝝀 in Cad,𝝀 , the pdf 𝑝H𝝀 of H𝝀 can be written as

𝑝H𝝀 (𝜼 ; 𝝀) = 𝑐0 (𝝀) Z (𝝀) exp{−⟨𝝀 , h𝑐 (𝜼)⟩} , (5)

with 0 < 𝑐0 (𝝀) < +∞ and where 𝜼 ↦→ Z (𝜼) : Ra → R+ is written as
Z (𝜼) = 𝑁−1

𝑑

∑𝑁𝑑

𝑗=1 exp{− 1
2𝑠2 ∥ 𝑠

𝑠
𝜼 𝑗

𝑑
− 𝜼 ∥2} where 𝑠 = 𝑠

(
𝑠2 + (𝑁𝑑 − 1)/𝑁𝑑

)−1/2

with 𝑠 = (4/(𝑁𝑑 (2 + a)))1/(a+4) . The R𝑛𝑐 -valued random variable h𝑐 (H𝝀) is
such that 𝐸{∥ h𝑐 (H𝝀) ∥2} < +∞. Let 𝝀 ↦→ Γ(𝝀) : Cad,𝝀 → R be defined by
Γ(𝝀) = ⟨𝝀 , b𝑐⟩ − log 𝑐0 (𝝀) in which b𝑐 ∈ R𝑛𝑐 is defined in Eq. (2). For all 𝝀 in
Cad,𝝀 , we have

∇𝝀Γ(𝝀) = b𝑐 − 𝐸{h𝑐 (H𝝀)} ∈ R𝑛𝑐 , [Γ ′′ (𝝀)] = [cov{h𝑐 (H𝝀)}] ∈ M+
𝑛𝑐

, (6)

where [Γ ′′ (𝝀)] is the positive-definite covariance matrix of h𝑐 (H𝝀), which is such
that [Γ ′′ (𝝀)]𝑘𝑘′ = 𝜕2Γ(𝝀)/𝜕_𝑘𝜕_𝑘′ . Function Γ is a strictly convex function on



Probabilistic learning inference constrained by an uncertain model and a target 7

Cad,𝝀 . There is a unique solution 𝝀sol in Cad,𝝀 of the convex optimization problem,

𝝀sol = arg min
𝝀∈Cad,𝝀

Γ(𝝀) . (7)

If the following equation in 𝝀,

∇𝝀Γ(𝝀) = 0𝑛𝑐 , (8)

has a solution �̃� in Cad,𝝀 , then this solution is unique and we have 𝝀sol = �̃�. The pdf
𝑝H𝑐 of H𝑐, which satisfies the constraint 𝐸{h𝑐 (H𝑐)} = b𝑐 is written as

𝑝H𝑐 (𝜼) = 𝑝H𝝀sol (𝜼 ; 𝝀sol) , ∀𝜼 ∈ Ra . (9)

Constant 𝑐0 (𝝀) cannot be computed when a is large. As a result, the standard con-
jugate gradient algorithm cannot be used to solve the convex optimization problem
defined by Eq. (7). Instead, 𝝀sol is obtained by solving Eq. (8) using a Newton
iterative method, which necessitates estimating the mathematical expectations in
Eq. (6). To accomplish this, a learned dataset Dlearn (𝜼𝝀) = 𝜼1

𝝀 , . . . , 𝜼
𝑁
𝝀 is com-

puted using the PLoM algorithm (refer to Section 1-(iii)) for any fixed value of 𝝀 in
Cad,𝝀 and for which the invariant measure admits the marginal probability measure
𝑃H𝝀 (𝑑𝜼 ; 𝝀) = 𝑝H𝝀 (𝜼 ; 𝝀) 𝑑𝜼, defined by Eq. (5). This learned dataset comprises a
large number 𝑁 ≫ 𝑁𝑑 of realizations of H𝝀 . Since the implicit function h𝑐 and its
gradient must be evaluated a large number of times by the MCMC algorithm used
by PLoM, an algebraic surrogate model of h𝑐 must be constructed.

(vii) Statistical surrogate model of the implicit function h𝑐 and convergence anal-
ysis. Let A𝝀 = h𝑐 (H𝝀) be the R𝑛𝑐 -valued random variable whose 𝑁 independent
realizations a1

𝝀 , . . . , a
𝑁
𝝀 are such that aℓ𝝀 = h𝑐 (𝜼ℓ𝝀) ∈ R𝑛𝑐 for ℓ = 1, . . . , 𝑁 . The

surrogate model 𝜼 ↦→ h𝑁 (𝜼 ; 𝝀) : Ra → R𝑛𝑐 of h𝑐 is defined [26], for all 𝜼 in Ra ,
by

h𝑁 (𝜼 ; 𝝀) =
𝑁∑︁
ℓ=1

aℓ𝝀
𝛽𝑁𝜼 (𝜼ℓ𝝀)∑𝑁

ℓ′=1 𝛽
𝑁
𝜼 (𝜼ℓ′𝝀 )

, (10)

in which for all 𝜼 and �̃� in Ra ,

𝛽𝑁𝜼 (�̃�) = exp{− 1
2𝑠2

SB

∥ �̃�−𝜼 ∥2
𝐻 } , ∥ �̃�−𝜼 ∥2

𝐻 = ⟨[𝜎H𝝀 ]−2 (�̃�−𝜼) , �̃�−𝜼⟩ , (11)

in which [𝜎H𝝀 ] is the diagonal positive-definite matrix in M+
a such that [𝜎H𝝀 ]𝛼𝛼

is the standard deviation of the real-valued random variable 𝐻𝝀,𝛼, estimated us-
ing Dlearn (𝜼𝝀), and where 𝑠SB is the Silverman bandwidth 𝑠SB = (4/{𝑁 (2 + 𝑛𝑐 +
a)})1/(𝑛𝑐+a+4) . Propositions 2 to 4 of [26] demonstrate the convergence of the se-
quence of MCMC generator of PLoM using this statistical surrogate model.
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3 Application to 3D stochastic homogenization of heterogeneous
material with random spectrum and without scale separation

The details of this application and additional results can be found in [26]. The
nonseparation of the mesoscale with the macroscale means that the macroscale is
another mesoscale at larger scale with random effective/apparent elastic properties.
The posterior probability distribution is constructed using the general methodology
presented in Section 2, where the constraints are defined as follows:

- a target set made up of given ”experimental” statistical moments of the random
effective/apparent elasticity tensor Ceff.

- the second-order moment of the random normalized residue of the random equa-
tions of the stochastic computational model.

These constraints ensure that the probabilistic learning algorithm aims to bring the
statistical moments closer to their target values while maintaining a small residue of
the random equations of the stochastic computational model.

In this application, the primary objective is to identify, in cases where the mesoscopic
and macroscopic scales are not separable, the hyperparameters of a prior probabilistic
model for the random apparent elasticity tensor field C at the mesoscopic scale. This
identification is achieved through the solution of a statistical inverse problem using
”experimental data”, which are available at the macroscopic scale. These experimen-
tal data concern the statistical moments of the effective/apparent elasticity tensor Ceff

at the macroscopic scale. The only constraints imposed on the construction of the
mesoscopic prior probabilistic model for C are twofold: first, it must consider all
mathematical and physical properties of C at the mesoscopic scale, including sym-
metries and positivity; second, the parameterization of C must allow the generation
of a sufficiently large (random) family for Ceff through stochastic homogenization,
encompassing the experimental effective/apparent elasticity tensorCexp at the macro-
scopic scale. These conditions enable the creation of a predictive statistical model
based on experimental data. Such a probabilistic model, based on experimentation,
is particularly valuable. Imagine conducting experimental tests on a specimen of
a heterogeneous material subjected to deterministic imposed forces/displacements,
where deformations are measured (e.g., a concrete specimen). If the specimen is
smaller than a representative elementary volume (RVE), the measured macroscopic
deformations are random, rendering the effective tensor Ceff not deterministic but
random (apparent tensor). Once the probabilistic model for C has been experimen-
tally identified, the updated meso-macro probabilistic model can be used to simulate
the deterministic effective tensor through numerical simulations on an RVE.

(i) Stochastic elliptic boundary value problem at mesoscale. We consider the stochas-
tic homogenization of a heterogeneous linear elastic microstructure, which is mod-
eled at the mesoscale rather than the microscale, and it occupies the 3D bounded open
domain Ω =] 0 , 1 [×] 0 , 1 [×] 0 , 0.1 [⊂ R3 (square thick plate) with boundary 𝜕Ω.
For all 𝑚 and 𝑟 in {1, 2, 3} the R3-valued displacement random field {Y𝑚𝑟 (𝝃) ∈ Ω}
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at mesoscale is defined on (Θ,T ,P), is indexed by Ω, and satisfies the stochastic
boundary value problem associated with the stochastic homogenization of a random
elastic medium at mesoscale without scale separation, such that for 𝑖 = 1, 2, 3, and
almost surely,

− 𝜕

𝜕b 𝑗

(
C𝑖 𝑗 𝑝𝑞 (𝝃) Y𝑝𝑞 (Y𝑚𝑟 (𝝃))

)
= 03 , ∀𝝃 ∈ Ω , (12)

Y𝑚𝑟 (𝝃) = y𝑚𝑟
0 (𝝃), ∀𝝃 ∈ 𝜕Ω , (13)

in which the strain tensor is Y𝑝𝑞 (y) = (𝜕𝑦𝑝/𝜕b𝑞 + 𝜕𝑦𝑞/𝜕b𝑝)/2 for all differentiable
function 𝝃 ↦→ y(𝝃) and where the components of y𝑚𝑟

0 (𝝃) are defined by 𝑦𝑚𝑟
0, 𝑗 (𝝃) =

(𝛿 𝑗𝑚 b𝑟 + 𝛿 𝑗𝑟 b𝑚)/2, in which 𝛿 𝑗𝑚 is the Kronecker symbol. At mesoscale, the linear
elastic heterogeneous medium is described by the random apparent elasticity field
{C(𝝃), 𝝃 ∈ R3}, which is a non-Gaussian fourth-order tensor-valued random field
C = {C𝑖 𝑗 𝑝𝑞}𝑖 𝑗 𝑝𝑞 with 𝑖, 𝑗 , 𝑝, and 𝑞 in {1, 2, 3}, defined on (Θ,T ,P). The stochastic
homogenization consists, for 𝑖, 𝑗 , 𝑚, and 𝑟 in {1, 2, 3}, in analyzing at macroscale
the componentCeff

𝑖 𝑗𝑚𝑟
of the random effective/apparent elasticity tensor {Ceff

𝑖 𝑗𝑚𝑟
}𝑖 𝑗𝑚𝑟 ,

which is defined by

Ceff
𝑖 𝑗𝑚𝑟 =

1
|Ω|

∫
Ω

C𝑖 𝑗 𝑝𝑞 (𝝃) Y𝑝𝑞 (Y𝑚𝑟 (𝝃)) 𝑑𝝃 , (14)

in which Y𝑚𝑟 is the R3-valued random field that satisfies Eqs. (12) to (13) and where
|Ω| =

∫
Ω
𝑑𝝃. The random effective/apparent elasticity tensor Ceff is symmetric and

positive definite almost surely. If there was a scale separation, then the statistical
fluctuations of this tensor would be negligible.

(ii) Prior probability model of the apparent elasticity fieldC at mesoscale. It is essen-
tial to note that the prior probability model of the apparent elastic field is not carried
out at the microscopic scale of the microstructure but rather at the mesoscopic scale.
This means that no properties specific to any symmetry class of the elastic field at
the microscale are utilized. We refer the reader to [9, 10] for the implementation
of symmetry classes in mesoscopic random models of the random apparent elas-
ticity field and to [12, 18] for microscopic random models of the microstructure
when it can be described in terms of constituents. Regarding the construction of
the mesoscopic prior probabilistic model for the random apparent elasticity field
C = {C(𝝃), 𝝃 ∈ Ω}, it is essential to note that describing only the correlation struc-
ture of C is insufficient. This is because C is non-Gaussian due to its positivity. To
solve the nonlinear statistical inverse problem, it is necessary to build the probability
measure of C and its associated random generator. Such a construction has been pro-
posed in [23, 24] for cases involving anisotropic statistical fluctuations around the
mean model at the mesoscale. Its extension to the case involving a random spectral
measure, as applied here, is detailed in [25]. The mesoscopic prior probability model
of C is defined as the restriction to Ω of a non-Gaussian, homogeneous, mean-square
continuous, fourth-order tensor-valued random field indexed by R3. The mesoscopic
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mean model, also known as the mesoscopic nominal model, is isotropic and charac-
terized by𝐶 bulk = 1.09×1011 𝑁/𝑚2 and𝐶 shear = 6.85×1010 𝑁/𝑚2. The mesoscopic
statistical fluctuations around the mean mesoscopic model are anisotropic. The pa-
rameterization of C is expressed as C(𝝃) = c(G(𝝃), z) for 𝝃 ∈ Ω, where c is a
tensor-valued function on R21 × R3, and G = {G(𝝃), 𝝃 ∈ R3} is a non-Gaussian,
second-order, homogeneous, mean-square continuous, R21-valued random field, in-
dexed by R3. Here, z = (𝐶 bulk, 𝐶 shear, 𝛿 C). The non-Gaussian probability measure
of G is fully determined through statistical conditioning of a Gaussian R21-valued
random field. The mapping c is constructed using the maximum entropy principle
under constraints, ensuring that the properties of symmetry and positivity of the non-
Gaussian random tensor C(𝝃) are satisfied at any point 𝝃. The correlation structure
of the non-Gaussian field C is determined by the mapping c from the correlation
structure of G. The random matrix spectral measure of G is defined in [25] based on
a prior algebraic model with several hyperparameters: (1) the level of uncertainties
on the spectral measure that is controlled by a dispersion parameter 𝛿𝑠 = 0.1, (2) the
level of mesoscopic statistical fluctuations of the random medium that is governed by
the dispersion coefficient 𝛿 C = 0.3, (3) and finally, three spatial correlations lengths
denoted as L𝑐 = (𝐿 𝑐1, 𝐿 𝑐2, 𝐿 𝑐3). It is worth noting that the proposed model allows
for the introduction of a total of 3 × 21 spatial correlation lengths, representing the
most general parameterization.

(iii) Spatial correlation lengths and scale separation. Cases, SC1, SC2, and SC3 of
the correlation lengths are considered for analyzing the level of scale separation:

𝑆𝐶1: L𝑐 = (0.1, 0.1, 0.1) (partial separation in b1, b2, not in b3).
𝑆𝐶2: L𝑐 = (0.3, 0.3, 0.1) (not separated in b1, b2, and b3).
𝑆𝐶3: L𝑐 = (0.5, 0.5, 0.2) (strongly not separated in b1,b2, and b3).

(iv) Random control parameter for the probabilistic learning inference. The compo-
nents of the R3-valued random control parameter W are (log𝐶bulk, log𝐶shear, log 𝛿C)
in which 𝐶bulk and 𝐶shear are Gamma independent random variables (see [8]) with
mean values 𝐶 bulk, 𝐶 shear and coefficients of variation 𝛿bulk = 0.5, 𝛿shear = 0.25, and
where 𝛿C is a uniform random variable on [0.1 , 0.5].

(v) Stochastic computational model. The finite element method is used for discretiz-
ing the weak formulation of the stochastic BVP and yields the stochastic equations
on R𝑛𝑦 where 𝑛𝑦 = 52 215. The discretization of the vector-valued random field G
yields aR𝑛𝑔 -valued random variable where 𝑛𝑔 = 3 626 800. TheR𝑛𝑤-valued random
control parameter, with 𝑛𝑤 = 3.

(vi) Training dataset and finite reduced-order representation. The mesoscopic prior
probability model and the stochastic computational model are used to construct
𝑁𝑑 = 50 realizations {x 𝑗

𝑑
, 𝑗 = 1, . . . , 𝑁𝑑} of the random vector X with values in R𝑛𝑥

where 𝑛𝑥 = 6 𝑛𝑦 + 𝑛𝑔 + 𝑛𝑤 = 3 942 093. The dimension a of the reduced representa-
tion X(a) of X constructed by PCA is a = 𝑁𝑑 − 1 = 49.
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(vii) Random normalized residue. For 𝝀 fixed in Cad,𝝀 , the dimensionless positive-
valued random variable 𝑅𝑐

𝝀 represents the norm of the vector-valued random residue
of the stochastic equations. A realization ℓ is denoted as 𝜌ℓ𝝀 = �̂�ℓ𝝀 /�̂� 0

, where �̂�
0

is
an adapted constant for normalization (refer to [26]). This ensures that the constraint
equation for the random residue can be expressed as 𝐸{(𝑅𝑐

𝝀 )
2} = 𝑏𝑐

𝑅
, with 𝑏𝑐

𝑅
= 1.

(viii) Statistical moments and their targets. Using the Voigt notation, let [Ceff] be
the second-orderM+

6-valued random variable associated with the random tensor Ceff.
The first statistical moment of interest is the mean value [Ceff] = 𝐸{ [Ceff] } ∈ M+

6
of random matrix [Ceff] while its target counterpart is the given matrix [Cexp] ∈ M+

6 .
The corresponding constraint equation, which allows the mean value to be fitted, will
then be written as 𝐸{ [Ceff] } = [Cexp]. The second statistical moment of interest is
the coefficient of dispersion 𝛿 eff of random matrix [Ceff] and its target counterpart
𝛿 exp, which allows the level of statistical fluctuations to be fitted. We then introduce
the positive-valued random variable Δeff

2 = ∥ [Ceff] − [Ceff] ∥2
𝐹
/ ∥ [Ceff] ∥2

𝐹
. Let 𝛿 eff

be defined by 𝛿 eff = (𝐸{Δeff
2 })1/2. The constraint equation to control the statistical

fluctuations are then written as 𝛿 eff = 𝛿 exp. It should be noted that, if 𝛿 eff goes to zero,
then the statistical fluctuations (represented by (Δeff

2 )1/2) of [Ceff] around [Ceff] goes
to zero.

(ix) Second-order statistics of the random residue and of the effective/apparent elas-
ticity matrix estimated with the constrained learned dataset. For cases SC1, SC2,
and SC3, Table 1 gives the posterior statistics computed with the constrained learned
set for 𝑁 = 10 000 (subscript ”c”), the prior statistics computed with the training set
(subscript ”d”), and the targets (superscript ”exp”). It can be read,

(a) the second-order moment 𝐸{𝑅2
𝑐} of the random normalized residue 𝑅𝑐 and the

corresponding target 𝑏𝑐
𝑅

.
(b) the Frobenius norm ∥ [Ceff] ∥𝐹 of the mean value of the random effective/apparent

elasticity matrix.
(c) the coefficient of dispersion 𝛿 eff

ML = {max𝛿2 𝑝Δeff
2
(𝛿2)}1/2 in which 𝑝Δeff

2
is the pdf

of random variable Δeff
2 .

(x) Discussion about the presented results. Table 1 demonstrates that the constrained
learned dataset significantly modifies the mesoscopic prior probability model. The
posterior statistics align well with the targets. These results confirm controlled residue
and small deviations from the reference (training) for the optimal solution. The mean
value of the random effective/apparent elasticity matrix achieves the target. When
there is no scale separation, there is a significant coefficient of dispersion, which
increases as the spatial correlation lengths of the random apparent elasticity field
at the mesoscale grow. There are statistical fluctuations in the effective/apparent
elasticity tensor at the macroscale. Table 1 further demonstrates that the constraints
in place ensure that the probabilistic learning algorithm strives to align the statistical
moments with their target values, while simultaneously maintaining a negligible
residue of the random equations within the stochastic computational model.
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Table 1 Posterior statistics with the constrained learned set for 𝑁 = 10 000 (subscript ”c”), prior
statistics with the training dataset (subscript ”d”), and targets (supercript ”exp”).

SC1 SC2 SC3
𝐸 {𝑅2

𝑐 } 1.2938 1.2687 1.2413
𝑏𝑐
𝑅

1 1 1
∥ [ Ceff

𝑑
] ∥𝐹 × 1011 4.2106 4.1925 4.1943

∥ [ Ceff
𝑐
] ∥𝐹 × 1011 4.6294 4.6923 4.6816

∥ [ Cexp ] ∥𝐹 × 1011 4.6317 4.6549 4.6706
𝛿 eff
𝑑,ML 0.2257 0.2469 0.2701

𝛿 eff
𝑐,ML 0.1329 0.1476 0.1671
𝛿 exp 0.0946 0.1374 0.1825
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