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Introduction Experimental Elastic Fracture Conclusions

Context and objectives

Context
In the furniture industry, standardized tests are essential for certifying product safety
and compliance.
The CEN (European Committee for Normalization) provides standards to regulate
product commercialization, such as EN 747 for bunk and loft beds.
Furniture is subjected to various loads and can be classified into three structural
design types: frame (beam-type elements), panel (plate-type elements), and
combined (both beam and plate elements).
The wooden elements of these structures are assembled using a variety of joining
techniques.
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Motivation
The FCBA (Forêt Cellulose Bois-construction Ameublement) institute conducts
standardized validation tests for furniture manufacturers.
These tests conducted under static or dynamic loads are essential for ensuring
compliance with furniture commercialization standards.
The FCBA wants to numerically predict the most frequent deterioration modes
observed experimentally.

(a) Crossbeams cracking at bunk beds connections (b) Transverse tear-out of particle board
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Objective
Reduce the number of trips between the manufacturers and the FCBA by numerically
predicting the most frequent deterioration modes observed experimentally.
Numerically reproduce simpler experimental tests on perforated spruce specimens
subjected to uniaxial compression.
Identify the elastic and fracture properties of wood-based materials from experimental
measurements.

Assumptions
The average elastic behavior of spruce wood is assumed to be transversely isotropic
and homogeneous.
The phase-field fracture method is suitable for simulating fracture mechanisms in
wood.
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Outline

1 Context and objectives

2 Experimental compression tests
Observed cracking mechanisms
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Experimental compression tests

𝐻 = 90mm

𝐿 = 45mm

∅𝐷 = 10mm
ℎ = 45mm

𝑏 = 20mm

0 1 2 3 4 5 6
Crossbar displacement [mm]

0

10

20

30

40

Co
m

pr
es

sio
n 

fo
rc

e 
[k

N]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

6 / 18



Introduction Experimental Elastic Fracture Conclusions Cracking mechanisms

For each test, the images and force-displacement curves are synchronized.
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Observed cracking mechanisms
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Identifying critical force through Digital Image Correlation (DIC)
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Identifying the elastic properties of wood

Finite Element Model Updating [Kavanagh and Clough 1971; Kavanagh 1972]
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This method minimizes the least-squared
difference between the experimentally
measured displacement uexp and the
numerically simulated displacement field
u(p).

min
p=(EL,ET ,GL,νL)∈A

∥u(p)− uexp∥2

Here, A = R+×R+×R+×, ]0, 0.5[
represents the admissible set for the
parameter vector p = (EL, ET , GL, νL).
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Identified elastic properties

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Samples

0

5000

10000

15000

20000

EL [MPa]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Samples

0

2000

4000

6000

8000

GL [MPa]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Samples

0

200

400

600

800

1000

1200

1400

ET [MPa]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Samples

0.0

0.1

0.2

0.3

0.4

0.5

vL

Some dispersion occurs from one
test to another, particularly in
tests #2 and #17.

It appears that the Poisson’s ratio
νL is not well identified with this
kind of test

mean std disp [%]
EL [GPa] 13.78 1.21 8.76
ET [MPa] 215.41 38.98 18.10
GL [MPa] 541.49 89.07 16.45
νL 0.35 0.13 35.85

Elastic properties excluding samples
with dispersion greater than 40%
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Modeling brittle fracture using the Phase-Field method.
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Regularized crack model
[Bourdin et al. 2000]

Method based on the minimization of the total
energy functional.

E(u, ϕ) = Ψ(u, ϕ)− P(u) + Ψc(ϕ,∇ϕ)

Ψ(u, ϕ) =

∫
Ω

(
g(ϕ) ψ+(u) + ψ−(u)

)
dΩ

P(u) =

∫
Ω
f .u dΩ +

∫
∂ΩF

F .u dS

Ψc(ϕ,∇ϕ) =

∫
Ω

Gc

cw ℓ

(
w(ϕ) + ℓ2∥∇ϕ∥2

)
dΩ

With the following contraints u = uD on ∂ΩD,
ϕ̇ ⩾ 0 and ϕ ∈ [0, 1].
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Despite numerous applications in various transversely or orthotropic elastic materials, the
phase-field modeling approach for wood fracture simulation has received little attention.

Overview of existing wood fracture models
Dynamic fracture models in wood fiber composites [Carlsson et al. 2018] and modeling
of wood microstructure and intercellular fractures [Carlsson et al. 2020].
Wood anisotropy and mode-dependent fracture models, with extension to orthotropic
materials [Supriatna et al. 2022].
Transversely isotropic or orthotropic elastic fracture models, focusing on asymmetric
energy splits and potentially anisotropic fracture surface energies [Pech et al. 2022a;
Pech et al. 2022b].

In this study, we use the model presented in [Nguyen et al. 2020], which employs a
strain-based orthogonal split of the elastic strain energy density function to address
asymmetric fracture (ε+ : C : ε− = ε− : C : ε+ = 0).
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J(Gc, ℓ) =

(
f(Gc, ℓ)− f exp

f exp

)2
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The characteristic length ℓ has a negligible
influence compared to the critical energy

release rate Gc.

{
∆uy = −24×10−5 mm (max(ϕ) ⩽ 0.2)

∆uy = −6×10−5 mm (max(ϕ) > 0.2)

[Nguyen et al. 2020] split with
AT1 regularization.
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min
Gc∈R+

J(Gc, ℓ0 = L/100)
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The model does not reproduce the softening behavior observed experimentally, but is
capable of reproducing crack initiation!
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Identified critical energy release rate Gc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Samples

0.00

0.02

0.04

0.06

0.08

0.10

G
c

[m
J/m

m
2 ]

0.06 0.07 0.08 0.09 0.10 0.11
Gc [mJ/mm2]

32

34

36

38

40

Cr
ac

k 
in

iti
at

io
n 

fo
rc

e 
[k

N]

0

1

2
3

4

5

6

7
8

9

10
11

12

13

14

1516

17

Without sample #17: Gc = 0.081 [mJ/mm2] and δGc = 19.83 % which is consistent with
the classical values available in the scientific literature [Daudeville 1999; Pech et al. 2022b].
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Conclusions

Conclusions
Development of a numerical simulation method to study crack propagation in spruce
specimens under compression.
Identification of the elastic and fracture material properties from experimental results.
The model does not reproduce the softening behavior observed experimentally.
The model reproduces the crack initiation!

On-going works
Modeling the observed experimental dispersion using a probabilistic approach for the
material properties p and Gc.

Future works
Reproduce the observed (ductile) softening behavior.
Simulate the fracture observed on the scale of a furniture assembly.
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Thank you for your attention!
You can contact me at matthieu.noel@univ-eiffel.fr.

To obtain further information, access the data or reproduce the identification process,
please refer to the following sources:

EasyFEA python software [Noel 2024] the data and scripts [Noel et al. 2024]

To be submitted in Engineering Fracture Mechanics in a couple of weeks.
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