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Abstract: In this paper, we propose a polynomial algorithm for conducting 𝐾-diagnosability
analysis on both bounded and unbounded labeled Petri nets. More specifically, we formulate
a sufficient condition for 𝐾-diagnosability by addressing the relaxation (in R) of an Integer
Linear Programming (ILP) problem defined on a compacted horizon. In addition, if the model
is 𝐾-diagnosable, the technique provides a value 𝐾𝑟𝑒𝑙𝑎𝑥 , potentially lower than 𝐾, that ensures
(𝐾𝑟𝑒𝑙𝑎𝑥-)diagnosability. To assess the performance and efficiency of the developed method, a
Petri net model of a railway benchmark is investigated.

Keywords: 𝐾-diagnosability, bounded and unbounded labeled Petri nets, discrete event
systems, linear optimization technique.

1. INTRODUCTION AND RELATED WORKS

In this paper, our focus is on investigating the 𝐾-
diagnosability of Discrete Event Systems (DES) modeled
by a partially observed Labeled Petri Net (LPN). 𝐾-
diagnosability refers to the ability to diagnose any fault
with certainty, provided that at least 𝐾 events have oc-
curred following the fault occurrence (𝐾 ∈ N). In fact,
𝐾-diagnosability can be of particular interest in practice,
since, in some applications, the delay required for detecting
and identifying fault occurrences may have considerable
impact in terms of safety and/or performance.

In a recent work Chouchane et al. (2023), we have inves-
tigated the 𝐾/𝐾min -diagnosability problems in bounded
and unbounded LPNs, while assuming the unobservable
subnet to be acyclic. The main contribution lies in the
development of a necessary and sufficient condition for 𝐾-
diagnosability, which can be checked by means of ILP opti-
mization techniques. Besides, if the investigated fault class
is 𝐾-diagnosable, the minimum value 𝐾𝑚𝑖𝑛 ⩽ 𝐾 ensuring
𝐾𝑚𝑖𝑛-diagnosability is also provided by the same analysis,
without requiring further investigation. Furthermore, the
parameter 𝐽 introduced in this methodology (distinct from
the one defined in Basile et al. (2012)), which serves to
characterize the set of faulty sequences that are relevant to
the examination of 𝐾-diagnosability, enabled an expansion
of the approach proposed in Basile et al. (2012) to address
the case of unbounded nets.

The present work is, in fact, an extension of the approach
established in Chouchane et al. (2023). In fact, using
algebraic techniques offers crucial advantages in terms
of efficiency compared to graph-based approaches (Liu
et al. (2017); Cabasino et al. (2012)), since algebraic
techniques (Basile et al. (2012, 2015); Zhu et al. (2021))
★ This paper was not presented at any IFAC meeting.

do not require building the state space of the net. Yet,
addressing ILP problems can entail significant compu-
tational costs. Specifically, these problems are NP-hard,
and their solving complexity grows exponentially with
the number of variables, in the worst case (Boccia et al.
(2020); Lancia and Serafini (2021)). Our goal here is to
improve the computational complexity of the approach
in Chouchane et al. (2023), while dispensing from the
determination of parameter 𝐽. Namely, we propose a new
algorithm for 𝐾-diagnosability analysis, in a compacted
horizon, based on the relaxation of an ILP problem (in R).
Using a compacted horizon not only reduces the system’s
dimensionality but also eliminates the need for parameter
𝐽, which could be difficult to determine in an optimal
way. The technique we discuss in the present paper pro-
vides a sufficient condition for 𝐾-diagnosability. Moreover,
when the established (sufficient) condition is fulfilled, a
value 𝐾𝑟𝑒𝑙𝑎𝑥 is given such that the fault class is 𝐾𝑟𝑒𝑙𝑎𝑥-
diagnosable where 𝐾𝑚𝑖𝑛 ⩽ 𝐾𝑟𝑒𝑙𝑎𝑥 ⩽ 𝐾.

The structure of the paper is outlined as follows. In Sec-
tion 2, we introduce some essential preliminary concepts
and highlight key findings from Chouchane et al. (2023),
focusing on 𝐾-diagnosability using ILP problems. Section 3
explores the relaxation of the ILP problem in R and estab-
lishes a sufficient condition for 𝐾-diagnosability. Section 4
illustrates the developed technique on the basis of a railway
Petri Net model, while demonstrating the effectiveness of
our technique. Finally, in Section 5, we conclude the paper
and present potential directions for future research.

2. PRELIMINARIES

2.1 Notations

A Petri net, denoted as N = (𝑃,𝑇,𝑊− ,𝑊+), is defined by
sets 𝑃 and 𝑇 , representing non-empty finite sets of places



and transitions, respectively. The pre-incidence matrix is
denoted as 𝑊− and the post-incidence matrix as 𝑊+. The
incidence matrix 𝑊 is calculated as 𝑊 = 𝑊+ −𝑊−.
The marking of a place 𝑝 is denoted as 𝑀 (𝑝). A marked
Petri net is represented as (N , 𝑀0), where 𝑀0 is the known
initial marking. The notation 𝑀 [ 𝑡 ≻ signifies a transition
𝑡 enabled by marking 𝑀 if 𝑀 (𝑝) ⩾ 𝑊− (𝑝, 𝑡) for all places
𝑝 ∈ 𝑃. The term 𝑀 [ 𝑡 ≻ 𝑀 ′ indicates that marking 𝑀 ′

is reachable from marking 𝑀 by firing transition 𝑡 (𝑀 ′ =
𝑀 + 𝑊 (·, 𝑡)). The reachability set of (N , 𝑀0) is denoted
as 𝑅(N , 𝑀0). The language of the net is represented by
𝐿 (N , 𝑀0) = {𝜎 ∈ 𝑇∗ |∃𝑀 ∈ 𝑅(N , 𝑀0) : 𝑀0 [𝜎 ≻ 𝑀}.
The notation 𝜋𝑇 (𝜎) refers to the count vector associated
with sequence 𝜎 ∈ 𝑇∗ where the 𝑖𝑡ℎ element of vector
𝜋𝑇 (𝜎) represents the number of firings of transition 𝑡𝑖 in
𝜎. The set 𝑇𝑜 represents observable transitions, while 𝑇𝑢
denotes unobservable ones. 𝑃𝑜 (𝜎) and 𝑃𝑢 (𝜎) correspond
to the projection of 𝜎 on 𝑇∗

𝑜 , and 𝑇∗
𝑢 , respectively. The

function 𝜋𝑇𝑜 : 𝑇∗
𝑜 → N |𝑇𝑜 | restricts the application of

function 𝜋𝑇 to observable sequences and, similarly, 𝜋𝑇𝑢 :
𝑇∗
𝑢 → N |𝑇𝑢 | restricts it to the set of unobservable sequences.

The observable subnet of Petri Net N is denoted as
N𝑜 = (𝑃,𝑇𝑜,𝑊−

𝑜 ,𝑊
+
𝑜 ), with 𝑊−

𝑜 = 𝑊−
|𝑇𝑜 , and 𝑊+

𝑜 = 𝑊+
|𝑇𝑜 .

Similarly, the unobservable subnet is denoted as N𝑢 =

(𝑃,𝑇𝑢,𝑊−
𝑢 ,𝑊

+
𝑢 ), with 𝑊−

𝑢 = 𝑊−
|𝑇𝑢 , and 𝑊+

𝑢 = 𝑊+
|𝑇𝑢 .

The labeling function, denoted as L : 𝑇 → 𝐸 ∪ {𝜀},
assigns to each transition 𝑡 ∈ 𝑇 either a label in 𝐸 if
𝑡 ∈ 𝑇𝑜, or 𝜀 if 𝑡 ∈ 𝑇𝑢. An LPN system, represented as
NL = (N , 𝑀0, 𝐸,L), consists of a Petri net N with a
known initial marking 𝑀0 and a finite set of events 𝐸

that are assigned to its transitions as labels, by means of
the labelling function L. The extension of L to transition
sequences is denoted as L : 𝑇∗ → {𝐸⋃{𝜀}}∗. The
projection of 𝜎 ∈ 𝑇∗ in the set of observable labels 𝐸∗ is
denoted by 𝑃𝑙 (𝜎) and is defined as 𝑃𝑙 (𝜎) = L(𝑃𝑜 (𝜎)). The
inverse projection operator, denoted as 𝑃−1

𝑙
(𝑤), 𝑤 ∈ 𝐸∗, is

defined as: 𝑃−1
𝑙

(𝑤) = {𝜎 ∈ 𝑇∗ | 𝑃𝑙 (𝜎) = 𝑤}. Function
𝜋𝐸 : 𝐸∗ → N |𝐸 | assigns to any word 𝑤 ∈ 𝐸∗ a vector 𝑦 =

𝜋𝐸 (𝑤) ∈ N |𝐸 | , where each component 𝜋𝐸 (𝑤)𝑖 , 1 ⩽ 𝑖 ⩽ |𝐸 |,
corresponds to the number of occurrences of the 𝑖𝑡ℎ label in
𝐸 within 𝑤. The set of sequences that enable fault class 𝑇 𝑓
for the first time is defined as 𝜓(𝑇 𝑓 ) = {𝜎 ∈ 𝑇∗ | ( 𝑇 𝑓 ∉ 𝜎) ∧
(∃ 𝜀 𝑓 ∈ 𝑇 𝑓 : 𝑀0 [𝜎𝜀 𝑓 ≻)}.

2.2 LPN structure

In the considered LPN, the set of transitions is partitioned
as 𝑇 = 𝑇𝑜 ⊎ 𝑇𝑢, where 𝑇𝑜 (resp. 𝑇𝑢) is the set of observable
(resp. unobservable) transitions. The set of unobservable
transitions is, in turn, partitioned into two disjoint subsets
𝑇𝑢 = 𝑇 𝑓 ⊎ 𝑇𝑟𝑒𝑔, where 𝑇 𝑓 corresponds to the set of fault
transitions while 𝑇𝑟𝑒𝑔 corresponds to the regular (i.e.,
non-faulty) unobservable transitions. Furthermore, the set
of fault transitions 𝑇 𝑓 can be partitioned into 𝑟 disjoint

subsets (𝑇 𝑓 =
𝑟⋃
𝑖=1
𝐹𝑖) that represent the different fault

classes. Without loss of generality and for the sake of
clarity, one single fault class (𝑇 𝑓 ), is considered in this
paper. A sequence 𝜎 ∈ 𝑇∗ is said to be faulty if it contains
at least one fault transition of 𝑇 𝑓 (i.e., ∃ 𝜀 𝑓 ∈ 𝑇 𝑓 such
that 𝜀 𝑓 ∈ 𝜎). In the remainder of the paper, we say that

fault class 𝑇 𝑓 occurred to mean that some fault transition
𝜀 𝑓 ∈ 𝑇 𝑓 has fired.

In this paper, for 𝐾-diagnosability analysis, we consider
the following assumptions:
H0) the considered LPN does not reach a deadlock after
firing any fault transition, and
H1) the unobservable subnet is acyclic.

2.3 𝐾/𝐾𝑚𝑖𝑛-diagnosability of an LPN

Definition 1. (𝐾-diagnosability of a fault class) A fault
class 𝑇 𝑓 in an LPN is 𝐾-diagnosable for some given integer
𝐾 ∈ N∗, if the following holds:
(∀𝜎𝑏 𝑓 ∈ 𝜓(𝑇 𝑓 )) (∀𝜎𝑎 𝑓 |𝑀0 [𝜎𝑏 𝑓 𝜀 𝑓𝜎𝑎 𝑓 ≻ ; 𝜀 𝑓 ∈ 𝑇 𝑓 ) :
|𝜎𝑎 𝑓 | ⩾ 𝐾 ⇒ Diag
where the diagnosability condition is defined as:
Diag : 𝜎 ∈ 𝑃−1

𝑙
[𝑃𝑙 (𝜎𝑏 𝑓𝜎𝑎 𝑓 )] ⇒ 𝑇 𝑓 ∈ 𝜎.

A corollary problem arises in the case when 𝐾-diagnosability
is confirmed. Namely, it consists to determine a minimum
value 𝐾𝑚𝑖𝑛 ⩽ 𝐾 that ensures (𝐾𝑚𝑖𝑛-)diagnosability.

2.4 Algebraic approach for 𝐾/𝐾𝑚𝑖𝑛-diagnosability analysis
in Chouchane et al. (2023)

In the present paper, we build upon our work discussed
in Chouchane et al. (2023), which addresses 𝐾 and 𝐾𝑚𝑖𝑛-
diagnosability in LPNs.

A. Principle.
The principle of the approach is as follows: Given an LPN
and a fault class 𝑇 𝑓 , the 𝐾/𝐾𝑚𝑖𝑛-diagnosability analysis
problem can be rephrased as follows: is there 𝐾𝑚𝑖𝑛 ⩽ 𝐾

such that 𝑇 𝑓 is 𝐾𝑚𝑖𝑛-diagnosable and 𝑇 𝑓 is not (𝐾𝑚𝑖𝑛 − 1)-
diagnosable? If so, 𝑇 𝑓 is 𝐾𝑚𝑖𝑛-diagnosable and therefore
𝐾-diagnosable.

To determine 𝐾𝑚𝑖𝑛, we proceed as follows: we assume that
there exists some value 𝜅, 1 ⩽ 𝜅 ⩽ 𝐾, such that 𝑇 𝑓 is not
𝜅-diagnosable. Hence, we determine the maximum value
of 𝜅, denoted as 𝜅𝑚𝑎𝑥 (if it does exist) such that there
exit two feasible firing sequences 𝜎, 𝜎′ ∈ 𝑇∗ fulfilling the
following condition denoted as 𝐶𝜎−𝜎′ (𝜅):

𝐶𝜎−𝜎′ (𝜅) :


𝜎 = 𝜎𝑏 𝑓 𝜀 𝑓𝜎𝑎 𝑓 , 𝜎𝑏 𝑓 ∈ 𝜓(𝑇 𝑓 ), 𝜀 𝑓 ∈ 𝑇 𝑓 ,
|𝜎𝑎 𝑓 | = 𝜅;
𝑇 𝑓 ∉ 𝜎

′;
𝑃𝑙 (𝜎) = 𝑃𝑙 (𝜎′).

Therefore, the following verdict can be inferred:

• If �𝜅 verifying 𝐶𝜎−𝜎′ (𝜅), then 𝐾𝑚𝑖𝑛 = 1.
• If 1 ⩽ 𝜅𝑚𝑎𝑥 < 𝐾 then 𝐾𝑚𝑖𝑛 = 𝜅𝑚𝑎𝑥 + 1.
• If 𝜅𝑚𝑎𝑥 = 𝐾 then 𝑇 𝑓 is not 𝐾-diagnosable.

B. Algebraic model.
In Chouchane et al. (2023), in order to establish a nec-
essary and sufficient condition for 𝐾-diagnosability, an
algebraic model is developed for formulating sequences 𝜎
and 𝜎′ that satisfy condition 𝐶𝜎−𝜎′ (𝜅) for some value
𝜅, 1 ⩽ 𝜅 ⩽ 𝐾. To achieve this goal, it is essential to
characterize the length of the sequences within 𝜓(𝑇 𝑓 ), i.e.,
which enable fault class 𝑇 𝑓 for the first time, without the
need to explicitly determine the entire set. In Chouchane
et al. (2023), a necessary and sufficient condition for



𝐾−diagnosability was established for bounded and un-
bounded LPNs using ILP techniques. The main idea of
the technique developed in Chouchane et al. (2023) will
be summarized in what follows, so that the contribution
developed in the present paper be self-contained. Note
that, similarly to the work in Basile et al. (2012) and
the recent approach in Basile et al. (2023) discussing
initial state opacity analysis, in Chouchane et al. (2023)
we considered the following assumption:

H2) A sufficient maximal length 𝐽 of the prefixes that
activate fault class 𝑇 𝑓 , for the first time, is known.

Modeling the faulty sequence:
Let us assume that fault class 𝑇 𝑓 is 𝐾𝑚𝑖𝑛-diagnosable with
𝐾𝑚𝑖𝑛 > 1, then there exists at least one firable sequence
𝜎 = 𝜎𝑏 𝑓 𝜀 𝑓𝜎𝑎 𝑓 from 𝑀0 such that:

• 𝜎𝑏 𝑓 = 𝑡
<1>𝑡<2> . . . 𝑡<𝐽> with 𝑡<𝑖> ∈ (𝑇 \ 𝑇 𝑓 ) ∪ {𝜁 } for

all 𝑖 ∈ ⟦1, 𝐽⟧ , where 𝜁 stands for the empty step
sequence;

• 𝜀 𝑓 = 𝑡
<𝐽+1> ∈ 𝑇 𝑓 ;

• 𝜎𝑎 𝑓 = 𝑡<𝐽+2>, . . . , 𝑡<𝐽+𝐾𝑚𝑖𝑛> with 𝑡<𝑖> ∈ 𝑇 for all
𝑖 ∈ ⟦𝐽 + 2, 𝐽 + 𝐾𝑚𝑖𝑛⟧; and

• there exists at least one fault-free sequence 𝜎′ ∈
(𝑇\𝑇 𝑓 )∗ enabled from 𝑀0, such that 𝑃𝑙 (𝜎) = 𝑃𝑙 (𝜎′).

In fact, since 𝐾𝑚𝑖𝑛 ⩽ 𝐾 is not known a priori, we ex-
pand the firing sequence 𝜎𝑎 𝑓 over horizon 𝐽 + 𝐾 + 1
by taking 𝑡<𝐽+𝐾𝑚𝑖𝑛+1>, · · · , 𝑡<𝐽+𝐾+1> as empty step se-
quences in case 𝐾𝑚𝑖𝑛 < 𝐾. Therefore, we can write 𝜎 =

𝑡<1>𝑡<2> · · · 𝑡<𝐽+𝐾+1>, where for 𝑖 ∈ ⟦1, 𝐽 + 𝐾 + 1⟧ 𝑡<𝑖> may
correspond to an observable transition, an unobservable
transition or even the empty step sequence 𝜁 .

We denote by 𝑥<𝑖>𝑜 = 𝜋𝑇𝑜 (𝑡<𝑖>) and 𝑥<𝑖>𝑢 = 𝜋𝑇𝑢 (𝑡<𝑖>),
yielding 𝑥<𝑖> = [(𝑥<𝑖>𝑜 )⊤ (𝑥<𝑖>𝑢 )⊤]⊤. Consequently, we get
the following set of constraints:

𝑊− · 𝑥<1> ⩽ 𝑀0

−𝑊.
𝑗−1∑︁
𝑖=1

𝑥<𝑖> +𝑊− · 𝑥< 𝑗> ⩽ 𝑀0 ;∀ 𝑗 ∈ ⟦2, 𝐽 + 𝐾 + 1⟧
(𝑎)

0 ⩽ 𝑐.𝑥< 𝑗> ⩽ 1,∀ 𝑗 ∈ ⟦1, 𝐽 + 𝐾 + 1⟧ (𝑏)
𝐽∑
𝑖=1

𝑐 𝑓 .𝑥
<𝑖> = 0 (𝑐)

𝑐 𝑓 .𝑥
<𝐽+1> = 1 (𝑑)

𝑐.𝑥< 𝑗> − 𝑐.𝑥< 𝑗+1>,∀ 𝑗 ∈ ⟦𝐽 + 2, 𝐽 + 𝐾⟧ (𝑒)

1 ⩽
𝐽+𝐾+1∑
𝑖=𝐽+2

𝑐.𝑥<𝑖> ⩽ 𝐾 ( 𝑓 )

(1)

where 𝑐 is a row vector of 1′s of dimension |𝑇 | and 𝑐 𝑓
is a row vector of dimension |𝑇 |, of which all the elements
are null, except the elements that are associated with fault
transitions in 𝑇 𝑓 , which are equal to 1.

Constraints (a) arise from the firing conditions of transi-
tions 𝑡<1>, . . . , 𝑡<𝐽+𝐾+1> respectively. Constraints (b) stip-
ulate that, during each iteration < 𝑗 > from < 1 > to
< 𝐽 + 𝐾 + 1 >, no more than one transition can be fired.
Constraint (c) ensures that no fault transition of fault
class 𝑇 𝑓 occurs from iteration < 1 > to iteration < 𝐽 >.
Constraint (d) specifies that the initial appearance of a
fault transition in 𝑇 𝑓 takes place at the (𝐽 + 1)𝑡ℎ iteration.
Constraints (e) dictate that, within iterations < 𝐽 + 2 >

to < 𝐽 + 𝐾 + 1 >, the count vector remains at 1 until the
< 𝐽 + 𝐾𝑚𝑖𝑛 + 1 >𝑡ℎ iteration, where it irrevocably switches
to 0 and stays at 0 until the final iteration < 𝐽 + 𝐾 +
1 >. Constraint (f) stipulates that the faulty sequence 𝜎
includes a minimum of one transition and a maximum of
𝐾 transitions after the first occurrence of the fault class.

Remark 1. Under H0, system (1) is satisfied iff there
exists a feasible faulty sequence 𝜎 with a maximum of 𝐾
transition firings upon the first occurrence of fault class 𝑇 𝑓 .
In fact, (1) corresponds to the state equation that describes
a faulty sequence 𝜎 (with |𝜎 | ⩽ 𝐽 +𝐾 + 1)), accounting for
at most one transition firing per iteration (Theorem 3 in
Chouchane et al. (2023)).

Modeling the fault-free sequence
Now that faulty sequence 𝜎 has been formally defined, let
us assume the existence of a corresponding non-faulty in-
distinguishable sequence (w.r.t. 𝑇 𝑓 ) 𝜎′, such that 𝑃𝑙 (𝜎) =
𝑃𝑙 (𝜎′) = 𝑤. Given that 𝜎 comprises at most 𝐽 +𝐾 +1 tran-
sitions, we can deduce that |𝑤 | ⩽ 𝐽 + 𝐾 + 1. Hence, we can
represent 𝑤 as 𝑤 = 𝑙<1>𝑙<2> ...𝑙<𝐽+𝐾+1>, where 𝑙<𝑖> denotes
the label produced at iteration < 𝑖 >, which may be either
a label in 𝐸 or the empty step label. Let 𝜎′

𝑜 = 𝑃𝑜 (𝜎′),
and let 𝜎′

𝑜 as 𝜎′
𝑜 = 𝑡

′<1>
𝑜 𝑡

′<2>
𝑜 ...𝑡

′<𝐽+𝐾+1>
𝑜 where 𝑡

′<𝑖>
𝑜 ∈

L−1 (𝑙<𝑖>) if 𝑙<𝑖> ∈ 𝐸 , and the empty sequence other-
wise. Consider the unobservable sequences (explanations)
𝜎

′<1>
𝑢 , 𝜎

′<2>
𝑢 , ...., 𝜎

′<𝐽+𝐾+1>
𝑢 that are coherent with tran-

sitions 𝑡
′<1>
𝑜 , 𝑡

′<2>
𝑜 , ...., 𝑡

′<𝐽+𝐾+1>
𝑜 , respectively. The firing

count vector of the fault-free sequence 𝜎′ can then be writ-
ten as 𝜎′

= 𝜎
′<1>
𝑢 𝑡

′<1>
𝑜 𝜎

′<2>
𝑢 𝑡

′<2>
𝑜 ...𝜎

′<𝐽+𝐾+1>
𝑢 𝑡

′<𝐽+𝐾+1>
𝑜 .

Let 𝑥
′<𝑖> = ((𝑥′<𝑖>𝑜 )⊤ (𝑥′<𝑖>𝑢 )⊤)⊤ be the firing count

vector of 𝜎′<𝑖>
𝑢 𝑡

′<𝑖>
𝑜 where 𝑥′<𝑖>𝑜 = 𝜋𝑇𝑜 (𝑡

′<𝑖>
𝑜 ) and 𝑥

′<𝑖>
𝑢 =

𝜋𝑇𝑢 (𝜎
′<𝑖>
𝑢 ). The following set of constraints can therefore

be derived:

−𝑊𝑢.𝑥
′<1>
𝑢 +𝑊−

𝑜 .𝑥
′<1>
𝑜 ⩽ 𝑀0

−𝑊𝑢
𝑗

.
∑︁
𝑖=1

𝑥
′<𝑖>
𝑢 −𝑊𝑜 .

𝑗−1∑︁
𝑖=1

𝑥
′<𝑖>
𝑜 +𝑊−

𝑜 .𝑥
′< 𝑗>
𝑜

⩽ 𝑀0;∀ 𝑗 ∈ ⟦2, 𝐽 + 𝐾 + 1⟧

( 𝑓 )

𝐽+𝐾+1∑
𝑖=1

𝑐 𝑓 .𝑥
′<𝑖> = 0 (𝑔)

(2)

Constraints (f) stem from the firing conditions, while
constraint (g) dictates that sequence 𝜃 must be devoid of
any fault transitions.

Remark 2. Under hypotheses H0 and H1, equation (2)
is satisfied if and only if there exists some feasible fault-free
sequence 𝜎′. In fact, in a PN with an acyclic unobservable
subnet, every positive solution of state equation 𝑀 = 𝑀0 +
𝑊.𝑥 corresponds to a count vector of an actual feasible
firing sequence (Theorem 1 in Chouchane et al. (2023)).

Let us now establish the relationship between 𝑥𝑜
<𝑖> and

𝑦<𝑖>, 𝑖 ∈ ⟦1, 𝐽⟧ where 𝑦<𝑖> represents the count vector
of the observed label associated with the 𝑖𝑡ℎ iteration.
To achieve this, let us consider the arrangement of 𝑇𝑜
and 𝐸 as {𝑡1, · · · , 𝑡 |𝑇𝑜 | } and {ℓ1, · · · , ℓ|𝐸 | }, respectively.
Let ℘ ∈ {0, 1} |𝐸 |× |𝑇𝑜 | be the labeling matrix, where the
general term ℘𝑞𝑟 is defined as follows for 𝑞 ∈ ⟦1, |𝑇𝑜 |⟧ and
𝑟 ∈ ⟦1, |𝐸 |⟧:



{
℘𝑞𝑟 = 1 if L(𝑡𝑟 ) = ℓ𝑞
℘𝑞𝑟 = 0 otherwise (3)

Hence, 𝑦<𝑖> = ℘ · 𝑥𝑜<𝑖> for all 𝑖 ∈ ⟦1, 𝐽 + 𝐾 + 1⟧. The two
sequences 𝜎 and 𝜎′ have the same observable projection,
hence the following relationship can be stated:

℘ · 𝑥𝑜<𝑖> = ℘ · 𝑥𝑜
′<𝑖> ; ∀𝑖 ∈ ⟦1, 𝐽 + 𝐾 + 1⟧ (4)

Final model
Let us define 𝑋, 𝑋 ′ ∈ N(𝐽+𝐾+1) . |𝑇 | , count vectors of se-
quences 𝜎 and 𝜎′, respectively, as follows:

𝑋 =
(
(𝑥<1>)⊤ (𝑥<2>)⊤ . . . (𝑥<𝐽+𝐾+1>)⊤

)⊤
𝑋 ′ =

(
(𝑥′<1>)⊤ (𝑥′<2>)⊤ . . . (𝑥′<𝐽+𝐾+1>)⊤

)⊤ (5)

Based on Remarks 1 and 2, the existence of a pair
(𝜎, 𝜎′) ∈ 𝐶 (𝜅) under assumptions H0 and H1 is equiv-
alent to the existence of a pair of vectors (𝑋, 𝑋 ′) ∈
N(𝐽+𝐾+1) . |𝑇 | ×N(𝐽+𝐾+1) . |𝑇 | satisfying the following relation:

𝐴.

(
𝑋

𝑋 ′

)
⩽ 𝑏 (6)

where 𝐴 and 𝑏 are easily inferred from (1), (2) and (4).

C. Necessary and sufficient condition for
𝐾−diagnosability.

Let us denote by 𝜅𝑚𝑎𝑥 the cost function of the following
optimization problem when system (6) is feasible:{

max
N

(𝜆⊤.𝑋) such that (6)
𝑋, 𝑋 ′ ∈ N(𝐽+𝐾+1) . |𝑇 | (7)

with 𝜆 =
(
01×|𝑇 |.(𝐽+1) 𝑐 𝑐 · · · 𝑐 )⊤.

A necessary and sufficient condition for 𝐾-diagnosability,
based on (7), can be succinctly expressed as follows:

Theorem 1. (Chouchane et al. (2023)). Consider an LPN
under hypotheses H0 and H1, and fault class 𝑇 𝑓 . 𝑇 𝑓 is
𝐾-diagnosable, 𝐾 ∈ N∗, iff either of the two following
conditions holds:
-i- (7) has no solution, or
-ii- (7) admits a solution and max(𝜆⊤.𝑋) < 𝐾
Corollary 1. (Chouchane et al. (2023)). Consider an
LPN under hypotheses H0 and H1. If fault class 𝑇 𝑓 is
𝐾-diagnosable, then 𝑇 𝑓 is 𝐾𝑚𝑖𝑛-diagnosable where 𝐾𝑚𝑖𝑛 is
defined as follows:
– 𝐾𝑚𝑖𝑛 = 1 if (7) has no solution,
– 𝐾𝑚𝑖𝑛 = max(𝜆⊤.𝑋) + 1, otherwise.

3. 𝐾-DIAGNOSABILITY ANALYSIS BASED ON THE
RELAXATION OF ILP PROBLEM IN R

Solving ILP problems is computationally expensive, known
to be NP-hard with exponential complexity in the number
of variables (Garey and Johnson (1982); Von zur Gathen
and Sieveking (1978)). To enhance the resolution efficiency,
we adopt ILP problem relaxation in this paper, allowing
solutions to take real values in R. Moreover, as stated
earlier, implementing the technique discussed in Section 2
requires determining a value for parameter 𝐽, which could
be high depending on the net structure, hence directly
impacting the ILP problems to be solved. The technique
discussed in the sequel does not involve parameter 𝐽.

3.1 Algebraic model on a compact horizon

To establish the ILP formulation for 𝐾-diagnosability anal-
ysis as in Chouchane et al. (2023), it is necessary to
determine an optimal value for 𝐽, which poses challenges
and may be computationally demanding. In this paper, we
propose an algebraic formulation of the 𝐾-diagnosability
feature that eliminates the need for 𝐽, significantly reduc-
ing the problem size. Indeed, the vectors from iteration
< 1 > to < 𝐽 > are compressed into one single iteration
< 1 → 𝐽 >. A sufficient condition for 𝐾-diagnosability
can then be derived while relaxing the resolution of the
formulated optimization problem in R.

A. Modeling the faulty sequence.
The compression of the count vector 𝑋 corresponding to
the faulty sequence 𝜎 (defined as in Section (2.4.B)) on
the interval [1...𝐽] gives the following new vector 𝑋𝑐 ∈
N(𝐾+2) . |𝑇 | :

𝑋𝑐 =
(
(𝑥<1→𝐽>)⊤ (𝑥<𝐽+1>)⊤ . . . (𝑥<𝐽+𝐾+1>)⊤

)⊤
where the compressed part 𝑥<1→𝐽> is defined as follows:

𝑥<1→𝐽> =

𝐽∑︁
𝑖=1

𝑥<𝑖> =

(
𝑥<1→𝐽>
𝑜

𝑥<1→𝐽>
𝑢

)
=

©­­­«
𝐽∑
𝑖=1

𝑥<𝑖>𝑜

𝐽∑
𝑖=1

𝑥<𝑖>𝑢

ª®®®¬
while 𝑥<𝐽+1>, . . . , 𝑥<𝐽+𝐾+1> remain unchanged compared to
𝑋. It should be recalled that 𝐽 does not intervene in the
developed formulation under relaxation, but is kept in the
notation just for the sake of clarity, to be aligned with the
notations employed in Section 2.3. In fact, here indexes
< 1 → 𝐽 >, < 𝐽 +1 > ... < 𝐽 +𝐾 +1 > correspond to the 1st,
2nd ...(2+K)th components of 𝑋𝑐, respectively. The same
remark applies in the subsequent formulae.
Based on system (1), the established model of the faulty
sequence 𝜎 under horizon compression while replacing
𝐽∑
𝑖=1

𝑥<𝑖> by 𝑥<1→𝐽>, is defined as follows:



−𝑊.𝑥<1→𝐽> +𝑊− · 𝑥<𝐽+1> ⩽ 𝑀0

−𝑊.𝑥<1→𝐽> −𝑊.
𝑗−1∑
𝑖=𝐽+1

𝑥<𝑖> +𝑊− · 𝑥< 𝑗> ⩽ 𝑀0;

∀ 𝑗 ∈ ⟦𝐽 + 2, 𝐽 + 𝐾 + 1⟧
0 ⩽ 𝑐.𝑥< 𝑗> ⩽ 1 ; ∀ 𝑗 ∈ ⟦𝐽 + 1, 𝐽 + 𝐾 + 1⟧

𝑐 𝑓 .𝑥
<1→𝐽> = 0

𝑐 𝑓 .𝑥
<𝐽+1> = 1

𝑐.𝑥< 𝑗> − 𝑐.𝑥< 𝑗+1> ⩾ 0 ;∀ 𝑗 ∈ ⟦𝐽 + 2; 𝐽 + 𝐾⟧

1 ⩽
𝐽+𝐾+1∑
𝑖=𝐽+2

𝑐.𝑥<𝑖> ⩽ 𝐾

(8)

B. Modeling the fault-free sequence.
The compression of the count vector 𝑋 ′ of the fault-free
sequence 𝜎′ (defined as in Section (2.4.B)) on the interval
[1...𝐽] gives the following new vector 𝑋 ′

𝑐 ∈ N(𝐾+2) . |𝑇 | :

𝑋 ′
𝑐 =

(
(𝑥′<1→𝐽>)⊤ (𝑥′<𝐽+1>)⊤ . . . (𝑥′<𝐽+𝐾+1>)⊤

)⊤
where the compressed vector 𝑥′<1→𝐽> is defined as:

𝑥′<1→𝐽>
=

𝐽∑︁
𝑖=1

𝑥′<𝑖> =

(
𝑥
′<1→𝐽>
𝑜

𝑥
′<1→𝐽>
𝑢

)
=

©­­­«
𝐽∑
𝑖=1

𝑥
′<𝑖>
𝑜

𝐽∑
𝑖=1

𝑥
′<𝑖>
𝑢

ª®®®¬ (9)



while 𝑥′<𝐽+1>, . . . , 𝑥′<𝐽+𝐾+1> remain unchanged. The model
of fault-free sequence 𝜎′ under horizon compression satis-
fies the following constraints:

−𝑊𝑢.𝑥
′<1→𝐽>
𝑢 +𝑊−

𝑜 .𝑥
′<1→𝐽>
𝑜 −𝑊𝑢.𝑥

′<𝐽+1>
𝑢 +

𝑊−
𝑜 .𝑥

′<𝐽+1>
𝑜 ⩽ 𝑀0

−𝑊𝑢.𝑥
′<1→𝐽>
𝑢 +𝑊−

𝑜 .𝑥
′<1→𝐽>
𝑜 −𝑊𝑢

𝑗

.
∑︁

𝑖=𝐽+1
𝑥
′<𝑖>
𝑢 −𝑊𝑜 .

𝑗−1∑︁
𝑖=𝐽+1

𝑥
′<𝑖>
𝑜 +𝑊−

𝑜 .𝑥
′< 𝑗>
𝑜 ⩽ 𝑀0;∀ 𝑗 ∈ ⟦𝐽 + 2, 𝐽 + 𝐾 + 1⟧

𝑐 𝑓 .𝑥
′<1→𝐽>+

𝐽+𝐾+1∑
𝑖=𝐽+1

𝑐 𝑓 .𝑥
′<𝑖> = 0

℘ · 𝑥𝑜<1→𝐽> = ℘ · 𝑥𝑜
′<1→𝐽>

℘ · 𝑥𝑜<𝑖> = ℘ · 𝑥𝑜
′<𝑖> ; ∀𝑖 ∈ ⟦𝐽 + 1, 𝐽 + 𝐾 + 1⟧

(10)

C. Final model.
According to (8) and (10), if there exists a couple of se-
quences (𝜎, 𝜎′) ∈ 𝐶 (𝜅) where 1 ⩽ 𝜅 ⩽ 𝐾 under hypothesis
H0 and H1, then there exists a couple of corresponding
count vectors (𝑋, 𝑋 ′) ∈ N(2+𝐾 ) . |𝑇 | × N(2+𝐾 ) . |𝑇 | that fulfills
the following relation:

𝐴𝑐 .

(
𝑋𝑐
𝑋 ′
𝑐

)
⩽ 𝑏𝑐 (11)

where 𝐴𝑐 and 𝑏𝑐 can be easily deduced.

3.2 Main results

Let us consider the following optimization problem:
max
N

(𝜆⊤𝑐 .𝑋𝑐)

𝐴𝑐 .

(
𝑋𝑐
𝑋 ′
𝑐

)
⩽ 𝑏𝑐; 𝑋𝑐, 𝑋

′
𝑐 ∈ N(2+𝐾 ) . |𝑇 | (12)

with 𝜆 =
(
01×2. |𝑇 | 𝑐 𝑐 · · · 𝑐 )⊤ ∈ N(2+𝐾 ) . |𝑇 | and 𝑐 is as

defined in (1). The relaxation of ILP problem (12) can be
defined as follows:

max
R
𝜆⊤𝑐 .𝑋𝑐

𝐴𝑐 .

(
𝑋𝑐
𝑋 ′
𝑐

)
⩽ 𝑏𝑐; 𝑋𝑐, 𝑋

′
𝑐 ⩾ 0; 𝑋𝑐, 𝑋 ′

𝑐 ∈ R(𝐾+2) . |𝑇 | (13)

The relaxed model (13) neglects the integer nature of
the count vectors. At this stage, the objective is to es-
tablish a sufficient condition for 𝐾-diagnosability based
on system (13), and determine a value 𝐾𝑟𝑒𝑙𝑎𝑥 ⩽ 𝐾 that
ensures 𝐾𝑟𝑒𝑙𝑎𝑥-diagnosability. First, let us recall the fol-
lowing lemma that establishes the relation between the
cost functions respectively of an ILP problem and its
corresponding relaxed problem. It should be noted that
for 𝑥 ∈ R, ⌊𝑥⌋ denotes the integer part of 𝑥.

Lemma 2. (Liao and Devadas (1997)).
Let {max

Z
(𝑐⊤.𝑥) |𝐴.𝑥 ⩽ 𝑏} and {max

R
(𝑐⊤.𝑥) |𝐴.𝑥 ⩽ 𝑏} be

respectively the cost functions of an ILP problem and its
relaxation in R. Therefore, max

R
(𝑐⊤.𝑥) ⩾ ⌊max

R
(𝑐⊤.𝑥)⌋ ⩾

max
Z

(𝑐⊤.𝑥).

From Lemma 2 and considering both optimization prob-
lems (12) and (13), we can state that:

max
R

(𝜆⊤𝑐 .𝑋𝑐) ⩾ ⌊max
R

(𝜆⊤𝑐 .𝑋𝑐)⌋ ⩾ max
N

(𝜆⊤𝑐 .𝑋𝑐) (14)

Using relation (14), the following sufficient condition for
𝐾-diagnosability can be established based on (13).

Theorem 3. Consider an LPN that fulfills assumptions
H0 and H1 and consider some fault class 𝑇 𝑓 . For a fixed
𝐾 ∈ N∗, 𝑇 𝑓 is 𝐾-diagnosable if either of the following two
conditions is fulfilled:
-i- (13) has no solution, or
-ii- (13) admits a solution in R and max

R
(𝜆⊤𝑐 .𝑋𝑐) < 𝐾

Proof. i- (13) has no solution in R implies that (12) has
no solution in N. Therefore, (7) has no solution either.
Thus, according to Theorem 1 and Corollary 1, 𝑇 𝑓 is 𝐾-
diagnosable and in particular 1-diagnosable.
ii- If (13) admits a solution and max(𝜆⊤𝑐 .𝑋𝑐) < 𝐾, then
according to (14), for 𝜅 = ⌊max

R
(𝜆⊤𝑐 .𝑋𝑐)⌋ + 1 ⩽ 𝐾, there

does not exist any pair of vectors (𝑋𝑐, 𝑋 ′
𝑐) satisfying (11).

In other terms, for 𝜅 = ⌊max
R

(𝜆⊤𝑐 .𝑋𝑐)⌋ + 1 ⩽ 𝐾, there
does not exist any pair (𝜎, 𝜎′) ∈ 𝐶 (𝜅) and hence 𝑇 𝑓 is
𝐾𝑟𝑒𝑙𝑎𝑥-diagnosable with 𝐾𝑟𝑒𝑙𝑎𝑥 = ⌊max

R
(𝜆⊤𝑐 .𝑋𝑐)⌋ + 1 ⩽ 𝐾.

Obviously, 𝑇 𝑓 is 𝐾-diagnosable.

Corollary 2. If the sufficient condition stated in propo-
sition 3 holds, then we can conclude not only that 𝑇 𝑓 is
𝐾-diagnosable but also that it is 𝐾𝑟𝑒𝑙𝑎𝑥-diagnosable with:
– 𝐾𝑟𝑒𝑙𝑎𝑥 = 1 if (13) has no solution,
– 𝐾𝑟𝑒𝑙𝑎𝑥 = ⌊max

R
(𝜆⊤.𝑋)⌋ + 1 if max

R
(𝜆⊤.𝑋𝑐) < 𝐾 in (13).

We can also state that:
𝐾𝑚𝑖𝑛 ⩽ 𝐾𝑟𝑒𝑙𝑎𝑥 ⩽ 𝐾 (15)

Remark 3. The 𝐾-diagnosability test, as well as the de-
termination of a potentially lower value 𝐾𝑟𝑒𝑙𝑎𝑥 ⩽ 𝐾 (in
case 𝐾-diagnosability is fulfilled), can be performed in a
polynomial time in 2|𝑇 | (𝐾 + 2) × (𝐾 + 2).(2|𝑃 | + 2|𝑇 | +
|𝐸 | +3) +5. Indeed, some linear programming algorithms of
polynomial complexity are available, such as, for instance,
the Karmarkar algorithm Karmarkar (1984).

4. EXPERIMENTAL RESULTS

In this section, we conduct experiments to assess theeffi-
ciency of the discussed technique. We employ the railway
benchmark proposed in Ghazel and Liu (2016), address-
ing a level crossing system that encompasses 𝑛 railway
tracks (where 𝑛 is a variable). To experimentally evaluate
the developed technique and compare it with the ILP-
based approaches for 𝐾-diagnosability analysis, defined
in Chouchane et al. (2023) and Basile et al. (2012), we
implemented a Matlab® code for the approach discussed
in the current paper, and used to Matlab code of the
techniques in Chouchane et al. (2023) and Basile et al.
(2012). The experiments were conducted on a dual-core
Intel(R) Xeon(R) CPU with a clock speed of 3.30 GHz
each and 32 GB of RAM. We set the value of 𝐾 to 125
and assessed the 𝐾-diagnosability of fault transition 𝑡6
while varying the number of tracks 𝑛 from 1 to 18, thereby
increasing the model size. It should be noted that only the
approaches in Chouchane et al. (2023) and Basile et al.
(2012) require parameter 𝐽. The results are showcased in



𝑛 𝐽 ILP-based approach in Basile et al. (2012) ILP-based approach in Chouchane et al. (2023) Relaxation based approach
𝐾-diag? 𝑇 (𝑠) 1 𝐾𝑚𝑖𝑛-diag 𝑇 (𝑠) 𝐾-diag?/𝐾𝑚𝑖𝑛 𝑇 (𝑠) 𝐾-diag?/𝐾𝑟𝑒𝑙𝑎𝑥 𝑇 (𝑠)

1 3 YES 62 7 3 YES / 7 4 YES / 7 4
2 6 YES 31 13 7 YES / 13 16 YES / 13 6
3 9 YES 59 19 16 YES / 19 105 YES / 19 8
4 12 YES 70 25 36 YES / 25 55 YES / 25 11
5 15 YES 100 31 36 YES / 31 57 YES / 31 16
6 18 YES 108 37 36 YES / 37 107 YES / 37 20
7 21 YES 145 43 320 YES / 43 1399 YES / 43 26
8 24 YES 211 49 559 YES / 49 145 YES / 49 34
9 27 YES 334 55 898 YES / 55 195 YES / 55 46
10 30 YES 224 61 1286 YES / 61 195 YES / 61 71
11 33 YES 325 67 3084 YES / 67 277 YES / 67 91
12 36 YES 352 73 4716 YES / 73 439 YES / 73 106
13 39 YES 109 79 7330

o.m

YES / 79 148
14 42 YES 157 85 10931 YES / 85 276
15 45 o.m o.t YES / 91 251
16 48 YES / 97 270
17 51 (out of memory) (> 2 hours) YES / 103 272

Table 1. Obtained results for the 3 approaches

Table 1. As it can be seen from the numerical results, the
advantages of the relaxation technique presented in the
present work are clear from the computed execution times
and required memory. Furthermore, it is worth noting
that the values obtained for 𝐾𝑟𝑒𝑙𝑎𝑥 are rigorously identical
to the corresponding values of 𝐾𝑚𝑖𝑛 across the various
analyzed models. It is, however, important to emphasize
that this alignment is not ensured in general, given the
relationship among 𝐾, 𝐾𝑚𝑖𝑛, and 𝐾𝑟𝑒𝑙𝑎𝑥 for 𝐾-diagnosable
models, where 𝐾𝑚𝑖𝑛 ⩽ 𝐾𝑟𝑒𝑙𝑎𝑥 ⩽ 𝐾.

5. CONCLUSION

In this paper, we establish a sufficient condition for 𝐾-
diagnosability in both bounded and unbounded LPNs.
The methodology relies on an algebraic formulation of the
problem in the form of a polyhedron constructed within a
compact horizon. We employ the technique of relaxation
(in R) of an ILP problem for conducting 𝐾-diagnosability
analysis. To evaluate the performance and efficiency of
the introduced methodology, some experiments have been
conducted on a railway benchmark, illustrating the advan-
tages of the proposed technique.

In future work, we will focus on the sensor placement
problem in connection with the 𝐾-diagnosability issue.
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