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Abstract

This paper introduces a methodology for updating the nonlinear stochastic dynamics of a nozzle with uncertain com-
putational model. The approach focuses on a high-dimensional nonlinear computational model constrained by a small
target dataset. Challenges include the large number of degrees-of-freedom, geometric nonlinearities, material uncer-
tainties, stochastic external loads, under-observability, and high computational costs. A detailed dynamic analysis
of the nozzle is presented. An updated statistical surrogate model relating the observations of interest to the control
parameters is constructed. Despite small training and target datasets, and partial observability, the study successfully
applies Probabilistic Learning on Manifolds (PLoM) to address these challenges. PLoM captures geometric nonlinear
effects and uncertainty propagation, improving conditional mean statistics compared to training data. The conditional
confidence region demonstrates the ability of the methodology to accurately represent both observed and unobserved
output variables, contributing to advancements in modeling complex systems.

Keywords: Probabilistic learning, uncertainty quantification, nonlinear stochastic dynamics, surrogate model, partial
information, statistical inverse problem, nozzle, machine learning for engineering applications

Nomenclature

R: set of real numbers.
Rn: Euclidean vector space on R of dimension n.
Mn,m: set of (n × m) real matrices.
Mn: set of (n × n) real matrices.
M+n : set of positive-definite (n × n) real matrices.
[In]: identity matrix in Mn.
⟨x, y⟩: inner product in Rn.
∥ x ∥: norm in Rn such that ∥ x ∥ = ⟨x, x⟩.
[x]T : transpose of matrix [x].
∥ [x] ∥: Frobenius norm of matrix [x].
δkk′ : Kronecker’s symbol.

D targ: target dataset.
Dtrain: training dataset.
Dlearn: learning dataset.
E: mathematical expectation operator.
nd: number of points in the training data set.

no: identification-observation vector dimension.
nw: dimension of the control parameter.
w: vector of control parameters.
Nr: target vector dimension.
No: observation vector dimension.
Nud: number of points in the learning dataset.
O: Random observation in RNo .
Oid: Random identification observation in Rno .
Oud: Updated random observation in RNo .
U: random vector of uncontrolled parameter.
Y(t,w): random displacement of observation.

ISDE: Itô Stochastic Differential Equation.
pdf: probability density function.
psd: power spectral density.
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1. Introduction

Numerous works have highlighted the significance of nozzles concerning the flow analyses (see for instance
[1, 2, 3]), the jet noise source and acoustics (see for instance [4, 5, 6, 7, 8]), the nozzle materials [9, 10, 11], the
nozzle vibrations [12], the fluid-structure interactions and vibroacoustics [13, 14, 15, 16], the nozzle optimization
[17, 18, 19, 20, 21, 22]. The effects of uncertainties in nozzle models have also been studied, see for instance [23, 24,
25, 26]. It should be noted that vibrations and structural dynamic analyses of nozzle structures are important aspects
of aerospace engineering. However, only few works have been published in this field, in particular for nonlinear
stochastic dynamics of nozzle structures. This paper has two main objectives. The first one is to present a detailed
analysis of a challenging problem consisting in updating the nonlinear stochastic dynamics of a nozzle with model
uncertainties, with partial observability, and with limited data. The second one is the methodology that is proposed
for analyzing this challenging problem.

More precisely, the paper proposes a methodology dedicated to the updating of control parameters within high-
dimensional computational models constrained by an incomplete target dataset due to limited data. Note that the
methodology proposed for solving such a problem holds significant interest across various industrial sectors, includ-
ing automotive, aeronautics, and aerospace engineering. In the present work, the difficulties associated with nozzles,
which are thin composite structures exposed to external time-dependent excitations, fall within this framework. Here,
the complexity of this computational problem arises (1) from the large number of degrees-of-freedom of the compu-
tational model, (2) from the geometric nonlinear effects in dynamics, induced by displacements comparable to the
nozzle thickness, (3) from the presence of model uncertainties in the representation of homogenized materials, (4)
from the stochastic external load due the nozzle excitation, (5) from the under-observability and the limited data for
solving the statistical inverse problem required for the updating, and (6) the high-computational cost for constructing
one realization of the responses of the nonlinear dynamical system. Such parameterized computational stochastic
model will be meticulously constructed, allowing for computing accurate statistics of output observations.

As explained above, the inherent complexity of this problem results in substantial computational costs yielding a
partial observability of the nonlinear dynamical behavior of the structure with respect to its control parameters. As
a consequence, we have to solve the problem for which only a small training dataset is available. The updating of
the nonlinear uncertain stochastic computational model is carried out with respect to a given target dataset that is
constituted of an incomplete data, for instance, for the case of a limited number of sensors. To address such issues, it
is then necessary to develop surrogate models for these parameterized high-dimensional computational models.

Note that the nozzle presents a structural complexity. Its small thickness requires a fine finite element mesh with
numerous degrees of freedom. Model uncertainties within the structural system arise from a uncontrolled parameter,
while the external load, represented by a stationary stochastic process depending on the control parameter, has a suffi-
ciently high intensity for triggering a nonlinear response. Since the external load is a stationary stochastic process, we
are interested in constructing the stationary random displacements responses by solving a set of nonlinear stochastic
coupled differential equations in the time domain, involving multiple time steps. In addition, the nonlinear nature of
the dynamical system requires to use iterative algorithms for each time step, which is particularly time consuming.
The observations of interest, expressed as displacement amplitudes in the frequency domain, are obtained at the nozzle
exit.

In the context of constructing an updated surrogate model, numerous possibilities and methodologies have been
proposed in the literature. For instance, there are efficient scientific machine learning techniques for sampling dis-
tributions on manifolds [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Considering the specificities of the problem at
hand – namely, the construction of a statistical surrogate model from a small training dataset for the updated nonlinear
stochastic dynamical system with under-observability and incomplete data – there are various tools available. Note
that the problem under consideration requires to solve a statistical inverse problem with constraints defined by the
target. In this paper, we propose the use of Probabilistic Learning on Manifolds (PLoM) [32, 38] under constraints
[39, 40]. The PLoM algorithm is particularly well-suited for scenarios involving small training datasets, and its effi-
ciency has been demonstrated across various domains. Examples include non-convex optimization under uncertainty
[41, 42, 43, 44], model-form uncertainties using random bases [45], and the updating, design, and control of dynam-
ical systems [46, 47, 48]. The statistical surrogate model will be based on conditional statistics for given control
parameter, using the learned realizations obtained from PLoM under the constraints defined by the target. This sta-
tistical surrogate model reduces the distance between the updated observations and the available target data, for each
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given value of the control parameter.
The manuscript is organized as follows. Section 2 is devoted to the nozzle dynamics and introduces the pa-

rameterized uncertain stochastic computational model of the nonlinear dynamical system. Following this, Section 3
meticulously constructs the prior probability models. This encompasses the stationary stochastic process that defines
the external load, the control parameter employed in the probabilistic learning updating process, and the uncontrolled
parameter that capture all sources of model uncertainties. Sections 4 and 5 are devoted to the definition of the training
and target datasets. Section 6 deals with the construction of the learned dataset under constraints. Section 7 addresses
the computational challenges that are essential for a better understanding of related physics and for obtaining a pre-
dictive computational model through algorithm optimization. The considered numerical finite element model of the
nozzle and its related modal properties are presented in Sections 8 and 9. The numerical construction of the stochastic
external load is detailed in Section 10 and the numerical values allowing for a complete description of the training
and target datasets are given in Section 11. Section 12 conducts a convergence analysis of the PLoM algorithm used
for the updated statistical surrogate model. Finally, Section 13 presents and discusses the learning results that validate
the updating process. The PLoM algorithm is briefly summarized in Appendix A.

To aid in the comprehension of this paper, Figure 1 presents a simplified flowchart of the main steps of the
methodology used, referencing the relevant sections and equations.

Figure 1: Flowchart summarizing the main steps of the methodology.

2. Parameterized nonlinear uncertain stochastic dynamical computational model for the nozzle

The present paper is devoted to the nonlinear stochastic dynamics of a three-dimensional nozzle for which geo-
metric nonlinearities are taken into account with an elastic material and for which the external load is a stochastic
process.

The nozzle is designed so as to get a subsonic acceleration of the gas from the combustion chamber until the
throat, where the gas velocity presents a Mach number of one. The flow is then accelerated supersonically by provid-
ing a path of increasing flow area. The external load is intrinsically linked to the noise emanating from the turbulent,
high-velocity gas jet. Consequently, an appropriate approach involves modeling the external loading via a stochastic
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process. Considering the intensity of such a nozzle jet in conjunction with the slender nozzle thickness, it is con-
ceivable that the vibrational behavior at the nozzle exit may manifest as vibrational amplitudes operating within the
domain of geometric nonlinearities. Figure 2 shows the finite element mesh of the nozzle structure that is considered.

Figure 2: Finite element mesh of the nozzle. The red arrow indicates the inlet section and the flow direction.

The nozzle structure under consideration is made up of a linear elastic material and is assumed to undergo large
displacements yielding geometrically nonlinear effects. The nozzle structure is fixed at the beginning of the combus-
tion chamber and is subjected to a parameterized stochastic pressure field representing the turbulent gas jet at the inner
wall of the nozzle. There is also uncertainty in the constitutive equation. A total Lagrangian formulation is chosen,
allowing the dynamical equations to be expressed around a reference configuration taken as an equilibrium state.

The finite element discretization yields a high-dimensional nonlinear uncertain stochastic computational model
with ny degrees of freedom that is formulated in the time domain. The stochastic excitation is parameterized as a
function of a control parameter denoted by the Rnw -vector w defined in Cw ⊂ Rnw . As a consequence, the finite
element force vector, for a given value of the control parameter w ∈ Cw, is represented by the Rny -valued stochastic
process {F(t; w), t ∈ T }, in which T =]t0, t f ] ⊂ R. It is assumed to be modeled as a stationary stochastic process.
The uncertainties in the constitutive equation are represented by an uncontrolled random parameter represented by
the Rnu -valued random vector U whose probability distribution support is Cu ⊂ Rnu . The stochastic response is thus
represented by the Rny -valued stochastic process Y(t; w) indexed by T ⊂ R and that depends on control parameter w.
Note that it also depends on stochastic excitation vector F(t; w) and of uncontrolled parameter U, but it is chosen to
omit it for clarity of notation. Stochastic process Y(t; w) indexed by T ⊂ R and that depends on control parameter w
is then the solution of the parameterized stochastic nonlinear dynamical initial-value problem that is written as

[M] Ÿ(t; w) + [D] Ẏ(t; w) + [K(U)] Y(t; w) + f NL(Y(t; w),U
)
= F(t; w) , ∀t ∈ T, (1)

Y(t0; w) = Y0(w,U) , (2)
Ẏ(t0; w) = Y1(w,U) . (3)

In Eq. (1), the mass matrix [M] is a (ny×ny) real symmetric positive-definite matrix and is deterministic. The damping
and linear elastic stiffness matrices [D] and [K(U)] are random matrices with values in the set of the (ny × ny) real
symmetric positive-definite matrices. Note that damping matrix [D] results from a Rayleigh model. The Rny -valued
random vector fNL(Y(t; w),U) corresponds to the nonlinear uncertain internal forces at a given time t and the Rny -
valued stochastic process {F(t; w), t ∈ T } is issued from the modeling of the turbulent gas jet that will be described
in Section 11. It should be noted that the Rny -valued random vectors Y0(w,U) and Y1(w,U) are obtained from a
previous nonlinear stochastic computation on T0 =]0, t0] for which the initial conditions defined by Eqs. (2), (3) are
replaced by null initial conditions. Namely, denoting by {Y0(t; w), t ∈ T0} the random response of such an initial-value
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problem, we have Y0(w,U) = Y0(t0; w) and Y1(w,U) = Ẏ0(t0; w). Indeed, note that two distinct stochastic nonlinear
dynamical initial-value problems have to be computationally solved in order to ensure the stationarity of the random
response.

The nonlinear stochastic uncertain computational model allows for obtaining the whole displacement response
Y(t; w) as a function of time. Nevertheless, in the present nozzle context, it is assumed that we deal with an under-
observed situation for which it is assumed that only the bending displacement response located at the outer radius of
the nozzle exit is available. The relevance for such a choice of location defining the under-observability is related to
the nozzle exit undergoing the largest displacements under bending motion reflecting nozzle swelling, due to its bell
geometry. Moreover, the thin thickness of the nozzle yields normal displacements with little variation in the nozzle
shell thickness. It should also be noted that although the presence of nonlinearities couples the axial and bending
motions of the nozzle, the bending response is of greater importance. Such an under-observed situation yields the
introduction of partial observation Y(t; w) that is represented by the Rny -valued random vector Y(t; w) = O(Y(t; w)) at
a given time t with ny ≪ ny and that corresponds to the normal bending displacements located at the outer radius of
the nozzle exit. We aim to predict observations in the frequency domain, using Nν sampling frequencies belonging to
a finite set denoted as F corresponding to a specified frequency band in Hz. This is represented by the random vector
O, which encompasses the random family {O(ν; w), ν ∈ F }. Here, O(ν; w) is an Rny -valued random variable defined
by

O(ν; w) = log
(
|Ŷ(2πν; w)|

)
, ν ∈ F , (4)

in which ν 7→ Ŷ(2πν; w) is the Fourier transform of partial observation t 7→ Y(t; w). The identification observation is
defined as the random vector Oid representing the random family {Oid(ν; w), ν ∈ F }, which corresponds to a subset
of observation vector O, and which is such that Oid(ν; w) = [B]O(ν; w), where [B] is a (nexp × ny) observation matrix.
Its entries are related to the indices corresponding to sensor location of available measurements. It then constitutes an
incomplete dataset for the target from which the updating (probabilistic learning under constraints) will be performed.

3. Prior probability model

There are uncertainties in the computational model, modeled by the random vector U, which is an uncontrolled
parameter. The computational model is stochastic, due to the stochastic load vector that depends on a stochastic
process G = {G(t; w), t ∈ R}. This stochastic uncertain computational model depends on a control parameter w. In
order to construct the statistical surrogate model of quantities of interest with respect to control parameter w, using
the probabilistic learning, vector w is modeled by a vector-valued random variable W. In this Section, we define the
prior probability models of stochastic process G, and of random vectors W and U. It is assumed that U is statistically
independent of G and W.

(i) Prior probability model of G. The stochastic load vector F(t; w) corresponds to the finite element discretization
of a positive pressure load representing the gas jet at the wall of the nozzle. The pressure flow is constituted of
an axisymmetric mean pressure flow that is overlaid with a positive statistical fluctuation that depends on control
parameter w. The random pressure P(z, θ, t; w) at the wall of the nozzle is modeled, using cylindrical coordinates, as,

P(z, θ, t; w) = pc f (z) Z(θ, t; w) . (5)

In this equation, pc is the pressure located at the combustion chamber input of the nozzle and f (z) defines the pressure
profile along the nozzle wall. The stochastic process Z(θ, t; w) is indexed by t in R and θ in [0, 2π[, and is parameterized
by w. Such a stochastic process is assumed to be almost-surely positive with property E

(
Z(θ, t; w)

)
= 1 and is defined

by

Z(θ, t; w) =
(1 +G(t; w)b(θ))2

E{(1 +G(t; w)b(θ))2}
, b(θ) =

1
n + 1

n∑
n=0

cos(nθ), (6)

in which {G(t; w), t ∈ R} is a Gaussian, second-order, centered, mean-square continuous, stationary stochastic process
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[49, 50, 51] whose psd function ν 7→ S G(2πν; w) is such that the autocorrelation function RG is written as:

RG(t − t′; w) = E{G(t; w)G(t′; w)} =
∫

R
eiω(t−t′)S G(ω; w)dω , (7)

with ω = 2πν. Such psd function depends on w and is defined as a concave function with a global maximum in
the frequency band. The control parameter w has two components, w1 and w2, such that w = (w1,w2) and they are
specified below.

(ii) Prior probability model of W. The R2-valued random control parameter W = (W1,W2) is defined as follows.
Control parameter w1 stands for the time-independent standard deviation σG of the random variable G(t; w) for fixed
t. Control parameter w1 is modeled by a random variable W1 whose mean value is w1 and its probability distribution
is uniform on the interval [(1 − α1)w1 , (1 + α1)w1] with α1 < 1. Let νpeak be the frequency for which the psd function
attains its global maximum. Control parameter w2 stands for νpeak and is modeled by a uniform random variable W2
on the interval [(1 − α2)w2 , (1 + α2)w2] with α2 < 1, independent from W1, with mean value w2.

(iii) Prior probability model of U. The mean (6x6) elasticity matrix, [c], corresponds to an isotropic elastic medium
with given Young modulus and Poisson coefficient. Uncontrolled random parameter U introduces uncertainty to the
Hooke elasticity matrix [c], which yields a random Hooke elasticity matrix, [C]. Uncontrolled random parameter U
corresponds to the 21 entries related to the Cholesky factorization of the random matrix [G(δ)] that is defined from
the random matrix theory [52, 53] and which yields [C] such that

[C] = [Lc]T [G(δ)] [Lc] with [c] = [Lc]T [Lc] , (8)

in which δ is a scalar parameter that controls the statistical fluctuations. Note that the probability model of [G(δ)] and
its random generator can be found in [52].

4. Definition of the training dataset

The parameterized nonlinear uncertain stochastic computational model is used for generating the training dataset.
Let us introduce a time sampling T = {t1, . . . , tNt } ⊂ T , in which tα = t0 + (α − 1) δt for α = {1, . . . ,Nt} with
δt = (tNt − t0)/(Nt − 1) the sampling time step. The corresponding frequency sampling, that defines set F is char-
acterized by Nν = Nt frequency points such that νβ = −0.5νe + (β − 1)δν, where νe is the sampling frequency and
δν = νe/Nν the sampling frequency step. The training dataset is constructed by using the prior probability model
introduced for random variables W, U and G. The nd realizations of W, U and G are denoted by (w j,u j, g j). The
corresponding realizations of the time sampled Y are y j = (Y(t1,w j), . . . ,Y(tNt ,w j)) ∈ RNo with No = ny × Nt (that
also depends on u j and g j). The corresponding realization o j in RNo of random observation vector O is such that
o j = (O(ν1,w j), . . . ,O(νNt ,w j))). The corresponding realization o j

id in Rno with no = nexp × Nν < No, of the random
identification observation Oid is deduced from o j. The training dataset,Dtrain(x), is then defined by

Dtrain(x) = { x j = (o j, o j
id,w

j) , j ∈ {1, . . . , nd} } , (9)

in which x j belongs to Rnx with nx = No + no + nw. Such training dataset Dtrain(x) is then represented by the
(nx × nd) real matrix [xd] whose columns are constituted of vectors x1, . . . , xnd . As explained in Section 2, we recall
that each realization j of Dtrain is obtained from two computational simulations of the corresponding deterministic
nonlinear computational model for which the input is constituted of (w j,u j, g j). The large nozzle computational
model combined with geometrical nonlinearities induces a high computational cost for each realization computation.
Consequently, the value of nd must be limited and remains relatively small.

5. Definition of the target dataset

The target dataset is constructed from Nr given values wr
targ ∈ Cw, r ∈ {1, . . . ,Nr} of control parameter w, that

correspond to an experimental configuration of the dynamical system. We denote byW targ = {w1
targ, . . . ,w

Nr
targ} the set
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of these control-parameter values. For a given control parameter wr
targ, the target observation vector or

targ ∈ Rno is de-
fined by the family {Oid(ν; wr

targ) , ν ∈ F }. It is generated from the nonlinear stochastic uncertain computational model
for which the uncontrolled parameter U has been fixed to U = u targ. We then denote by D targ(oid) = {o1

targ, . . . , o
Nr
targ}

the corresponding target dataset, that is related to an incomplete dataset that will be used in the updating process for
constructing a random surrogate predictive model of the uncertain dynamical behavior of the nozzle structure.

6. Updating formulation using probabilistic learning

The objective is to construct a predictive statistical surrogate model for the nozzle, defined by the RNo -valued
random variable Oud that represents the probabilistic updating of the RNo -valued random observation O defined by
Eq. (4). The difficulty of such a problem concerns the cost limitations induced by the high dimension of the pa-
rameterized nonlinear stochastic uncertain computational model. This yields a small training dataset which is also
characterized by the availability of a partial observation that is localized at the outer radius of the nozzle exit. This
also yield a small target dataset that is characterized by a lack of data for which the identification observation has
a limited dimension, which can be interpreted by a limited available number of measurement locations. The PLoM
under the constraints defined with the target dataset is used for generating independent realizations of the RNo -valued
updated random observation Oud, which define the learning dataset,Dlearn(xud), such that

Dlearn(xud) =
{

xℓud = (oℓud, o
ℓ
id,ud,w

ℓ), ℓ ∈ {1, . . . ,Nud}
}
, (10)

in which Nud is the number of learned realizations (that is a very large number) and where xℓud ∈ Rnx . From this
learned dataset, the conditional probability density function pOud |Wud (o|w) of random variable Oud given Wud = w
that characterizes the probabilistic surrogate model is computed. The calculation is carried out in two steps. First,
the learned dataset Dlearn(xud) allows for evaluating the joint pdf pOud,Wud (o; w) using the Gaussian Kernel Density
Estimation. Secondly, an explicit integration with respect to o is carried out from the estimated joint pdf in order to
evaluate pdf pWud (w). The conditional pdf pOud |Wud (o|w) is then deduced from the relation

pOud,Wud (o; w) = pOud |Wud (o|w) pWud (w) . (11)

The conditional statistics can be performed independently on each component k = (i, β) of Oud, that corresponds
to a given observation number i and to a given frequency νβ. Let Zi,β(w) be the conditional random variable given
Wud = w, defined by

Zi,β(w) =
(
Oud,obs(w)

)
k , (12)

We are interested in estimating pZi,β |Wud (z|w) in order to observe the corresponding conditional confidence region with
a given probability level. These conditional confidence regions can be compared to the conditional mean responses of
the training and of the target, for a given value of control parameter w.

7. Numerical methodology for constructing the training dataset from the parameterized nonlinear stochastic
uncertain computational model

7.1. Modal content analysis of the linear nozzle structure

It is essential to acquire a comprehensive understanding of the modal content exhibited by the nozzle structure.
For that, an in-depth analysis is performed in order to identify the optimal frequency domain for which the nonlinear
vibrational behavior is complex. In particular, such an analysis allows for choosing (1) the frequency content related
to the stochastic excitation and, (2) the frequency band of analysis (given that nonlinear geometric effects induce
frequency responses of the nozzle outside the excitation frequency band). For that, we solve the generalized eigenvalue
problem for a reference computational model, defined as the associated linear, conservative, homogeneous dynamical
system for which the uncontrolled parameter U is fixed to u, where u is the mean value of U, defined such that
[G(δ)] = [I6], and consequently [C] coincides with isotropic [c] (see Section 3). Section 3. Let [K(u)] and [M] be
the (ny × ny) symmetric positive-definite finite element mass and elastic stiffness matrices. The following generalized
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eigenvalue problem is solved in order to obtain the structural modes φα related to the nq ≪ ny smallest eigenvalues
λα such that

[K(u)]φα = λα[M]φα , α = {1, . . . , nq} . (13)

In Eq. (13), the elastic structural modes φα satisfy the orthogonality properties φT
α [M]φβ = δαβ and φT

α [K(u)]φβ =
λα δαβ, where δαβ denotes the Kronecker symbol that is equal to 1 if α = β and 0 otherwise. Since matrices [K(u)]
and [M] are those of an axisymmetric dynamical system, the elastic modes are interpreted in a cylindrical coordinate
system, for which the circumferential wave number is n ∈ N. For each n > 0, there is one symmetric and one
antisymmetric mode. Such an analysis allows for identifying radial modes (n = 0) for which the deformations are
purely radial, flexural modes (n = 1) corresponding to global bending displacements, and breathing modes (n ≥ 2)
exhibiting local bending deformations [54, 55]. The construction of psd function ν 7→ S G(2πν; w) of stationary
stochastic process {G(t; w), t ∈ R} is carefully designed to ensure exciting the breathing modes. The choice of (1) the
truncation order n in the series b(θ) defined by Eq. (6) and of (2) the sampling frequency νe are directly related to the
modal content of the nozzle structure.

7.2. Nonlinear computational solver
Each point of the training dataset is obtained by solving successively two initial value problems corresponding to

a given large-dimension deterministic nonlinear differential equation. An implicit unconditionally stable integration
scheme is chosen as the Newmark method with an averaging acceleration scheme [56]. With such an integration
scheme, for a given realization (u j,w j) of (U,W) and for a given sampling time tα, we then have to solve the following
set of nonlinear coupled equations such that, for α = 1, . . . ,Nt,

[Keff(u j)] Y(tα; w j) + FNL(Y(tα; w j),u j) = f eff(tα; w j,u j). (14)

In Eq. (14), the matrix [Keff(u j)] is the reduced effective stiffness matrix that is time independent. Note that [Keff(u j)]
is positive definite. The vector feff models the effective external load. The nonlinear algorithm can switch from
Newton-Raphson algorithm to an adapted [57] arc-length algorithm [58, 59, 60, 61, 62]. For each time step, the
tangent matrix is constructed and an iteration loop is introduced between two consecutive time steps for obtaining the
equilibrium.

8. Finite element computational model of the nozzle

Let (O, eX , eY , eZ) be a Cartesian reference coordinate system. The three-dimensional nozzle geometry is generated
through axisymmetry around the z-axis from a given generating line ℓ(z) that describes a bell-shape nozzle design [63]
and whose dimensionless representation is depicted in Figure 3. The height H of the nozzle and the external diameter
De located at the exit of the nozzle are such that H/De = 1.613. Its thickness t is assumed to be constant with
t/De = 0.015.

The finite element computational model that is represented in Figure 2 consists of a mesh made up of 57 792
hexahedral solid finite elements with 8 nodes each, resulting in a total of 73 030 nodes and ndof = 216 720 degrees
of freedom. A fixed boundary condition is applied at the entry of the combustion chamber. The computational
characteristics described according to the radial (r), orthoradial (θ), and z-axis directions, are summarized in Table 1.
It should be noted that the slenderness ratio between the orthoradial and radial dimensions of a finite element is
between 1 and 5.04 in order to ensure a good computational accuracy. The nominal material properties of the nozzle
structure correspond to a homogeneous isotropic elastic material that represents a homogenized ceramic with Young
modulus 170 GPa, Poisson ratio 0.28, and mass density 2300 Kg ×m−3.

r θ z Total
number of nodes 5 168 87 73 080

number of finite elements 4 168 86 57 792

Table 1: Finite element model parameters
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9. Modal analysis of the nominal linear nozzle structure

Figure 4 displays the graph of the natural frequencies να as a function of circumferential wave number n, displaying
mode families. Such a graph allows for considering a frequency band of analysis B = [0 , 1500] Hz that contains 24
structural modes for which n ≤ 6. Note that such a choice has to be consistent with the external load modeling.
Figure 5 displays 3D and 2D representations of the first eight structural modes. It is interesting to underline that the
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Figure 4: Natural frequencies versus n.

first frequencies are ν1 = 58.55 Hz, ν2 = 95.61 Hz, and ν3 = 178.42 Hz. The fundamental structural mode is a flexural
mode related to n = 1 that displays a global bending motion of the structure. The second structural mode corresponds
to a n = 2 breathing mode and the third one is a n = 0 axisymmetric mode. Such an analysis shows that the excitation
frequency band is centered around ν2.

10. Stochastic external load

10.1. Description of the pressure profile

The pressure profile pc f (z) follows the model proposed in [63, 64]. There are three pressure parameters that
characterize the nozzle. The pressure at the entry of the combustion chamber is pc = 2.413 × 106 N × m−2 [64]. The
pressure at the nozzle exit is the ambient pressure pe = 1.01325 × 105 N × m−2. The pressure at the nozzle throat is
pt = 1.3682 × 106 N × m−2 and corresponds to a Mach number Mt = 1. The normalized pressure profile along the
z-axis is shown in Figure 6 and is constructed as follows. The pressure profile within the throat region is determined
through fluid calculations [64] and shown in Figure 7. Considering that there are only 4 nodes along the z-axis within

9



Figure 5: 3D and 2D representations of the first 8 structural modes
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Figure 6: Graph z 7→ f (z) of the normalized pressure profile. Vertical lines delimit the combustion chamber, the throat, and the nozzle exit parts.

the finite element model of the nozzle throat, while there are 14 pressure values available, a straightforward linear
interpolation is performed for obtaining pressure values at the internal nodes of the finite element model for the throat.
In the combustion chamber, the pressure profile is linearly interpolated along z with respect to pc and to the pressure
at the beginning of the nozzle throat, while in the nozzle exit, it is linearly interpolated along z with respect to the
pressure at the end of the nozzle throat and to the ambient pressure pe.
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10.2. Description of the psd function S G

In Eq. (6), the algebraic model of the psd function S G(2πν) is an adaptation of the one proposed in [65], and
depends on two parametersσ2

G that is the power of the stationary stochastic process G and νpeak, which is the frequency
for which the psd function is maximal. This algebraic model is written as

S G(2πν) =
σ2

G

σ2 S (2πν) , ν ∈ R , (15)

in which σ2
G = 2

∫
R+ S G(2πν) d(2πν). Similarly, σ2 = 2

∫
R+ S (2πν) d(2πν), where the function S (2πν) is defined

by S (2πν) = 10 p(x)/10, in which x = log10(ν/νpeak). Function p(x) depends on parameter νpeak and is defined by
p(x) = αx2 + βx + γ for x ∈ [xmin, xmax]. The bounds are such that xmax = log10(νmax/νpeak) and xmin = −xmax implying
that νmin = ν

2
peak/νmax. Excitation frequency band Be is then defined by Be = [νmin , νmax]. The parameters α, β and

γ are derived from the following conditions: p(xmin) = p(xmax) = pmin < 0, and p(0) = 1. This latter condition
corresponds to a normalization choice yielding p(x) = (pmin −1)(x/xmax)2 +1. The numerical values are the following:
νmax = 1200 Hz, νpeak = 100 Hz, which is very close to the eigenfrequency ν2 corresponding to a breathing mode with
circumferential wave number n = 2, νmin = 8.33 Hz, and Be = [8.33 , 1200] Hz. Since the frequency band of analysis
B only contains structural modes with circumferential wave number lower than 6, the series b(θ) is limited to n = 6.

10.3. Time and frequency samplings for computing the stochastic nonlinear response

Time t0 that corresponds to the beginning of the stationary response of the nonlinear dynamical system is identified
as follows. The damping model used in the nonlinear computational model corresponds to a modal damping model
for which the critical damping rate ξα related to eigenfrequency να is set to ξα = 0.02. Then the duration time
|T0| = t0 − 0 = 0.998 s is chosen to be consistent with the relaxation time of the dynamical system. Then the sampling
time step δt is chosen as δt = 20 ms yielding Nt = 5 000 time points such that tα = t0 + (α − 1)δt , α ∈ {1, . . . ,Nt}.
As a consequence, the sampling frequency is νe = 3 000 Hz. There are Nν = 5 000 sampling frequency points with
sampling frequency step δν = 0.6 Hz. For σG = 0.4 and νpeak = 100 Hz, Figure 8 displays the graph of the algebraic
psd function ν 7→ S G(2πν) defined by Eq. (15), and the graph of its estimation computed from nd = 400 realizations
of the stationary stochastic process G.

11. Specifying the prior probabilistic model, the stochastic solver, and the target dataset

As explained in Section 3-(ii), the two control parameters are w1 = σG and w2 = νpeak, which are modeled by
random variables W1 and W2.
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Figure 8: Graph of ν 7→ S G(2πν) for σG = 0.4 and νpeak = 100 Hz (algebraic (red line), estimate (blue line)).

11.1. Numerical values for the nominal computational model

The nominal computational model of the nozzle corresponds to a parameterized model with the mean value w1 =

0.4 of W1, the mean value w2 = 100 Hz of W2, and the mean value u of random vector U. This random vector
U is related to the random matrix [C], defined by Eq.(8). For these nominal values w and u, the maximum of
the deterministic nonlinear dynamical response in displacement is of the same order than the nozzle thickness, that
ensures the presence of geometrically nonlinear effects.

11.2. Numerical values for the hyperparameters of the prior probabilistic model

The values of the hyperparameters defined in Section 3-(ii) are α1 = α2 = 0.1.The admissible set Cw ⊂ R2 of W is
defined by Cw = {[0.36, 0.44] × [90, 110]}. The hyperparameter δ defined in Section 3-(iii) is chosen as δ = 0.2.

11.3. Stochastic solver

As explained in Section 4, the training dataset is constructed by using the Monte Carlo numerical simulation
method. Due to the limitation of the computational resources, nd = 400 realizations of the training set are considered.
The realizations w j and u j are generated using the prior probability model of W and U. The realizations g j represent-
ing the time discretization of the stationary stochastic process G are generated using the Shinozuka algorithm [66, 67].
For a given realization (w j,u j, g j), the parameterized stochastic computational model is used to get a realization of the
stochastic response y j(t) = Y(t; w j,u j, g j) and then deducing the realizations of the observations. The realization o j

d
is the corresponding realization of O. For a given frequency, it corresponds to the ny = 168 normal bending displace-
ments located at the outer radius of the nozzle. It has dimension No = 168 × 5000 = 840 000. The realization o j

id,d is
the corresponding realization of Oid of the identification observation, which is related to a subset of nexp = 8 partial
observations. It has dimension no = 8 × 5000 = 40 000. It results that the training dataset can be stored in matrix [xd]
with dimensions (880002, 400). Figure 9 displays an unscaled representation of the nodes located at the nozzle exit in
order to visualize the location of the identification observation nodes and of a distinct group of validation observation
nodes.

11.4. Description of the target dataset

The target datasetD targ is constructed as independent realizations of the stochastic nonlinear computational model,
for which δ = 0 (no uncertainties) and the value of [c] is modified as αc[c] with αc = 1.2. The Nr = 40 values of the
control parameter w targ are the realizations of a uniform probability distribution whose support is CW .
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(a) Training and target. (b) Learning post-processing.

Figure 9: Location of identification observations (black squares) and validation observations (blue diamonds).

12. Parameter values and convergence analysis of PLoM algorithm

We use the notations introduced in Appendix Appendix A.

(i) Values of the general parameters. The dimension of Q = (O,Oid) is nq = No + no = 840 000 + 40 000 = 880 000
and the dimension of X = (Q,W) is nx = nq + nw = 880 000 + 2 = 880 002. The number of points in the training
datasetDtrain is nd = 400.

(ii) Reduced representation and diffusion-maps basis. Figure 10a displays the graph of function νp 7→ errX(νp) defined
by Eq. (A.2). The chosen tolerance is εPCA = 0.07, resulting in νp = 307 and an associated error of errX(307) =
6.2 × 10−2. It should be noted that the slow decrease of the PCA error function is mainly due to the presence of
numerous independent random variables required to construct the model of the stationary stochastic process, which
models the stochastic load vector (see Section 3-(i)). It should also be noted that the purpose of the PCA in PLoM is
the construction of a random vector H with zero mean and unit covariance matrix (see Appendix Appendix A-(iv). A
relatively large value of νp does not affect the PLoM method.

Concerning the computation of the diffusion-maps basis introduced in Appendix Appendix A-(vi), the optimal
smoothing parameter εDM is determined as εopt = 674, corresponding to the optimal value mopt = 308 for the parameter
m. The graph in Figure 10b presents the function α 7→ λα, representing the eigenvalues of the transition matrix [P].
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Figure 10: Convergence of PCA (a). Eigenvalues of the transition matrix [P] for the diffusion-maps basis (b).

(iii) Parameter values for generating the learned realizations under constraint. The learned realizations are gener-
ated as explained in Appendix Appendix A-(xii), incorporating the vector-valued constraint outlined in Eq. (A.6),
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for which Nr = 40 (number of targets). The free parameter f0, defined in Appendix Appendix A-(viii)-(e), is set to
f0 = 4, and the integration step ∆r of the Störmer-Verlet scheme is chosen as ∆r = 0.218. Let {[Zud(r)], r ∈ [0,R]}
be the stochastic solution of the reduced-order ISDE defined in Appendix Appendix A-(viii), in which Eq. (A.3) is
replaced by Eq. (A.9), as explained in Appendix Appendix A-(xii). Each realization [zℓud] represents the ℓth realization
of [Zud(R)] for R = 30 × ∆r. Due to the damping controlled by f0 = 4, R is a final value of integration parameter
r of the reduced-order ISDE, at which the stationary response is attained. We have chosen nMC = 125, resulting in
Nud = nMC × nd = 50 000.

(iv) Convergence of the sequence of vector-valued Lagrange multipliers in the KLDMP. The relaxation parameter
αrelax(i) (refer to Appendix A-(xiii)) is defined by β1 = 0.001, i2 = 20, and β2 = 0.3. The convergence behavior of the
iterative algorithm, presented in Appendix Appendix A-(xiii), accounting for the imposed constraints is investigated
concerning the iteration number i. This analysis is conducted by examining the graph of the error function i 7→ err(i)
defined by Eq. (A.8) (refer to Figure 11a) and the graph of the function i 7→ ∥λi

∥ (refer to Figure 11b). A very good
convergence is observed, with err(80) = 5 × 10−4.
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Figure 11: Convergence analysis of the iterative algorithm in PLoM with constraints versus iteration number i.

(v) Illustration of the learned pdf of components of Hud and the clouds of the learned points. Figure 12 depicts the
pdf of components 1 and 30 of H estimated using the training dataset, and the corresponding pdf of Hud estimated
with the learned dataset under constraint. Figure 13 displays the point cloud of components 7, 13, and 30 of H
estimated with the training dataset, and the corresponding point cloud of Hud estimated with the learned dataset under
constraint. These results serve to illustrate the shift in the learned probability measure induced by the constraints,
while preserving the concentration of the learned probability measure.
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Figure 12: pdfs of components 1 and 30 for H (dashed line) and for Hud (solid line).
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Figure 13: Points cloud of components 7, 13, and 30 for H (sparse blue) and for Hud (concentrated red).

13. Learning results and validation

Figures 14 to 16 are related to a selection of three identification observations whereas Figures 17 to 19 are related to a
selection of three validation observations. Each one of Figures 14 to 19 are composed of (a) the mean response of the
training dataset – which is a nonlinear response – and of its linear counterpart, (b) the mean response of the training
dataset and of the target, (c) the mean response of the learning dataset and of the target, (d) the mean response of the
training dataset and of the target, as well as the conditional confidence region given w0 = (1, 1) of the learning dataset,
with a 95% probability level.
– In each Figure (a), significant nonlinear effects are put into evidence, which translate into a shifting of the resonance
peaks as well as into a decrease of their magnitude induced by the spread of the response energy throughout the exci-
tation band.
– In each Figure (b), it can be seen that the mean response of the training dataset does not match the mean response
of the target. In particular, the second and third nonlinear resonance peaks are shifted.
– Figures (c) show that the learning under constraint of the target captures the mean statistics. Note that the mean re-
sponses are not necessarily supposed to coincide, because the system is under-observed for defining the identification
constraints and is based on the use of a limited target dataset.
– Figures (d) allow for exhibiting three features of the learning process under constraints. First, the mean target is
well centered in the confidence region. Second, the peaks of the confidence-region envelopes coincide well with those
of the mean target response. Finally, the width of the confidence region, which is induced by uncertain uncontrolled
parameters and by the statistical fluctuations of the stochastic excitation, is not too large.

It should be noted that, for a fixed value of the vector-valued control parameter, the frequency responses con-
ditioned by this control parameter, in the presence of uncontrolled uncertainties, are not the Fourier transforms of
deterministic time responses, but that of stationary stochastic processes due to the stationary random excitation of the
dynamical system. These frequency responses are therefore similar to a conditional power spectral density function
whose estimator is similar to that given by the periodogram method. The intensity of the very small fluctuations
that appear in the mean functions and in the envelopes of the confidence regions of these conditional power spectral
density functions can be decreased by increasing the value of Nud.

The detailed analysis presented above, concerning figures (a) to (d) for identification and validation observations,
serves as validation for the proposed methodology. Further validation could also be provided based on the definition
of numerical indicators for statistical errors.
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Figure 14: Identification observation 1 – Mean response of the training set (blue line), of the linear counterpart of the training set (black line), of
the target set (red line), and of the learning set (cyan line), and confidence region of the learning set (cyan area).

14. Conclusion

We have presented a methodology for the updating of a high dimensional computational model (HDM) corre-
sponding to a nonlinear uncertain dynamical system that is subjected to a stochastic excitation and that is under-
observed. The high computational cost resulting from the numerical evaluation of a single realization of the HDM is
directly attributed to the presence of uncertain parameters, of global geometric nonlinearities, and of the stochastic
nature of the external force. This leads to a small training dataset. The updating is performed under the constraint of
a target dataset that is also of small dimension. In addition, there is a partial observability in the dynamical system,
which induces incomplete data. For solving this challenging problem, we have presented the construction of a statisti-
cal surrogate model that maps the control parameters to the observations. We have presented a detailed and complete
analysis of the updating of the nonlinear stochastic dynamics of a nozzle under stochastic excitation and uncertainties.
For that, we have applied with success the Probabilistic Learning on Manifolds (PLoM) under constraints. Apart from
capturing the geometrically nonlinear effects combined to uncertainty propagation in the under-observed system, the
conditional mean statistics of the learning regarding the target dataset are improved compared to its training counter-
part. In addition, the conditional confidence region of the learning dataset demonstrates its ability to capture the target
characteristics corresponding to either observed output variables (included in the learning optimization process) or
unobserved output variables.
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Figure 15: Identification observation 2 (see legend Fig. 14).

Appendix A. Overview of the probabilistic learning on manifolds (PLoM) algorithm and its parameterization

We present the Probabilistic Learning on Manifolds (PLoM) algorithm, detailed in [68], for constrained learning
cases. The foundational PLoM approach is outlined in [32, 38, 69], with extensions discussed in [39] for constraints
based on statistical moments and [68] for constraints defined by target realizations. Both extensions use the Kullback-
Leibler divergence, and the latter employs a weak formulation of the Fourier transform of probability measures. In this
Appendix, we focus on the PLoM algorithm for learning under constraints defined by given target realizations. The
algorithm starts with a training dataset Dtrain, comprising a limited number nd of points generated from a stochastic
manifold associated with a Rnx -valued random variable X = (Q,W). Here, Q and W are Rnq -valued and Rnw -valued
random variables, respectively, with nx = nq + nw. The support of the probability measure of W is Cw ⊂ Rnw .
An additional Rnu -valued random variable U is considered as an uncontrolled parameter. The mapping f expresses
Q = f(U,W), and the joint probability distribution PW,U(dw, du) is assumed known. In constrained learning, the
focus is on the quantity of interest Q = (O,Oid), where O and Oid are RNo -valued and Rno -valued random vectors,
respectively, with no ≪ No and nq = No + no. Constraints are applied to oid. The PLoM under constraint method
generates a learned datasetDlearn for Xud, comprising Nud ≫ nd points using a diffusion-maps basis.
(i) Small target dataset Dtarg(oid). Relatively to Oid, a deterministic target dataset Dtarg(oid) = {o1

targ, . . . , o
Nr
targ} is given,

in which Nr is small. For each r in {1, . . . ,Nr}, the vector or
targ ∈ Rno corresponds to a ”measurement” performed on

the dynamical system for a given value wr
targ ∈ Cw of the control parameter w belonging toWtarg = {w1

targ, . . . ,w
Nr
targ}.

17



0 200 400 600 800 1000 1200
-16

-14

-12

-10

-8

-6

(a) Linear vs Nonlinear

0 200 400 600 800 1000 1200
-16

-14

-12

-10

-8

-6

(b) Nonlinear

0 200 400 600 800 1000 1200
-16

-14

-12

-10

-8

-6

(c) Nonlinear

0 200 400 600 800 1000 1200
-16

-14

-12

-10

-8

-6

(d) Nonlinear

Figure 16: Identification observation 3 (see legend Fig. 14)

(ii) Small training dataset Dtrain(x). For all j ∈ {1, . . . , nd}, we define x j = (o j, o j
id,w j) ∈ Rnx with nx = No + no + nw.

The training dataset relative to the small number nd of points x j is Dtrain(x) = {x1, . . . , xnd } and is represented by the
matrix [xd] = [x1 . . . xnd ] ∈ Mnx,nd .
(iii) Significant learning challenge. The primary difficulty to the learning process arises from the limited number of
points in both the training and target datasets, exacerbated by incomplete data resulting from partial observability.
(iv) Reduced representation of X using PCA and convergence criterion. Let [X] = [X1, . . . ,Xnd ] be the random matrix
with values in Mnx,nd , where its columns are nd independent copies of random vector X for which [xd] is a realization.
Utilizing Principal Component Analysis (PCA) of X, random matrix [X] is written as,

[X] = [x] + [φ] [µ]1/2 [H] , (A.1)

where [H] = [H1, . . . ,Hnd ] is a Mνp,nd -valued random matrix (νp ≤ n), and [µ] is the (νp×νp) diagonal matrix of the νp

positive eigenvalues of the empirical estimate of the covariance matrix of X. The (nx × νp) matrix [φ] consists of the
associated eigenvectors such [φ]T [φ] = [Iνp ]. The matrix [x] in Mnx,nd has identical columns, each being equal to the
empirical estimate x ∈ Rnx of the mean value of random vector X. The columns of [H] are nd independent copies of a
random vector H with values in Rνp , satisfying the normalization conditions, E{H} = 0νp and E{H ⊗ H} = [Iνp ]. The
realization [ηd] = [η1 . . . ηnd ] ∈ Mνp,nd of [H] is computed by [ηd] = [µ]−1/2[φ]T ([xd]− [x]). The value νp is classically
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Figure 17: Validation observation 1 (see legend Fig. 14)

calculated in order that the L2- error function νp 7→ errX(νp), defined by

errX(νp) = 1 −
∑νp
α=1 µα

E{∥X∥2}
, (A.2)

be smaller than εPCA.

(v) Probability measure of H. Let PH(dη) = pH(η) dη be the prior probability measure on Rνp of H, whose pdf
η 7→ pH(η) : Rνp → R+ is estimated by using the Gaussian kernel-density estimation (KDE) with the training
dataset Dtrain(η) = {η j, j = 1, . . . , nd}, involving a modification of the classical formulation [70] for which sSB =(
4/(nd(2 + νp))

)1/(νp+4) is the Silverman bandwidth. For all η in Rνp , we have

pH(η)=
1
nd

nd∑
j=1

1
(
√

2π ŝ)νp
exp

(
−

1
2ŝ2 ∥

ŝ
sSB

η j−η ∥2
)
,

where ŝ = sSB

(
s2

SB + (nd − 1)/nd
)−1/2. With such a modification, the normalization of H is preserved for any value of

nd.
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Figure 18: Validation observation 2 (see legend Fig. 14).

(vi) Reduced-order basis using Diffusion Maps. The PLoM formulation relies on vector space Rnd algebraic basis, con-
structed using the diffusion-maps basis [71]. Let [K] and [b] be matrices defined as [K]i j = exp{−(4 εDM)−1∥ηi − η j∥2}

and [b]i j = δi j bi with bi =
∑nd

j=1[K]i j, where εDM > 0 is a smoothing parameter. Let [P] = [b]−1[K] in Mnd ,
with positive entries, represents the transition matrix of a Markov chain. The eigenvalues λ1, . . . , λnd and associated
eigenvectors ψ1, . . . ,ψnd satisfy 1 = λ1 > λ2 ≥ . . . ≥ λnd and are computed by solving the generalized eigenvalue
problem [K]ψα = λα [b]ψα with the normalization condition ⟨[b]ψα,ψβ⟩ = δαβ. For a given integer κ ≥ 0, the
diffusion-maps basis {g1, . . . , gα, . . . , gnd } forms a vector basis of Rnd defined by gα = λκα ψα. The reduced-order
diffusion-maps basis of order m is defined as {g1, . . . , gm} with [gm] = [g1 . . . gm] ∈ Mnd ,m. This basis depends on εDM

and m. It is proven in [38] that the PLoM method does not depend on κ, which can be chosen as 0. The optimal
values mopt ≤ nd for m and εopt > 0 for εDM are determined such that 1 = λ1 > λ2(εopt) ≃ . . . ≃ λmopt (εopt) ≫
λmopt+1(εopt) ≥ . . . ≥ λnd (εopt) > 0, with an amplitude jump of an order of magnitude (10-fold, as demonstrated in
[38]) between λmopt (εopt) and λmopt+1(εopt). The algorithm for estimating εopt and mopt involves setting m = νp + 1 and
identifying the smallest εopt such that Jump(εopt) ≤ 0.1.

(vii) Reduced-order representation of random matrices [H ]. The diffusion-maps vectors g1, . . . , gm ∈ Rnd span a
subspace of Rnd that characterizes, for the optimal values mopt and εopt of m and εDM, the local geometry structure of
dataset {η j, j = 1, . . . , nd}. The PLoM method introduces the Mνp,nd -valued random matrix [Hm] = [Zm] [gm]T with
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Figure 19: Validation observation 3 (see legend Fig. 14).

m ≤ nd, corresponding to a data-reduction representation of random matrix [H], in which [Zm] is a Mνp,m-valued
random matrix. For generating the learned dataset, the best probability measure of [ Hm] is obtained for m = mopt and
by using the previously defined basis [gmopt ]. For these optimal quantities mopt and [gmopt ], the generator allows for
computing nMC realizations of [Zmopt ] and therefore, for deducing the nMC realizations of [Hmopt ].

(viii) PLoM-MCMC generator of learned realizations without imposed constraint. The MCMC generator (which is
detailed in [32]) is obtained by the projection of the ISDE on the diffusion-maps basis defined in paragraph (vi). Let
{([Z(r)], [Y(r)]), r ∈ R+} be the unique asymptotic (as r → +∞) stationary diffusion stochastic process with values
in Mνp,mopt × Mνp,mopt , representing the following reduced-order ISDE , for r > 0,

d[Z(r)]= [Y(r)]dr ,

d[Y(r)]= [L([Z(r)])]dr−
1
2

f0[Y(r)]dr +
√

f0 [dWwien(r)],

with [Z(0)] = [ηd] [a] and [Y(0)] = [N] [a], in which

[a] = [gmopt ] ([gmopt ]
T [gmopt ])

−1 ∈ Mnd ,mopt .
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(a) [L([Z(r)])] = [L([Z(r)] [gmopt ]
T )] [a] is a random matrix with values in Mνp,mopt . For all [u] = [u1 . . . und ] in Mνp,nd

with u j = (u j
1, . . . , u

j
νp ) in Rνp , the matrix [L([u])] in Mνp,nd is defined, for all k = 1, . . . , νp and for all j = 1, . . . , nd, by

[L([u])]k j =
1

p(u j)
{∇u j p(u j)}k , (A.3)

p(u j) =
1
nd

nd∑
j′=1

exp{−
1

2ŝ 2
νp

∥
ŝνp

sνp

η j′ − u j∥2} ,

∇u j p(u j)=
1

ŝ 2
νp

nd

nd∑
j′=1

(
ŝνp

sνp

η j′− u j) exp{−
1

2ŝ 2
νp

∥
ŝνp

sνp

η j′− u j∥2} .

(b) [Wwien(r)] = [Wwien(r)] [a] where {[Wwien(r)], r ∈ R+} is the Mνp,nd -valued normalized Wiener process.

(c) [N] is the Mνp,nd -valued normalized Gaussian random matrix that is independent of process [Wwien].
(d) We then have [Zmopt ] = limr→+∞ [Z(r)] in probability distribution. The Störmer-Verlet scheme employed for
solving the reduced-order ISDE (see [32]), allows for generating nMC learned realizations of [Zmopt ]. Subsequently,
in parallel computation, we generate the nMC associated learned realizations of [Hmopt ]. Each realization of [Zmopt ] is
computed on a ”worker” associated with a realization of the Wiener process [Wwien].
(e) The free parameter f0, satisfying 0 < f0 < 4/ŝνp , allows for controlling the dissipation term in the nonlinear
second-order dynamic system to quickly damp the transient effects induced by the initial conditions. A commonly
used value is f0 = 4 (noting that ŝνp < 1). Consequently, the reduced-order ISDE is solved over the interval ]0,R],
where R depends on f0 and represents the smallest final integration parameter allowing [Zmopt ] to be chosen as [Z(R)]
while being in the stationary regime.

(ix) Projection of the target on the model in the context of incomplete data due to the partial observability. For
r = 1, . . . ,Nr, we associate a vector ηr

targ ∈ Rνp to (or
targ,wr

targ) ∈ Rno+nw . We then have to build a mapping that associates
a vector η ∈ Rνp to each (oid,w) ∈ Rno+nw . For any realization η in Rνp of H, the corresponding realization x of X is
given by Eq. (A.1), x = x + [φ] [µ]1/2 η. Since x = (o, oid,w), the extraction of ξ = (oid,w) ∈ Rnξ with nξ = no + nw

from x ∈ Rnx yields
ξ = ξ + [Aξ] η , [Aξ] = [φξ] [µ]1/2 ∈ Mnξ ,νp , (A.4)

in which ξ = (oid,w) ∈ Rnξ and where [φξ] ∈ Mnξ ,νp . The matrix [Aξ] ∈ Mnξ ,νp admits a unique left pseudo-inverse
[Ainv
ξ ] ∈ Mνp,nξ . The desired mapping is constructed by solving the equation [Aξ] η = ξ − ξ in the linear least-squares

sense, which admits the unique solution η = [Ainv
ξ ] (ξ − ξ). We then have

ηr
targ = [Ainv

ξ ] (ξr
targ − ξ) , r ∈ {1, . . . ,Nr} , (A.5)

in which ξr
targ = (or

targ,wr
targ) ∈ Rnξ .

(x) Learned dataset construction under constraint for Hud. When imposing the constraint on H, denoted as Hud, the
construction of the learned dataset Dlearn(ηud) = {ηℓud, ℓ = 1, . . . ,Nud} for the Rνp -valued random variable Hud follows
the Kullback-Leibler Divergence Minimum Principle (KLDMP). This principle relies on the prior pdf of H, con-
structed using the training dataset Dtrain(η) = {η j, j = 1, . . . , nd}, and the updated pdf of Hud using the target dataset
Dtarg(ηtarg) = {ηr

targ, r = 1, . . . ,Nr}. The KLDMP constraints are expressed in the form of a mathematical expectation.
Given that the constraints are specified by realizations forming the points of the target dataset, a weak formulation of
the Fourier transform of the probability measures is employed [68].

(xi) Representation of the constraint defined by the target dataset. In [68], it is proven that the constraint defined by
the target datasetDtarg(ηtarg) = {ηr

targ, r = 1, . . . ,Nr} can be written as

E{hc(H)} = bc on RNr , (A.6)
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where hc(η) = (hc
1(η), . . . , hc

Nr
(η)) and bc = (bc

1, . . . , b
c
Nr

) are the vectors in RNr , which are written, for r ∈ {1, . . . ,Nr}

and η ∈ Rνp , as hc
r(η) = exp(− 1

νp s2 ∥ η − ηr
targ ∥

2) and bc
r =

1
Nr

∑Nr
r ′=1 exp(− 1

νp s2 ∥ ηr ′
targ − η

r
targ ∥

2), in which

s =
(

4
(
Nr(2 + νp)

)−1
)1/(νp+4)

.

(xii) Updated estimate using the Kullback-Leibler divergence minimum principle. The updated pdf η 7→ pHud (η) on
Rνp of the Rνp -valued random variable Hud is estimated by using the KLDMP [72, 73, 74, 39, 68]. The pdf pHud on
Rνp , which satisfies the constraint defined by Eq. (A.6) and which is closest to pH, is the solution of the following
optimization problem,

pHud = arg min
p∈Cad,p

∫
Rνp

p(η) log
(

p(η)
pH(η)

)
dη , (A.7)

where Cad,p = {η 7→ p(η) : Rνp → R+ ,
∫

Rνp p(η) dη = 1
∫

Rνp hc(η) p(η) dη = bc} is the admissible set.

(xiii) Methodology for solving the optimization problem. The constraints within the admissible set Cad,p are incorpo-
rated by introducing Lagrange multipliers. The updated pdf pHud is constructed as the limit of a sequence {pHλ

}λ of
pdfs for a sequence {Hλ}λ of Rνp -valued random variables Hλ, dependent on a Lagrange multiplier λ ∈ Cad,λ ⊂ RNr .
The limit of the sequence in λ is denoted as λsol, satisfying Hud = Hλsol . In Theorem 3 of [68], it is proven that λsol

is the unique solution in Cad,λ of the convex optimization problem, λsol = arg minλ∈Cad,λ Γ(λ) where Γ is the strictly
convex function on Cad,λ with first and second derivatives given by,

Γ′(λ) = bc − E{hc(Hλ)} ∈ RNr ,

[Γ ′′(λ)] = [cov{hc(Hλ)}] ∈ M+Nr
.

Here [Γ ′′(λ)] is the positive-definite covariance matrix of hc(Hλ). The vector λsol is the unique solution in λ of
Γ′(λ) = 0Nr and is obtained using the Newton iterative method. At each iteration i, λi+1 is computed as a function of
λi by

λi+1 = λi
− αrelax(i) [Γ′′(λi)]−1 Γ′(λi) , i ≥ 0 ,

with the initial value λ0 = 0Nr . In this equation, the positive coefficient αrelax(i), a relaxation parameter (less than 1),
controls the convergence of the iteration algorithm. Given i2 ≥ 2, β1, and β2 such that 0 < β1 < β2 ≤ 1, αi is defined
for i ≤ i2 as αi = β1 + (β2 − β1)(i − 1)/(i2 − 1), and for i > i2 as αi = β2. The convergence of the iteration algorithm is
controlled by the error function i 7→ err(i) defined by

err(i) = ∥bc − E{hc(Hλi )}∥/∥bc∥ . (A.8)

At each iteration i, E{hc(Hλi )} and [cov{hc(Hλi )}] are estimated using Nud = nMC × nd learned realizations with the
MCMC generator of [Hλi ] defined in (viii). In this generator, the mapping [L], defined by Eq. (A.3), is replaced by
the following,

[Lλi ([u])]k j=
1

p(u j)
{∇u j p(u j)}k−{[∇u j hc(u j)] λi

}k. (A.9)
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