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Identifying second-gradient continuum models in particle-based materials with
pairwise interactions using acoustic tensor methodology.

Gabriele La Vallea,∗, Christian Soizea

aUniversité Gustave Eiffel, MSME UMR 8208, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient con-
tinuum model, recently introduced by the authors, to provide an identification technique. The term particle-based
materials denotes materials modeled as assemblies of particles, disregarding typical granular material properties
such as contact topology, granulometry, grain sizes, and shapes. This work introduces a center-symmetric second-
gradient continuum resulting from pairwise interactions. The corresponding Euler-Lagrange equations (equilibrium
equations) are derived using the least action principle. This approach unveils non-classical interactions within subdo-
mains. A novel, symmetric, and positive-definite acoustic tensor is constructed, allowing for an exploration of wave
propagation through perturbation techniques. The properties of this acoustic tensor enable the extension of an iden-
tification procedure from Cauchy (classical) elasticity to the proposed second-gradient continuum model. Potential
applications concern polymers, composite materials, and liquid crystals.

Keywords: Nonlocal elasticity, second-gradient continuum, acoustic tensor, identification, bulk waves

1. Introduction

This theoretical paper aims to propose a methodology for experimentally identifying the constitutive tensors involved
in a second-gradient model applicable to particle-based materials with pairwise interactions. The proposed method-
ology devoted to experimental identification uses the properties of an acoustic tensor obtained within the framework
of the considered second-gradient model. This work does not address numerical aspects; for information on this
topic, we recommend consulting the cited references [1, 2].

With particle-based materials, we refer to materials that can be modeled as an assembly of point materials, or
particles. While the terms particle-based and granular are often used interchangeably in the literature, they are not
synonymous. In the context of particle-based materials, factors such as the topology of contacts between adjacent
grains, granulometry, grain sizes, and shapes are not deemed to have a significant impact on the modeling and are
therefore disregarded. Since polymers, composite materials, and liquid crystals can be regarded as particle-based
materials, the development of sophisticated models for particle-based materials is of fundamental importance from
a practical standpoint. To further emphasize the practical applications, it is noteworthy that among all the candidate
materials, colloidal crystals emerge as a significant class of particle-based materials. They find extensive applications,
for instance in materials sciences [3, 4], biology [5], optical materials [6], and 3D printing technology [7, 8].

In recent years, there has been significant advancement in the development of continuum models tailored to cap-
ture the mesoscale behavior of particle-based materials. Examples include the application of micropolar continuum
theories [9, 10, 11, 12, 13, 14], micromorphic continuum theories [15, 16, 17, 18], integral nonlocal continuum
theories [19, 20, 21], and gradient-type nonlocal continuum theories [22, 23, 24, 25, 26, 27, 28]. These continuum
models have also been named continuum-molecular formulations in [29] and continuum particle models in [30].
Additional continuum-type formulations, proposing pairwise interactions, have been developed and referred to as
continuum-molecular formulations in [29] and continuum particle models in [30]. The collection of all these mod-
els is referred to as generalized continua [31]. Among generalized continua, second-gradient continuum models
have gained substantial attention for their capability to describe size effects without introducing rotational degrees of
freedom [32, 33, 34].

For engineering purposes, the primary challenge in using generalized continua, and then second-gradient con-
tinua, lies in accurately identifying constitutive parameters. The identification problem is typically addressed in the
literature by constructing generalized continua as homogenized models of microscopic Cauchy (classical) materials.
In this way, only parameters related to Cauchy elasticity need to be identified for applying generalized continua.
Construction of a homogeneous Cosserat continuum starting from a micro-heterogeneous Boltzmann continuum has
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been proposed in [35]. The general case of a micromorphic continuum has been addressed in [36, 37], and works
related to the second-gradient continua can be found in [38, 39, 40, 41]. In most cases, homogenization procedures
require the definition of a representative volume element and consideration concerning the extended Hill-Mandel
condition [42].

As previously stated, this paper is the continuation of [1, 2]. In [1], we introduced a second-order tensor to
describe nonlocal pairwise interactions that would correspond to the Green-Lagrange tensor [43, 44] in a nonlocal
framework. This second-order tensor allows us to obtain a higher-order nonlocal continuum model that includes the
Piola peridynamics and the Eringen nonlocal elasticity. It should be noted that the term Piola peridynamics refers to
the peridynamics approach developed by Piola, which differs from the commonly adopted approaches and is closely
related to bond-based peridynamics [45]. In [2], we further refined the novel higher-order nonlocal continuum model
and we incorporated random fields [46, 47, 48, 49], constructed using the maximum entropy principle [50, 51].

The present paper is organized as follows. In Section 2, we investigate more deeply the novel higher-order
nonlocal continuum model for particle-based materials, obtaining a center-symmetric second-gradient continuum
resulting from pairwise particle interactions. This model positions itself between integral and gradient-type nonlocal
continua [52]. The Euler-Lagrange equations (equilibrium equations) are derived using the least action principle. In
Section 3, we construct a novel acoustic tensor that is symmetric and positive definite. In Section 4, the perturbation
technique is then applied to investigate the impact of second-gradient terms on wave perturbation within the frame-
work of the proposed model. The relationship between phase and group velocities is investigated. Moving on to
Section 5, the properties of the introduced acoustic tensor allow us to extend the identification procedure proposed
in [53] for Cauchy continua to the proposed center-symmetric second-gradient continuum. Thus, we show that, for
any class of symmetry, the non-classical constitutive tensors and interaction length of the proposed center-symmetric
second-gradient model can be extracted from experimentally measured propagation velocities of bulk waves. An ap-
plication of the identification approach is not addressed here, as it has already been illustrated in the case of Cauchy
continua in [53].

Notation

Any vector in R3 is identified to the column matrix of its components on the canonical basis of R3. Any tensor
of any order will be represented by its components on the canonical basis. The components of a fourth-order
tensor x will be denoted by xi jkh. In particular, any second-order tensor will be represented with the matrix of
its components. In addition, the classical convention of summation on repeated indices is used.

A lowercase letter such as x, y or z is a real variable except when used as an integer index as i, j, etc.

A boldface lowercase letter such as x or ξ is a real vector and such as c or λ is a tensor.

A boldface lowercase letter between brackets, such as [x],
[
y
]
, or [z], is a real matrix. The entries of [x] will

be denoted by [x]i j.

⟨x, y⟩: standard inner product in Euclidean space Rn.

∥x∥: Euclidean norm in Rn equal to ⟨x, x⟩1/2.

[x]T : transpose of the matrix [x].

[ I ]: identity matrix.

Mn: ensemble of n × n real matrices.

MS
n : subset of Mn of symmetric matrices.

M+n : subset of MS
n of positive definite matrices.

M+n diag: subset of M+n of diagonal matrices.

T4: ensemble of 4-th order real tensors ti jkh.

TS
4 : subset of T4 of symmetric tensors such that ti jkh = t jikh = ti jhk = tkhi j.

T+4 : subset of TS
4 of positive definite tensors.

CN(Ω): set of real functions defined on Ω, which are N times continuously differentiable.

The summation over repeated Latin indices is used.
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2. Defining the Second-Gradient Continuum Theory for Particle-Based Materials

This section summarizes the results presented in [1, 2] concerning an N-th order nonlocal elasticity continuum model
and its adaptation to the second-gradient case. We are limiting the presentation to the second-gradient case instead of
N-th gradient one to simplify the writing and the reading. The extension to the N-th gradient case does not introduce
any theoretical difficulties but would require additional analyses concerning the definition and the properties of the
acoustic tensor. In the first subsection, we introduce the kinematic aspects of the second-gradient case and the
expressions for small deformations. The second subsection deals with the least action principle. Finally, in the third
subsection, we derive from it the Euler-Lagrange equations (equilibrium equations).

2.1. Geometry definition

Let us consider a continuum body that occupies the open, bounded, and connected domain Ω, with a Lipshitz-
continuous boundary ∂Ω, defining the reference configuration (see [44]). It is assumed that ∂Ω contains edges and is
written as ∂Ω = ∪k ∂Ωk, where ∂Ωk is an open, bounded, and connected domain, and ∂Ωk = ∂Ωk ∪ ∂∂Ωk. We define
the Lipshitz-continuous boundary ∂∂Ω as ∪k ∂∂Ωk = ∂∂Ω, which is the union, with edge repetitions, of the edges
∂∂Ωk. We will denote by

∫
∂∂Ω
=

∑
k

∫
∂∂Ωk

. Let x be the generic point of Ω. Let dx, ds, and dℓ be the volume, surface,
and length elements. Therefore, the ds-measure of ∂∂Ω is zero. For x in ∂Ωk, n(x) denotes the outward-pointing
unit normal of ∂Ωk. For x in ∂∂Ωk, ν(x) denotes the outward-pointing unit normal of ∂∂Ωk. Let {ξ1, ξ2, ξ3} be the
canonical basis of R3. Both reference and deformed configurations are referred to the Cartesian coordinate system
(O, ξ1, ξ2, ξ3).

2.2. Kinematic aspects

Definition 1 (Placement function and its regularity properties). Let (x, t) 7→ r(x, t), with t ∈ R, be the placement
function defining the motion of Ω, satisfying the following conditions.

C.1 For any fixed instant t in R, x 7→ rt(x) = r(x, t), defined from Ω into R3, is assumed to be in C2(Ω), injective
except possibly on the boundary ∂Ω, and orientation-preserving (see [44]).

C.2 For any fixed x in Ω, t 7→ rx(t) = r(x, t) has a first-order derivative t 7→ drx(t)/dt in C1(R) and a second-order
derivative t 7→ d2rx(t)/dt2 piecewise continuous in R (see [54]).

Hypothesis 1 (Nonlocal interaction between particles). Let x in Ω and let x be another point in a neighborhood of
x. Let us assume a nonlocal interaction between particles at order O(∥x − x∥3), allowing us to approximate r at the
point x ∈ Ω using its truncated second-order Taylor expansion in the neighborhood of x ∈ Ω,

ri(x, t) = ri(x, t) +
∂ri(x, t)
∂x j

(x j − x j) +
1
2
∂2ri(x, t)
∂x j∂xk

(x j − x j)(xk − xk) . (1)

Definition 2 (Kinematic tensors). Let f(1)(x, t) be the second-order tensor represented by the matrix [f(1)(x, t)] such
that

[f(1)(x, t)]i j =
∂ri(x, t)
∂x j

(2)

and let f(x, x, t) be the second-order tensor represented by the matrix [f(x, x, t)]i j such that

[f(x, x, t)]i j = [f(1)(x, t)]i j +
1
2
∂[f(1)(x, t)]i j

∂xk
(xk − xk) . (3)

Taking into account Eq. (2) and (3), Eq. (1) can be rewritten as

r(x, t) = r(x, t) + [f(x, x, t)] (x − x) , (4)

where det[f(x, x, t)] > 0 under the hypothesis of orientation-preserving deformations. Let us define the Cauchy-Green
second-order tensor c(1)(x) represented by the matrix [c(1)(x)] in M+3 such that

[c(1)(x, t)] = [f(1)(x, t)]T [f(1)(x, t)] , (5)

the third-order tensor c(12)(x, t), and the fourth-order tensor c(2)(x, t) whose components are

c(12)
pq j (x, t) =

∂[c(1)(x, t)]pq

∂x j
, c(2)

pq jk(x, t) =
∂[f(1)(x, t)]ip

∂x j

∂[f(1)(x, t)]iq

∂xk
. (6)
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Let e(1)(x, t), e(12)(x, x, t), and e(2)(x, x, t) be the tensors represented by the matrices [e(1)(x, t)], [e(12)(x, x, t)], and
[e(2)(x, x, t)] in MS

3 such that

[e(1)(x, t)] =
1
2

([c(1)(x, t)] − [ I ]) , (7)

[e(12)(x, x, t)]pq =
1
4

c(12)
pq j (x, t)(x j − x j) , (8)

and
[e(2)(x, x, t)]pq =

1
8

c(2)
pq jk(x, t)(x j − x j)(xk − xk) . (9)

Let us define the tensor e(x, x, t), represented by the matrix [e(x, x, t)] in MS
3 , by

[e(x, x, t)] =
1
2

([f(x, x, t)]T [f(x, x, t)] − [ I ]) . (10)

Using Eq. (3), [e(x, x, t)] can be rewritten (See Appendix A) as

[e(x, x, t)] = [e(1)(x, t)] + [e(12)(x, x, t)] + [e(2)(x, x, t)] . (11)

Remark 1. From Eq. (4), considering the definition of the transpose operator, we obtain

∥r(x, t) − r(x, t)∥2 − ∥x − x∥2 =
〈

2 [e(x, x, t)] (x − x) , (x − x)
〉
. (12)

Note that Eq. (12) is obtained using the definition of [e(x, x, t)] and the fact that ∥r(x, t)− r(x, t)∥2 − ∥x− x∥2 is equal
to ⟨ [f(x, x, t)]∆x , [f(x, x, t)]∆x ⟩ − ⟨ [ I ]∆x ,∆x ⟩. This expression, thanks to the definition of transpose, is also equal
to ⟨ [f(x, x, t)]T [f(x, x, t)]∆x ,∆x ⟩ − ⟨ [ I ]∆x ,∆x ⟩.

Tensor e(x, x, t) characterizes the configuration change within the continuum due to the movement of x with
respect to x over time t. This tensor is the sum of three distinct deformation mechanisms through tensors e(1)(x, t),
e(12)(x, x, t), and e(2)(x, x, t). Tensors e(1)(x, t), e(12)(x, x, t), and e(2)(x, x, t) are obtained by fixing x and expanding r
in the neighborhood of x. Thus, they account for the effects of the movements of x with respect to x. In contrast, to
address the effects of the movements of x with respect to x, we can use tensors e(1)(x, t), e(12)(x, x, t), and e(2)(x, x, t) by
switching the positions of x and x. Consequently, within this kinematic framework, the nonlocal specific deformation
energy is assumed to be symmetric in x and x, dependent on e(1)(x, t), e(1)(x, t), e(12)(x, x, t), e(12)(x, x, t), e(2)(x, x, t),
and e(2)(x, x, t). Note that, in this manner, we take into account local and nonlocal deformation mechanisms associated
with the change in distance between x and x. Therefore, the resulting second-gradient model has to be considered
based on pairwise particle interactions.

Hypothesis 2 (Case of small deformations). We add the hypothesis of small deformations and we assume that there
are no rigid body displacements. Let u be the displacement field such that r(x, t) = u(x, t) + x. Let us define ϵ(1)(x, t)
and ϵ(12)(x, t) as the approximation of e(1)(x, t) and e(12)(x, t) for small deformations,

[ϵ(1)(x, t)]pq =
1
2

(
∂up(x, t)
∂xq

+
∂uq(x, t)
∂xp

)
, (13)

[ϵ(12)(x, x, t)]pq =
1
4
κ(12)

pq j (x, t)(x j − x j) , κ(12)
pq j = 2

∂[ϵ(1)(x, t)]pq

∂x j
, (14)

in which κ(12)(x, t) approximates c(12)(x, t) for small deformations.

2.3. Least action principle

We introduce the least action principle that will allow us to obtain the Euler-Lagrange equations. For that, we define
the deformation πdef , kinetic πkin, and external πext energy functionals.

It is assumed the body is submitted to Dirichlet and Neumann boundary conditions. Dirichlet conditions are
applied to a part ∂Ω0 of ∂Ω, which implies that there are no rigid body displacements. Neumann boundary conditions
are constituted of volume and surface external forces, b(Ω) onΩ and b(∂Ω) on ∂Ω, surface external double forces, B(∂Ω)

on ∂Ω, and length external forces, b(∂∂Ω) on ∂∂Ω. Note that all the Neumann boundary conditions are assumed to be
zero where Dirichlet conditions are applied and that surface external double forces can be applied thanks to the use of
a second-gradient model. For any fixed t in R, x 7→ ut(x) = u(x, t) belongs to Cu, where Cu is the space of admissible
displacements satisfying the Dirichlet condition on ∂Ω0 ⊂ ∂Ω. Similarly, for any fixed t in R, x 7→ δut(x) = δu(x, t)
belongs to Cδu, where Cδu is the space of test functions for which the Dirichlet conditions on ∂Ω0 are equal to zero.
We assume that for any fixed x in Ω, t 7→ δux(t) has the same regularity properties as t 7→ ux(t). In the following, we

4



introduce initial time t0 and final time t1 for applying the least action principle, and we will assume that, for all x, we
have δu(x, t0) = 0 and δu(x, t1) = 0.

Definition 3 (Deformation energy functional). For small deformations, assuming that the second-order derivatives
are small compared to the first-order derivatives of displacement (when multiplied for the same constitutive parame-
ter), the deformation energy functional u 7→ πdef(u) can be written as

πdef(u) =
∫ t1

t0

∫
Ω

ϕ(u, x, t) dx dt , (15)

where ϕ(u, x, t) = φ(x, t) and φ(x, t) is defined by

φ(x, t) =
1
2
m

(0)(x)a(11)
i jkh(x) [ϵ(1)(x, t)]kh [ϵ(1)(x, t)]i j +

1
2

[m(2)(x)]pq a
(1212)
i jkh (x)

∂[ϵ(1)(x, t)]kh

∂xp

∂[ϵ(1)(x, t)]i j

∂xq
. (16)

In Eq. (16), a(11)(x) and a(1212)(x) are fourth-order constitutive tensors defined in T+4 , and the functions x 7→m
(0)(x)

and x 7→ [m(2)(x)] are defined by,

m
(0)(x) =

∫
Ω

α(x, x) dx , [m(2)(x)]pq =

∫
Ω

α(x, x)(xp − xp)(xq − xq) dx . (17)

Here, the function α represents the influence function (also referred to as the attenuation function), which is chosen
as

α(x, x) =
1

ξ3(2π)3/2 exp

−1
2

∥∥∥x − x
∥∥∥2

ξ2

 , (18)

where ξ is defined as an interaction length.

Definition 4 (Kinetic energy functional). The kinetic energy functional u 7→ πkin(u) can be written as

πkin(u) =
∫ t1

t0

∫
Ω

1
2
ρ(x)
∂uk(x, t)
∂t

∂uk(x, t)
∂t

dx dt , (19)

where ρ(x) denotes the mass density at x.

Definition 5 (External energy functional). Let us call u 7→ πext(u) the external energy functional whose first vari-
ation is defined by,

δπext(u; δu) =
∫ t1

t0

∫
Ω

b(Ω)
i (u, x, t) δui(x, t) dx dt +

∫ t1

t0

∫
∂Ω

b(∂Ω)
i (u, x, t) δui(x, t) ds dt

+

∫ t1

t0

∫
∂Ω

B(∂Ω)
i (u, x, t)

∂δui(x, t)
∂n

ds dt +
∫ t1

t0

∫
∂∂Ω

b(∂∂Ω)
i (u, x, t) δui(x, t) dℓ dt ,

(20)

where, as explained before, b(Ω) and b(∂Ω) are volume and surface external forces, B(∂Ω) denotes surface external
double forces, and b(∂∂Ω) stands for length external forces.

Proposition 1 (Least action principle). By the least action principle, the movement is described by the displace-
ment field u ∈ Cu such that

δπkin(u; δu) − δπdef(u; δu) + δπext(u; δu) = 0 , ∀δu ∈ Cδu . (21)

where δπkin(u; δu), δπdef(u; δu), and δπext(u; δu) are the first variations of πkin, πdef , and πext, respectively.

2.4. Euler-Lagrange Equations

Under the hypotheses introduced in Sections 2.2 and 2.3, the proposed theory provides a center-symmetric second-
gradient model based on a two-particle interaction. Consequently, the least action principle allows us to define the
effective stress tensor σeff(u, x, t) as a function of the stress σ(u, x, t) and the hyper stress h(u, x, t) tensors.

Definition 6 (Stress tensors). Let σeff(u, x, t) be the effective stress tensor represented by the matrix [σeff(u, x, t)] in
MS

3 defined by

[σeff(u, x, t)]i j = [σ(u, x, t)]i j −
∂hi jq(u, x, t)
∂xq

, (22)
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where σ(u, x, t) is the stress tensor represented by the matrix [σ(u, x, t)] in MS
3 defined by

[σ(u, x, t)]i j =m
(0)(x)a(11)

i jhk(x)
∂uk(x, t)
∂xh

, (23)

and where h(u, x, t) is the hyper stress tensor whose components are

hi jq(u, x, t) = [m(2)(x)]pq a
(1212)
i jhk (x)

∂uk(x, t)
∂xh∂xp

. (24)

Proposition 2 (Euler-Lagrange equations). The least action principle (see Proposition 1) leads to the following
Euler-Lagrange equations,

◦ on the volume Ω,

−ρ(x)
∂2ui(x, t)
∂t2 +

∂[σeff(u, x, t)]i j

∂x j
+ b(Ω)

i (u, x, t) = 0 ; (25)

◦ on the boundary ∂Ω,

−[σeff(u, x, t)]i j n j(x) +
∂

∂xr

(
hi jq(u, x, t) nq(x) [p(x)]s j

)
[p(x)]rs + b(∂Ω)

i (u, x, t) = 0 , (26)

−hi jq(u, x, t) nq(x) n j(x) + B(∂Ω)
i (u, x, t) = 0 , (27)

where [p(x)] is the projection operator on tangent space;

◦ on the edges ∂∂Ω,
−hi jq(u, x, t) nq(x) ν j(x) + b(∂∂Ω)

i (u, x, t) = 0 . (28)

Proof. See Appendix C.

Remark 2 (Subdomain interactions). Within the proposed theory, subdomains of the continuum interact with each
other through volume and surface forces, surface double forces, and length forces. Externally applicable loads do not
reduce simply to force [55]. Moreover, the effect of second-gradient terms is modulated by interaction function α.
Hence, the proposed theory for particle-based materials lies between integral and gradient nonlocal theories [52, 21].

3. Definition of an Acoustic Tensor and Its Algebraic Properties

Within the framework of classical linear elasticity for homogeneous materials, the acoustic tensor is independent
of the wave number and only depends on the direction of propagation. In the context of second-order continuum
models, it would depend as shown below.

Proposition 3 (Construction of an acoustic tensor). Within the context of the proposed 3D second-gradient con-
tinuum model applicable to homogeneous linear elastic particle-based materials, the acoustic tensor s(κ,m) gov-
erning bulk waves in R3 is represented by the following matrix (defined as the acoustic matrix)

[s(κ,m) ]ik = a
(11)
i jkhmhm j + κ

2ξ2a(1212)
i jkh mhm j . (29)

In this equation, m = (m1,m2,m3) is the unit vector defining the direction of propagation, κ is the wave number, ξ is
the interaction length defined in Eq. (18), a(11)

i jkh is the fourth-order elasticity tensor, and a(1212)
i jkh is the one related to

second-gradient effect introduced by the deformation energy density in Eq. (16).

Proof. Let us assume that Ω is R3 and there are no external loads. Due to the properties of homogeneity, we have
ρ(x) = ρ, a(11)

i jkh(x) = a(11)
i jkh and a(1212)

i jkh (x) = a(1212)
i jkh . Under these hypotheses, considering Eq. (17), m(0)(x) = 1 (See

Appendix B) and [m(2)(x)]pq = ξ
2[ I ]pq are independent function of x. Eq. (25) can then be simplified as

−ρ
∂2ui(x, t)
∂t2 + a

(11)
i jkh
∂uk(x, t)
∂xh∂x j

− ξ2[ I ]pqa
(1212)
i jkh

∂uk(x, t)
∂xh∂xp∂xq∂x j

= 0 , (30)

which describes the propagation of bulk waves. To derive the acoustic tensor, let us consider the progressive waves
defined by uk(x, t) = ûk exp (i

(
κ ⟨m, x⟩ − ω t)

)
, where ûk is a constant in C, ω is an angular frequency, and i is the

imaginary unit. By replacing it into (30), yields

(κ2a(11)
i jkhmhm j + κ

4ξ2[ I ]pqa
(1212)
i jkh mhmpmqm j − ρω

2[ I ]ik) ûk = 0 . (31)
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Since [ I ]pqmpmq = 1 and introducing [s(κ,m) ] as defined in Eq. (29), and defining û = (̂u1, û2, û3), Eq. (31) can be
rewritten as ([s(κ,m) ] − λ [ I ]) û = 0, where λ = ρω2/κ2 . The type of this equation allows us to define s(κ,m) as
an acoustic tensor (note that the terminology of acoustic tensor for s(κ,m) will fully be justified with Proposition 4
that defines its algebraic properties).

Proposition 4 (Algebraic properties of the acoustic tensor and phase velocity). Rewriting matrix [s(κ,m) ] de-
fined by Eq. (29) as

[s(κ,m) ]ik = ai jkh(κ) mhm j , ai jkh(κ) = a(11)
i jkh + κ

2ξ2a(1212)
i jkh , (32)

for all κ > 0 and m in R3 such that ∥m∥ = 1, [s(κ,m) ] is a positive-definite symmetric matrix, and (λ, û) is solution
of the eigenvalue problem

([s(κ,m) ] − λ [ I ]) û = 0 . (33)

There are three positive eigenvalues λ(κ,m), possibly with multiplicity larger than one, which can be rewritten as
λ(κ,m) = ρ v2(κ,m), in which v(κ,m) = ω(κ,m)/κ is the phase velocity.

Proof. Since a(11) and a(1212) have been assumed to be fourth-order tensors in T+4 , then a is in T+4 . For the sake of
completeness, we give the proof similar to the one given in [56]. We have [s(κ,m) ]ki = ak jih m jmh, which can be
rewritten, permuting j and h, as [s(κ,m) ]ki = akhi j mhm j. Since ai jkh = akhi j, it follows [s(κ,m) ]ki = ai jkh m jmh =

[s(κ,m) ]ik. Since matrix [s(κ,m) ] is positive definite, for κ and m fixed, Eq. (33) appears as an eigenvalue problem
of a positive-definite matrix and, consequently, the eigenvalue λ(κ,m) are positive, that allows the phase velocity
v(κ,m) to be defined.

4. Group and Phase Velocities Based on Perturbation Theory

In this section, we perform the perturbation analysis to investigate if there exist directions m for which the bulk
waves would be not dispersive. To simplify the writing, the dependence in m is removed when this does not cause
ambiguity. The dependence in ε = κ2 is kept because the perturbation will be performed with respect to ε around
ε = 0 that corresponds to the case without second-gradient effects. We are exploring the influence of second-gradient
effects on the propagation of bulk waves within the framework of a perturbation theory. Let us define the matrices
[s0] and [s1] such that

[s0]ik = a
(11)
i jkhmhm j , [s1]ik = ξ

2
a

(1212)
i jkh mhm j . (34)

Then, the acoustic matrix [s(ε) ] defined by Eq. (32) can be rewritten as [s(ε) ] = [s0] + ε [s1].

Proposition 5 (Perturbation of the eigenvalue problem associated with the acoustic matrix). Let us consider the
perturbed eigenvalue problem, [s(ε)][ψ(ε)] = [ψ(ε)][λ(ε)], for the acoustic matrix. Let [s0][ψ0] = [ψ0][λ0] be the
unperturbed eigenvalue problem corresponding to ε = 0, in which [λ0] = [λ(0)] is the diagonal matrix of the three
positive eigenvalues of [s0] and [ψ0] = [ψ(0)] is an orthogonal matrix. At O(ε2), the perturbed eigenvalues are such
that

[λ(ε)] = [λ0] + ε diag{[∆s]} , [∆s] = [ψ0]T [s1][ψ0] , (35)

and the perturbed eigenvectors are such that

[ψ(ε)] = [ψ0]([ I ] + ε [q1]) , [q1]T = −[q1] . (36)

The diagonal entries of [q1] are then zero and, if the three eigenvalues of [s0] are simple, then, the extra diagonal
entries of [q1] are given by [q1]i j = −[∆s]i j/([λ0]ii − [λ0] j j) (without summation over repeated indices).

Proof. Let us introduce the diagonal matrix [λ(ε)] of the three positive eigenvalues of [s(ε) ], and the orthogo-
nal matrix [ψ(ε) ] of the associated eigenvectors, which satisfies the perturbed eigenvalue problem, [s(ε)][ψ(ε)] =
[ψ(ε)][λ(ε)]. Let [s0][ψ0] = [ψ0][λ0] be the eigenvalue problem for ε = 0, in which [λ0] = [λ(0)] is the diagonal
matrix of the three positive eigenvalues of [s0] and [ψ0] = [ψ(0)] is an orthogonal matrix. Introducing the change of
basis [ψ(ε)] = [ψ0] [q(ε)], the perturbed eigenvalue problem can be rewritten as

([λ0] + ε [∆s])[q(ε)] = [q(ε)][λ(ε)] , [∆s] = [ψ0]T [s1][ψ0] . (37)

Since [ψ0] and [ψ(ε)] are orthogonal matrices, it can be deduced that [q(ε)] is orthogonal. The first-order perturbation
of [λ(ε)] and [q(ε)] results in

[λ(ε)] = [λ0] + ε [λ1] , [q(ε)] = [ I ] + ε [q1] . (38)

Since [q(ε)] is an orthogonal matrix, matrix [q1] must be skew-symmetric at O(ε2), which implies that [q1] j j = 0
for j ∈ {1, 2, 3}. By replacing Eq. (38) into Eq. (37), we obtain at O(ε2), the matrix equation [λ0][q1] + [∆s] =
[q1][λ0] + [λ1]. The diagonal entries of this matrix equation are [λ1] j j = [∆s] j j. For i , j, the extra diagonal entries
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of this matrix equation satisfy ([λ0]ii − [λ0] j j)[q1]i j = −[∆s]i j (without summation over repeated Latin indices). We
have then proven the proposition.

Remark 3 (Perturbation of the phase and group velocities). In this remark, there is no summation over repeated
Latin indices. We use the definition of the phase velocity v = ω/κ and the group velocity vg = dω/dκ. The three
phase velocities v j(0) of the unperturbed system are given by

v j(0) =
√

[λ0] j j/ρ , j ∈ {1, 2, 3} . (39)

At O(ε2), the three phase v j(ε) and group vg
j (ε) velocities are written as

v j(ε) ≈ v j(0)
(
1 +

ε

2 ρ
[∆s] j j

v j(0)2

)
, vg

j (ε) ≈ v j(0)
(
1 +

3 ε
2 ρ

[∆s] j j

v j(0)2

)
, j ∈ {1, 2, 3} . (40)

We can conclude that there is no direction in which the phase velocity is equal to the group velocity, indicating a
dispersive system where the group velocity exceeds the phase velocity. Consequently, for an analysis scale where
second-gradient effects are not negligible, bulk waves are always dispersive.

5. Identification of elasticity parameters

The following procedure is inspired by [53]. The propagation of bulk waves in the anisotropic hypothesis is governed
by Eq. (33). Using the abbreviated subscripts, the components a(11)

i jkh and a(1212)
i jkh of elasticity tensors a(11) and a(1212)

can be expressed by the 21 components [a(1)]IJ and and [a(2)]IJ of two symmetric matrices [a(1)] and [a(2)] with I
and J in {1, 2, . . . , 6}. For given values of κ and m, let us define the function f such that

(ξ, [a(1) ], [a(2) ]) 7→ f (ξ, [a(1) ], [a(2) ]; κ,m, v(κ,m)) = det
(
[s(κ,m) ] − λ(κ,m)[ I ]

)
, (41)

where λ(κ,m) = ρ v2(κ,m), κ and v(κ,m) represent the wave number and phase velocity. LetM = {(κp,mp′ ), p ∈
{1, . . . ,N}, p′ ∈ {1, . . . ,N′} be the set of the N × N′ values of (κ,m) used for the measurements. For each (κp,mp′ ) ∈
M, let vpp′ = v(κp,mp′ ) be the measured phase velocity. The identification of ξ, [a(1) ], and [a(2) ] is performed by
minimizing, in the mean-square sense, function f on the setM. We have the proposition for the identification.

Proposition 6. Identification of the constitutive matrices [a(1) ] and [a(2) ] from the measurements {κp,mp′ , vpp′ } is
performed by minimizing the functional F defined by

F(ξ, [a(1) ], [a(2) ]) =
N∑

p=1

N′∑
p′=1

f (ξ, [a(1) ], [a(2) ]; κp,mp′ , vpp′ )2 . (42)

Since [a(1) ] and [a(2) ] are assumed to be positive definite, 12 constraints must be imposed expressed in terms of the
components of [a(s) ], with s ∈ {1, 2},

h(s)
n = det

(
[a(s)

n ]
)
> 0 , s ∈ {1, 2} , n ∈ {1, 2, . . . , 6} . (43)

Here, [a(s)
n ] denotes the submatrix formed by considering the first n rows and columns of [a(s) ]. Additionally, it is

required that ξ > 0 for physical consistency.

Remark 4. Note that the procedure just outlined provides a practical method for identifying the constitutive param-
eters within the framework of the proposed theory. These constitutive parameters are associated with first-gradient
effects, second-gradient effects, and interaction length in the assumption of anisotropic materials.

6. Conclusion

In this work, we have discussed a novel center-symmetric second-gradient continuum model for particle-based ma-
terials, incorporating pairwise particle interactions. We have made the assumptions of small deformations and ne-
glected second-order derivatives in comparison to the first ones when multiplied by the same constitutive parameters.
The discussed model can be regarded as an extension of Eringen nonlocal elasticity designed to describe large in-
teraction lengths. Furthermore, the proposed model is adaptable for large deformations, allowing the construction
of N-th gradient continua when even larger interaction lengths appear. The Euler-Lagrange equations have been
derived using the least action principle, offering valuable insights into non-classical interactions within subdomains.
We have shown that subdomains interact through forces per unit area, double forces per unit area, forces per unit area
dependent on the curvature of the Cauchy cut, and forces per unit length. We have constructed a novel, symmetric,
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and positive-definite acoustic tensor that allows us to explore bulk wave propagation. The inclusion of the second-
gradient term has resulted in different group and phase velocities, indicating dispersion in bulk waves. Additionally,
the properties of this acoustic tensor have enabled the extension of an identification procedure from Cauchy elas-
ticity to the proposed model, applicable to any class of symmetry. By establishing this identification procedure, we
position the model for practical applications across various fields, ranging from polymers, composite materials, and
liquid crystals to broader applications. Ongoing research is dedicated to the statistical identification of constitutive
parameters, ensuring the robustness and applicability of the proposed model in multiple scenarios.
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Appendix A

Hereafter, we undertake algebraic computations to derive Eq. (11). Starting with Eq. (4), we have

[f(x, x, t)]ip[f(x, x, t)]iq = [f(1)(x, t)]ip[f(1)(x, t)]iq

+
1
2

(
∂[f(1)(x, t)]ip

∂xk
[f(1)(x, t)]iq + [f(1)(x, t)]ip

∂[f(1)(x, t)]iq

∂xk

)
(xk − xk)

+
1
4
∂[f(1)(x, t)]ip

∂xk

∂[f(1)(x, t)]iq

∂xs
(xk − xk)(xs − xs) .

(44)

Considering Eqs. (5) and (6) yields

[f(x, x, t)]ip[f(x, x, t)]iq = [c(1)(x, t)]pq +
1
2

c(12)
pqk (x, t) (xk − xk) +

1
4

c(2)
pqks(x, t) (xk − xk)(xs − xs) . (45)

Considering tensor [e(x, x, t)], defined by Eq. (10), results in

[e(x, x, t)]pq =
1
2

(
[c(1)(x, t)]pq − [ I ]pq

)
+

1
4

c(12)
pqk (x, t) (xk − xk) +

1
8

c(2)
pqks(x, t) (xk − xk)(xs − xs), (46)

Finally, substituting the tensors [e(1)(x, t)], [e(12)(x, x, t)], and [e(2)(x, x, t)], defined by Eqs. (7), (8), and (9), we obtain
Eq. (11).

Appendix B

In this appendix, we show that m(0)(x) = 1 in Proposition 3. Since Ω is R3, m(0)(x) is given by

m
(0)(x) =

∫
R3
α(x, x) dx , (47)

where α(x, x) is defined in Eq. (18). It can be seen that x 7→ α(x, x) is the probability density function of a Gaussian
R3-valued random variable with mean vector x and covariance matrix ξ2 [ I ]. Consequently, we have m(0)(x) = 1.

Appendix C

Proof. Consider πkin defined by Eq. (19). The first variation δπkin is expressed as

δπkin(u; δu) =
∫ t1

t0

∫
Ω

ρ(x)
∂uk(x, t)
∂t

∂δuk(x, t)
∂t

dx dt . (48)

Subsequently, integrating by parts and since, for all x, δu(x, t0) = 0 and δu(x, t1) = 0, Eq. (48) can be transformed
into

δπkin(u; δu) = −
∫ t1

t0

∫
Ω

ρ(x)
∂2uk(x, t)
∂t2 δuk(x, t) dx dt . (49)
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Considering πdef(u), [σ(u, x, t)], and h(u, x, t) defined in Eqs. (15), (23), and (24), the first variation −δπdef(u; δu) is
expressed as

−δπdef(u; δu) = −
∫ t1

t0

∫
Ω

[σ(u, x, t)]i j
∂δui(x, t)
∂x j

dx dt −
∫ t1

t0

∫
Ω

hi jq(u, x, t)
∂δui(x, t)
∂x j∂xq

dx dt . (50)

Using an integration by parts, the first integral in the right-hand side of Eq. (50) can be written as

−

∫ t1

t0

∫
Ω

[σ(u, x, t)]i j
∂δui(x, t)
∂x j

dx dt = −
∫ t1

t0

∫
∂Ω

[σ(u, x, t)]i j n j(x) δui(x, t) dx dt

+

∫ t1

t0

∫
Ω

∂[σ(u, x, t)]i j

∂x j
δui(x, t) dx dt ,

(51)

and the second integral in the right-hand side of Eq. (50) can be expressed as

−

∫ t1

t0

∫
Ω

hi jq(u, x, t)
∂δui(x, t)
∂x j∂xq

dx dt = −
∫ t1

t0

∫
∂Ω

hi jq(u, x, t)
∂δui(x, t)
∂x j

nq(x) ds dt

+

∫ t1

t0

∫
∂Ω

∂

∂xq

(
hi jq(u, x, t)

)
n j(x) δui(x, t) ds dt −

∫ t1

t0

∫
Ω

∂

∂xq∂x j

(
hi jq(u, x, t)

)
δui(x, t) ds dt .

(52)

Let [q(x)] and [p(x)] denote the orthogonal and parallel projection operators, respectively. The Kronecker delta [δ]r j

is equal to the sum of [q(x)]r j and [p(x)]r j. Given that [q(x)]r j = nr n j and [p(x)]r j = [p(x)]s j[p(x)]rs, the first integral
in the right-hand side of Eq. (52) can be transformed into

−

∫ t1

t0

∫
∂Ω

hi jq(u, x, t) nq(x)
∂δui(x, t)
∂x j

ds dt = −
∫ t1

t0

∫
∂Ω

hi jq(u, x, t) n j(x) nq(x)
∂δui(x, t)
∂n

ds dt

−

∫ t1

t0

∫
∂Ω

hi jq(u, x, t)
∂δui(x, t)
∂xr

(
[p(x)]s j[p(x)]rs

)
nq(x) ds dt

(53)

The second integral in the right-hand side of Eq. (53) can be rewritten as

−

∫ t1

t0

∫
∂Ω

hi jq(u, x, t)
∂δui(x, t)
∂xr

(
[p(x)]s j[p(x)]rs

)
nq(x) ds dt

= −

∫ t1

t0

∫
∂Ω

∂

∂xr

(
hi jq(u, x, t) nq(x) [p(x)]s j δui(x, t)

)
[p(x)]rs ds dt

+

∫ t1

t0

∫
∂Ω

∂

∂xr

(
hi jq(u, x, t) nq(x) [p(x)]s j

)
[p(x)]rs δui(x, t) ds dt

(54)

Using the Gauss divergence formula for bounded surfaces and since [p(x)]s j νs(x) = ν j(x), the first integral in the
right-hand side of Eq. (54) becomes

−

∫ t1

t0

∫
∂Ω

∂

∂xr

(
hi jq(u, x, t) nq(x) [p(x)]s j δui(x, t)

)
[p(x)]rs ds dt = −

∫ t1

t0

∫
∂∂Ω

hi jq(u, x, t) nq(x) ν j(x) δui(x, t) dℓ dt .

(55)

Sequentially substituting Eq. (55) into Eq. (54), Eq. (54) into Eq. (53), Eq. (53) into Eq. (52), Eqs. (52) and Eq. (51)
into Eq. (50), and finally substituting Eqs. (50), (49), and (20) into Eq. (21), we obtain the Euler-Lagrange equations
as presented in Proposition (2).

References

[1] La Valle, G. & Soize, C. A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials.
Zeitschrift für Angewandte Mathematik und Physik 75, 49 (2024).

[2] La Valle, G. & Soize, C. Stochastic second-gradient continuum theory for particle-based materials. Part II. Zeitschrift für Angewandte
Mathematik und Physik Accepted on 14 January (2024).

[3] Cong, H., Yu, B., Tang, J., Li, Z. & Liu, X. Current status and future developments in preparation and application of colloidal crystals.
Chemical Society Reviews 42, 7774–7800 (2013).

[4] Wang, S. et al. The emergence of valency in colloidal crystals through electron equivalents. Nature Materials 21, 580–587 (2022).
[5] Li, X., Lu, H. & Peng, Z. Continuum-and particle-based modeling of human red blood cells. Handbook of Materials Modeling Applications:

Current and Emerging Materials (2018).
[6] Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals with diamond symmetry at optical lengthscales.

Nature Communications 8, 14173 (2017).

10



[7] Zhu, C. et al. Colloidal materials for 3d printing. Annual Review of Chemical and Biomolecular Engineering 10, 17–42 (2019).
[8] Liu, K. et al. 3d printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nature Communications

13, 4563 (2022).
[9] Eringen, A. C. Microcontinuum Field Theories I: Foundations and Solids (Springer New York, NY, 1999).

[10] Eremeyev, V. A., Lebedev, L. P. & Altenbach, H. Foundations of micropolar mechanics (Springer, Berlin, 2013).
[11] Altenbach, H. & Eremeyev, V. A. Generalized Continua from the Theory to Engineering Applications (Springer, Vienna, 2013).
[12] Eugster, S., Steigmann, D. et al. Continuum theory for mechanical metamaterials with a cubic lattice substructure. Mathematics and

Mechanics of Complex Systems 7, 75–98 (2019).
[13] Shirani, M. & Steigmann, D. Cosserat elasticity of lattice solids. Journal of Elasticity 1–16 (2021).
[14] Steigmann, D. J., Bîrsan, M. & Shirani, M. Thin shells reinforced by fibers with intrinsic flexural and torsional elasticity. International

Journal of Solids and Structures 285, 112550 (2023).
[15] Eringen, A. C. Mechanics of micromorphic continua. In Kröner, E. (ed.) Mechanics of Generalized Continua, 18–35 (Springer Berlin

Heidelberg, Berlin, Heidelberg, 1968).
[16] Germain, P. The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM Journal on Applied Mathematics 25,

556–575 (1973).
[17] Hütter, G. An extended Coleman–Noll procedure for generalized continuum theories. Continuum Mechanics and Thermodynamics 28,

1935–1941 (2016).
[18] Forest, S. Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences 378, 20190169 (2020).
[19] Kröner, E. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures 3, 731–742 (1967).
[20] Eringen, A. C. & Edelen, D. G. B. On nonlocal elasticity. International Journal of Engineering Science 10, 233–248 (1972).
[21] Eringen, A. C. Nonlocal Continuum Field Theories (Springer, New York, 2002).
[22] Dell’Isola, F., Ruta, G. C. & Batra, R. C. A second-order solution of saint-venant’s problem for an elastic pretwisted bar using signorini’s

perturbation method. Journal of elasticity 49, 113–127 (1997).
[23] Dell’Isola, F. & Steigmann, D. A two-dimensional gradient-elasticity theory for woven fabrics. Journal of Elasticity 118, 113–125 (2015).
[24] Eremeyev, V. A., Dell’Isola, F., Boutin, C. & Steigmann, D. Linear pantographic sheets: existence and uniqueness of weak solutions.

Journal of Elasticity 132, 175–196 (2018).
[25] Germain, P. The method of virtual power in the mechanics of continuous media, i: Second-gradient theory. Mathematics and Mechanics of

Complex Systems 8, 153–190 (2020).
[26] Eugster, S. R. & Barchiesi, E. A second gradient continuum formulation for bi-pantographic fabrics. PAMM 21, e202100192 (2021).
[27] Eugster, S. R., Dell’Isola, F., Fedele, R. & Seppecher, P. Piola transformations in second-gradient continua. Mechanics Research Commu-

nications 120, 103836 (2022).
[28] dell’Isola, F., Eugster, S. R., Fedele, R. & Seppecher, P. Second-gradient continua: From lagrangian to eulerian and back. Mathematics and

Mechanics of Solids 27, 2715–2750 (2022).
[29] Diana, V. Anisotropic continuum-molecular models: A unified framework based on pair potentials for elasticity, fracture and diffusion-type

problems. Archives of Computational Methods in Engineering 30, 1305–1344 (2023).
[30] Sperling, S., Hoefnagels, J., van den Broek, K. & Geers, M. A continuum particle model for micro-scratch simulations of crystalline silicon.

Journal of the Mechanics and Physics of Solids 182, 105469 (2024).
[31] Maugin, G. A. Generalized Continuum Mechanics: What Do We Mean by That?, 3–13 (Springer New York, New York, NY, 2010).
[32] Misra, A., Placidi, L., dell’Isola, F. & Barchiesi, E. Identification of a geometrically nonlinear micromorphic continuum via granular

micromechanics. Zeitschrift für angewandte Mathematik und Physik 72, 157–1–21 (2021).
[33] Yang, Y. & Misra, A. Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials

following damage elasticity. International Journal of Solids and Structures 49, 2500–2514 (2012).
[34] Placidi, L., Barchiesi, E., Misra, A. & Timofeev, D. Micromechanics-based elasto-plastic–damage energy formulation for strain gradient

solids with granular microstructure. Continuum Mechanics and Thermodynamics 33, 2213–2241 (2021).
[35] Forest, S. Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 8, Pr4–39 (1998).
[36] Forest, S. Homogenization methods and mechanics of generalized continua - part 2. Theoretical and Applied Mechanics 8, 113–144 (2002).
[37] Jänicke, R. & Diebels, S. A numerical homogenisation strategy for micromorphic continua. Proceeding in Applied Mathematics and

Mechanics 9, 437–438 (2009).
[38] Alibert, J.-J., Seppecher, P. & dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients.

Mathematics and Mechanics of Solids 8, 51–73 (2003).
[39] dell’Isola, F., Giorgio, I., Pawlikowski, M. & Rizzi, N. L. Large deformations of planar extensible beams and pantographic lattices: heuristic

homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 472, 20150790 (2016).

[40] Yvonnet, J., Auffray, N. & Monchiet, V. Computational second-order homogenization of materials with effective anisotropic strain-gradient
behavior. International Journal of Solids and Structures 191, 434–448 (2020).

[41] Abdoul-Anziz, H., Seppecher, P. & Bellis, C. Homogenization of frame lattices leading to second gradient models coupling classical strain
and strain-gradient terms. Mathematics and Mechanics of Solids 24, 3976–3999 (2019).

[42] Forest, S. & Trinh, D. K. Generalized continua and non-homogeneous boundary conditions in homogenisation methods. ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91, 90–109 (2011).

[43] Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon Press, Bristol, 1970).
[44] Ciarlet, P. G. Mathematical Elasticity, Volume I: Three-Dimensional Elasticity (North-Holland, Amsterdam, 1988).
[45] Javili, A., McBride, A. T. & Steinmann, P. Continuum-kinematics-inspired peridynamics. Mechanical problems. Journal of the Mechanics

and Physics of Solids 131, 125–146 (2019).
[46] Doob, J. L. Stochastic processes (John Wiley & Sons, New York, 1953).
[47] Krée, P. & Soize, C. Mathematics of Random Phenomena (Reidel Pub. Co, 1986). (first published by Bordas in 1983 and also published by

Springer Science & Business Media in 2012).
[48] Guikhman, I. I. & Skorokhod, A. Introduction à la Théorie des Processus Aléatoires (Edition Mir, 1980).
[49] Ghanem, R. & Spanos, P. D. Stochastic Finite Elements: a Spectral Approach (Springer-Verlag, New York, 1991).
[50] Soize, C. Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Computer Methods

in Applied Mechanics and Engineering 195, 26–64 (2006).
[51] Soize, C. Construction of probability distributions in high dimension using the maximum entropy principle. applications to stochastic

processes, random fields and random matrices. International Journal for Numerical Methods in Engineering 76, 1583–1611 (2008).
[52] Maugin, G. A. Nonlocal theories or gradient-type theories: a matter of convenience? Archives of Mechanics 3, 15–26 (1979).
[53] Aristégui, C. & Baste, S. Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data. The Journal

of the Acoustical Society of America 101, 813–833 (1997).

11



[54] Noll, W. The foundations of mechanics and thermodynamics: selected papers (Springer Science & Business Media, 2012).
[55] dell’Isola, F. & Misra, A. Principle of Virtual Work as Foundational Framework for Metamaterial Discovery and Rational Design. Comptes

Rendus. Mécanique (2023). Online first.
[56] Truesdell, C. Linear theories of elasticity and thermoelasticity: Linear and nonlinear theories of rods, plates, and shells, vol. 2 (Springer,

2013).

12


	Introduction 
	Defining the Second-Gradient Continuum Theory for Particle-Based Materials
	Geometry definition
	Kinematic aspects
	Least action principle
	Euler-Lagrange Equations

	Definition of an Acoustic Tensor and Its Algebraic Properties
	Group and Phase Velocities Based on Perturbation Theory
	Identification of elasticity parameters
	Conclusion

