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Abstract—This paper proposes, inspired by local binary pat-
tern (LBP) and its variants, a novel local texture operator for
texture modelisation and classification, referred to as Multi-scale
Ternary and Septenary Pattern (MTSP). MTSP is a histogram-
based feature representation designed based on two single-scale
STP and SSP encoders (single-scale ternary and septenary pat-
terns, respectively). STP and SSP are built using a new set theory-
based pattern encoding technique that combines the concpet of
both LTP’s and LQP’s texture descriptors. The main idea behind
STP and SSP is to calculate several virtual pixels based on
different local and global image statistics and to progressively
encode both local and non-local pixel interactions by analyzing
the differential excitation and direction information based on
the relationships between pixels sampled in different locations.
Then, the obtained histograms of SSP and TSP methods are
concatenated to form the final MTSP feature vector. Experiments
have shown that MTSP has better performance stability across
nine texture datasets than many recent state-of-the-art texture
approaches.

Index Terms—: Texture recognition, texture descriptors, LTP,
LQP, LBP, directional topologies

I. INTRODUCTION

In the field of texture analysis, texture classification over
time is considered as a serious problem. It plays a very im-
portant role in many applications, such as image classification,
facial classification, object recognition, gender classification,
etc. However, textures in the real world vary in rotation, illu-
mination, scale, and affine varieties when imaging conditions
change. Extracting robust characteristics for texture modelisa-
tion remains a difficulty for texture analysis. Many improved
methodologies for texture analysis have been developed in the
literature over the years, with great evaluations found in [Liu
et al., 2019]. Local feature extraction approaches have been
remarkably designed and implemented in the area of texture
analysis over the last decades. The main benefits of these local
feature descriptors are that they are easy to implement and
don’t need a lot of training data [Bhattacharjee and Roy, 2019].

Among local feature extraction techniques, local binary
patterns (LBP), established by [Ojala et al., 1996], is one
of the most prominent texture descriptors among local feature
extraction methods. Researchers regard LBP as a useful tex-

ture descriptor owing to its simplicity, good invariability to
monotonic gray level changes, and applicability for real-time
applications because of its low computational cost. Despite
its origins in texture modeling and classification, the LBP ap-
proach has proven to be useful in a wide range of applications,
including medical and biomedical image analysis, motion
detection, image retrieval, face and facial description and iden-
tification, background removal, and more. Yet, the basic LBP
descriptor has several drawbacks [El Merabet and Ruichek,
2018]. Therefore, in the past few years, many methods similar
to LBP have been proposed to get around these problems
and improve texture classification performance. Indeed, many
dense-based feature extraction (LBP-based methods) continue
to be designed still today, such as, Global refined local binary
pattern (GRLBP) [Shu et al., 2022], Locally encoded transform
feature histogram for rotation-invariant (LETRIST) [Song
et al., 2017], Petersen graph multi-orientation based multi-
scale ternary pattern (PGMO-MSTP) [El Khadiri et al., 2021],
Circumferential local ternary pattern (CLTP) [Zheng et al.,
2022], Local ternary pattern based multi-directional guided
mixed mask (MDGMM-LTP) [El Khadiri et al., 2022], Ori-
ented star sampling structure based multi-scale ternary pattern
(O3S-MTP) [El Khadiri et al., 2020], Directional neighbor-
hood topologies based multi-scale quinary pattern (DNT-
MQP) [Rachdi et al., 2020], etc.

Even though LBP and its modifications achieve excellent
performance, there needs to be a different way to improve the
discriminative strength of an image so that modeling texture
can be done more efficiently. Therefore, in this paper, we de-
velop a conceptually and computationally simple yet powerful
texture operator, named multi-scale ternary and septenary pat-
terns (MTSP), for image texture understanding and analysis to
better address the limitations of local feature descriptors. The
MTSP technique computes feature representation by utilizing
distinct neighborhood topologies to gather complete spatial
information from neighboring pixels in various directions and
blocks and describes the spatial connection and appearance
of a particular pixel intensity. The MTSP operator is made
up of two single-scale descriptors, STP (Single-scale Ternary



Pattern) and SSP (Single-scale Septenary Pattern) operators.
A compact encoding scheme based on set theory is used to
get feature maps. This scheme combines LQP and LTP-like
texture methods to get more useful texture information.

The rest of this paper is organized as follows: In Section II,
the basic local binary patterns (LBP) method is briefly ex-
plained. In Section III, the proposed MTSP texture descriptor
is explained in detail. Section IV provides comprehensive ex-
perimentation and comparative evaluation. Section V provides
a summary of the findings and some suggestions for further
research.

II. BRIEF REVIEW OF BASIC LOCAL BINARY PATTERNS

The well-known texture operator LBP was first developed
by Ojala et al. [Ojala et al., 1996], and it has since been shown
to be a very efficient and computationally straightforward
texture descriptor for monochromatic images, as illustrated in
Figure 1. The LBP code is calculated for each pixel in the
input image by comparing its intensity value to the intensities
of its neighboring pixels in each 3×3 gray-scale image patch.
In formal terms, the LBP label of a pixel ac in the center of a
3×3 grid is formed using the kernel function LBP(.) (cf. Eq.
1).

LBP (ac) =

P−1∑
p=0

ψ(ap − ac)2p (1)

where ac is the central pixel, ap;p∈{0,1,...,P−1} are its neigh-
boring pixels and P corresponds to the number of neighboring
pixels. ψ(.) is the Heaviside step function defined as follow:

ψ(x) =

{
1 if x ≥ 0,
0 otherwise

(2)
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Fig. 1. Standard procedures for extracting LBP-like features.

III. MULTI-SCALE TERNARY AND SEPTENARY
PATTERNS (MTSP)

By combining and integrating the principles of LTP-like and
LQP-like texture operators into the same compact encoding
method, MTSP gains greater accuracy in texture modeling,
leading to more promising results. The essence of MTSP is
to locally sampling and encoding patterns in the most relevant
directions of texture images. The MTSP descriptor is built by
the following procedures:

A. Pattern sampling

The neighborhood topologies employed in MTSP take use
of several intriguing aspects that may aid in performance
enhancement depending on the following steps:

• take more pixels in the neighborhood to capture multi-
scale objects;

• use blocks of pixels in several directions;
• use the average values and the median values of the

surrounding blocks.

Several mean and median values (see the formulae
presented below) are integrated as virtual pixels in the
modeling of proposed texture patterns in order to increase the
tolerances of the threshold ranges to identify a code insensitive
to noise and more robust to illumination fluctuations. In order
to do this, we look at the effects of different neighborhood
layouts by direction and by block, as shown in Figures 2
and 3. From these figures, we get the following equations:

Fig. 2. Semantic representation for different template-directional neighbor-
hood topologies.

Fig. 3. Emantic representation for different template-block neighborhood
topologies.

• Direction kπ
4 :

Dk = (ak + ac + ak+4)/3 (3)

D̃k = (ak + 2ac + ak+4)/4 (4)



Where Dk and D̃k represent respectively the averages of
(ak, ac, ak+4) and (ak, ac),(ac, ak+4) respectively, where k ∈
{0, 1, 2, 3}, as presented in Figure 2.

U = (a0 + a4 + 2ac + a2 + a6)/6 (5)

Ũ = (a1 + a5 + 2ac + a3 + a7)/6 (6)

Where U and Ũ , represents the average value of the average
intensities of the pixels of the directions π/2 & 0 including
the central pixel and the average value of the intensities of
the pixels of the directions 3π/4 & π/4 including the central
pixel, as presented in Figure 3.

• Blocks delimited by the angles: ( kπ
2 , âc , (2k+1)π

2 )

Bk = (a2k + 2a2k+1 + a2k+2)/4 (7)

B̃k = (a2k + 2ac + a2k+2)/4 (8)

Where Bk and B̃k, represent respectively the mean
of ((a2k, a2k+1), (a2k+1, a2k+2)) and the mean of
((a2k, ac), (ac, a2k+2), where k ∈ {0, 1, 2, 3}

Then, we consider (Dk , D̃k) and (Bk , B̃k)) as virtual
neighboring pixels of the central pixel ac, and then compute
their local average and medians as shown in the following
equations:

mD =
1

9
(ac +

3∑
k=0

(Dk + D̃k)) (9)

mB =
1

9
(ac +

3∑
k=0

(Bk + B̃k)) (10)

M̃I =
1

M ×N
(

M−1∑
i=0

N−1∑
j=0

(ai,j)) (11)

m̃D = median(D) (12)

m̃B = median(B) (13)

M̃I = median(IM×N ) (14)

by considering the virtual pixels, the neighbouring pixels
as well as their median and average values, we construct six
sampling sets denoted as Fi:

F1 = {D0, D1, a4, a5, a6, a7} (15)

F2 = {D2, D3, a0, a1, a2, a3} (16)

F3 = {MI , U, a1, a3, a5, a7} (17)

F4 = {M̃I , Ũ , B̃k} (18)

Avec k ∈ {0, ..., , 3}

F5 = {min(mD,mB)

2
,
min(m̃D, m̃B)

2
,min(D̃k, B̃k)}

(19)

Avec k ∈ {0, ..., , 3}

F6 = {max(mD,mB)

2
,
max(m̃D, m̃B)

2
,max(D̃k, B̃k)}

(20)
To get set operations, we use two kinds of Venn diagrams,

i.e., Venn diagrams in upper and lower modes, as illustrated
in Figures 4 and 5, respectively.Rachdi et al. / Computer and Electrical Engineering (2022) 5

3.2. Coding Scheme
First of all, in order to establish relationships between pixels

and different sets of pixels, we use the set theory and in partic-
ular Venn diagrams which is a diagrammatic representation of
different possible relationships between different sets of a finite
number of elements. Let’s consider the following definitions:

Definition 1. A set is an unordered collection of objects, called
members or elements of the set. A real interval x is a nonempty
set of real numbers A = [a, b] = {x|a ≤ x ≤ b} where a is called
the infimum and b is called the supremum.

Definition 2. Let A and B be two sets. The set containing those
elements in both A and B is the intersection of the sets A and
B, indicated by A ∩ B.

Definition 3. Let E be a set and A a subset of E. The comple-
ment of A in E is the set

{
x|x ∈ E et x < A

}
. We denote it CE A

or E \ A or AC or Ā.

Accordingly, by considering the neighbouring pixels and the
virtual pixels as well as their mean and median values, we con-
struct six sampling sets denoted as SSi;i∈{1,...,6} (cf. Eqs. 20 to
25).

SS1 = {D0,D1, I4, I5, I6, I7} (20)

SS2 = {D2,D3, I0, I1, I2, I3} (21)

SS3 = {mI,K0, I1, I3, I5, I7} (22)

SS4 =
{
m̂I,K1, B̃k;k∈{0,..,3}

}
(23)

SS5 =

{
min(mD,mB)

2
,

min(m̂D, m̂B)
2

,min(D̃k, B̃k)k∈{0,..,3}

}
(24)

SS6 = {max(mD,mB)
2

,
max(m̂D, m̂B)

2
, ...max(D̃k, B̃k)k∈{0,..,3}} (25)

To visualize set operations, we define two kinds of Venn
diagrams, i.e., Venn diagrams in lower and upper modes, as
schematized in Figures 3 and 4, respectively.

Fig. 3. A schematic image of the lower Venn diagrams mode.

Given the defined six sampling sets SSi;i∈{1,...,6}, an ensemble
of sets of pixels relationship based on three dynamic thresh-
old values τ1,τ2 and τ3 are constructed according to both upper

Fig. 4. A schematic image of the upper Venn diagrams mode.

and lower Venn diagrams modes as well as the three definitions
(given in Definition 1 to Definition 3). Denoted as A, they are
expressed as follows (cf. Eqs 26 to 39):

AU
1 (x) =

{
x ∈ SS1| x ≥ Ic − τ1

}
(26)

AU
2 (y) =

{
y ∈ SS2| y ≥ Ic + τ1

}
(27)

AU(x, y) = AU
1 (x) ∩ AU

2 (y) (28)

AL
1 (x) =

{
x ∈ SS1| x ≤ Ic + τ1

}
(29)

AL
2 (y) =

{
y ∈ SS2| y ≤ Ic − τ1

}
(30)

AL(x, y) = AL
1 (x) ∩ AL

2 (y) (31)

AU
3 (x) =

{
x ∈ SS3| x ≥ Ic + τ2

}
(32)

AU
4 (y) =

{
y ∈ SS4| y ≥ Ic − τ3

}
(33)

AU
5 (z) =

{
z ∈ SS5| z ≥ Ic + τ1

}
(34)

AU(x, y, z) = AU
3 (x) ∩ AU

4 (y) ∩ AU
5 (z) (35)

AL
3 (x) =

{
x ∈ SS3| x ≤ Ic − τ2

}
(36)

AL
4 (y) =

{
y ∈ SS4| y ≤ Ic + τ3

}
(37)

AL
5 (z) =

{
z ∈ SS6| z ≤ Ic − τ1

}
(38)

AL(x, y, z) = AL
3 (x) ∩ AL

4 (y) ∩ AL
5 (z) (39)

The local texture relationship between each points within the
established six sampling sets SSi;i∈{1,...,6} and the central pixel, is
encoded using three and seven-valued coding schemes (hence
the name is ternary respectively septenary) according to the
ensemble of sets of pixels relationship based on the three dy-
namic threshold values τ1,τ2 and τ3. Note that τ1,τ2 and τ3
are employed to reduce the influence of outside factors like
noise that disturbs patterns. We design a texture operator called
Multi-scale Ternary and Septenary Pattern (MTSP) in order
to clearly extract comprehensive micro structure features con-
tained in these relationships. Conceptually, MTSP is composed
of Single-scale Ternary Pattern (STP) and Single-scale Septe-
nary Pattern (SSP) defined as follows:

Fig. 4. A schematic image of the upper Venn diagrams mode .
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diagrams, i.e., Venn diagrams in lower and upper modes, as
schematized in Figures 3 and 4, respectively.
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old values τ1,τ2 and τ3 are constructed according to both upper

Fig. 4. A schematic image of the upper Venn diagrams mode.

and lower Venn diagrams modes as well as the three definitions
(given in Definition 1 to Definition 3). Denoted as A, they are
expressed as follows (cf. Eqs 26 to 39):

AU
1 (x) =

{
x ∈ SS1| x ≥ Ic − τ1

}
(26)

AU
2 (y) =

{
y ∈ SS2| y ≥ Ic + τ1

}
(27)

AU(x, y) = AU
1 (x) ∩ AU

2 (y) (28)

AL
1 (x) =

{
x ∈ SS1| x ≤ Ic + τ1

}
(29)

AL
2 (y) =

{
y ∈ SS2| y ≤ Ic − τ1

}
(30)

AL(x, y) = AL
1 (x) ∩ AL

2 (y) (31)

AU
3 (x) =

{
x ∈ SS3| x ≥ Ic + τ2

}
(32)

AU
4 (y) =

{
y ∈ SS4| y ≥ Ic − τ3

}
(33)

AU
5 (z) =

{
z ∈ SS5| z ≥ Ic + τ1

}
(34)

AU(x, y, z) = AU
3 (x) ∩ AU

4 (y) ∩ AU
5 (z) (35)

AL
3 (x) =

{
x ∈ SS3| x ≤ Ic − τ2

}
(36)

AL
4 (y) =

{
y ∈ SS4| y ≤ Ic + τ3

}
(37)

AL
5 (z) =

{
z ∈ SS6| z ≤ Ic − τ1

}
(38)

AL(x, y, z) = AL
3 (x) ∩ AL

4 (y) ∩ AL
5 (z) (39)

The local texture relationship between each points within the
established six sampling sets SSi;i∈{1,...,6} and the central pixel, is
encoded using three and seven-valued coding schemes (hence
the name is ternary respectively septenary) according to the
ensemble of sets of pixels relationship based on the three dy-
namic threshold values τ1,τ2 and τ3. Note that τ1,τ2 and τ3
are employed to reduce the influence of outside factors like
noise that disturbs patterns. We design a texture operator called
Multi-scale Ternary and Septenary Pattern (MTSP) in order
to clearly extract comprehensive micro structure features con-
tained in these relationships. Conceptually, MTSP is composed
of Single-scale Ternary Pattern (STP) and Single-scale Septe-
nary Pattern (SSP) defined as follows:

Fig. 5. A schematic image of the lower Venn diagrams mode .

Given the six sampling sets Fk , k ∈ {1, ..., 6} defined
above (cf. Eqs. (15) to (20)), an ansemble of sets of pixel
relations are constructed based on three dynamic threshold
values τ1 , τ2 and τ3 according to the modes of the upper and
lower Venn diagrams, as indicated in the following equations
(cf. Eqs. 21) to (33)):

AU1 (x) = {x ∈ F1 | x ≥ ac − τ1} (21)

AU2 (x) = {x ∈ F2 | y ≥ ac + τ1} (22)

AU (x, y) = AU1 (x) ∩ AU2 (y) (23)



AL1 (x) = {x ∈ F1 | x ≤ ac + τ1} (24)

AL2 (x) = {x ∈ F2 | y ≤ ac − τ1} (25)

AU3 (x) = {x ∈ F3 | x ≥ ac + τ2} (26)

AU4 (x) = {x ∈ F4 | x ≥ ac − τ3} (27)

AU5 (x) = {x ∈ F5 | x ≥ ac + τ1} (28)

AU (x, y, z) = AU3 (x) ∩ AU4 (y) ∩ AU5 (z) (29)

AL3 (x) = {x ∈ F3 | x ≤ ac − τ2} (30)

AL4 (x) = {x ∈ F4 | x ≤ ac + τ3} (31)

AL5 (x) = {x ∈ F6 | x ≤ ac − τ1} (32)

AL(x, y, z) = AL3 (x) ∩ AL4 (y) ∩ AL5 (z) (33)

The local texture relationship between the the central pixel
and each points within the considered six sampling sets Fk ,
k ∈ {1, ..., 6}, is encoded using three and seven-valued coding
schemes (hence the name is ternary respectively septenary)
according to the ensemble of sets of pixels relationship based
on the three dynamic threshold values τ1 , τ2 and τ3. To more
precisely extract the entire micro-structural features included
in these interconnections, we developed a texture operator
named Multi-scale Ternary and Septenary Pattern (MTSP)
which is conceptually comprised of Single-scale Ternary
Pattern (STP) and Single-scale Septenary Pattern (SSP), as
specified below:

1) Single-scale Ternary pattern (STP): Using a three-
valued coding technique (i.e., the notion of LTP-like ap-
proaches), we created a Single-scale Ternary Pattern (STP)
to encode the connection between the central pixel and the
points of both sample sets F1 and F2. The indicator function
φ(.) that transforms each pair connection into ternary form is
defined as follows (cf. Eq. (42)):

φ(α) =

 1 if α ∈ AU (x, y),
0 if α ∈ AU (x, y) ∩ AL(x, y),
−1 if α ∈ AL(x, y).

(34)

The local information of the pixel ac is then encoded using
the STP encoder, expressed by the following equations (cf.
Eq. (34) and (34)):

STP pattern(ac) =

5∑
p=0

φpattern(ac)× 2p (35)

Where

φpattern(x) =

{
1 if φ(x) = {1, 2},
0 otherwise (36)

2) Single-scale Septenary Pattern (SSP): In the same
way that LQP changed the LTP algorithm to work with the
five-value encoding method, we use a seven-value encoding
scheme based on three dynamic threshold values designed by
[Rachdi et al., 2020], in order to represent the relationships

between points in the rest of the sampling sets Fk; k ∈
{3, ..., 6} and the central pixel. Furthermore, we can capture
discriminant microstructure information from the perspective
of the established ensemble of sets of pixels relationship using
this method (i.e., Single-scale Septenary pattern (SSP)). SSP
employs the following indicator denoted as ψ(.) (cf. Eq. 37):

ψ(α) =



+3 if α ∈ AU3 (x) ∩ AU4 (y) ∩ AU (x, y, z),
+2 if α ∈ AU4 (x) ∩ AU5 (y) ∩ AU (x, y, z),
+1 ifα ∈ AU3 (x) ∩ AU5 (y) ∩ AU (x, y, z),
−1 if α ∈ AL3 (x) ∩ AL5 (y) ∩ AL(x, y, z),
−2 if α ∈ AL4 (x) ∩ AL5 (y) ∩ AL(x, y, z),
−3 if α ∈ AL3 (x) ∩ AL4 (y) ∩ AL(x, y, z),
0 otherwise

(37)
where AU designates the complement of AU .

Using the following SSP encoder , the local information of
the pixels ac is encoded as follows:

SSP pattern(p, q) =

5∑
p=0

ψpattern(ap)× 2p (38)

Where pattern ∈ {1, 2, 3, 4, 5, 6} represents six binary pat-
terns by considering its upper-positive, middle-positive, lower-
positive, upper-negative, middle-negative and lower-negative
components denoted as ψ(+3), ψ(+2), ψ(+1), ψ(−1),
ψ(− 2) and ψ(−3) respectively. Note that SSP encodes an
image in seven channels but gives six bit patterns. The image
encoded by SSP is divided into six bit patterns under the
following conditions:

ψpattern(x) =

{
1 si ψ(x) = {1, 2, 3, 4, 5, 6},
0 si sinon. (39)

B. Features extraction

After encoding each pixel in the input texture image using
STP and SSP encoders, two feature maps are created. The
following equations are used to convert the two feature maps
into the texture-representing histograms.

hSTP (k) =

P−1∑
p=0

δ̂(STP (ap), k) (40)

hSSP (k) =

P−1∑
p=0

δ̂(SSP (ap), k) (41)

where k ∈ [0; 26] is the number of STP and SSP patterns.
δ̂(., .) denotes the Kronecker delta function defined as below:

δ̂(x, y) =

{
1 si x = y,
0 si sinon. (42)

Since several texture features provide various levels of
descriptive power, combining them into a single row vector



feature seems to be the most effective strategy for making use
of their combined strengths. A new hybrid texture description
model is created via the use of a multi-scale fusion operation
to achieve this goal and capture more prominent texture
properties. By combining the STP and SSP operators, they
generate the multi-scale ternary and septenary pattern (MTSP)
(cf. Eq. 43), which is considered to be more effective due
to the fact that it improves the discriminatory and expressive
capabilities of both original operators.

h(MTSP ) =
〈
hSTP , hSSP ,

〉
(43)

where 〈.〉 is the concatenation operator of the two histograms
hSTP et hSSP

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the proposed MTSP descriptor’s efficiency
and performance were tested on several publicly available
texture and material datasets (cf. Figure 6) and compared
to 15 recent state-of-the-art feature extraction methods using
a set of experiments. The experiments here used the split-
sample validation protocol, in which half of the images are
selected randomly for training and the other half are used for
testing. In addition, the classification task is carried out using
the parameter-free nearest-neighbor classifier (1-NN) with the
L1-city block distance. Note that the classification tasks are
repeated over 100 random splits to avoid any bias associated
with the data partitioning and that the average results are
used to measure the final accuracy. Table I depict the feature
extraction methods tested and compared with the proposed
descriptor.

N Texture descriptor Reference
1 Local binary patterns (LBP) [Ojala et al., 1996]
2 Local ternary patterns (LTP) [Tan and Triggs, 2010]
3 Local binary patterns (LQP) [Nanni et al., 2010]
4 Improved local texture patterns (ILTP) [Yang and Sun, 2011]
5 Median robust extended local binary pattern (MRELBP) [Liu et al., 2016]
6 Locally encoded transform feature histogram (LETRIST) [Song et al., 2017]
7 Repulsive-and-attractive local binary gradient contours (RALBGC) [El Khadiri et al., 2018b]
8 Local concave-and-convex micro-structure patterns (LCCMSP) [El Merabet and Ruichek, 2018]
9 Local directional ternary pattern (LDTP) [El Khadiri et al., 2018a]
10 Mixed neighborhood topology cross decoded patterns (MNTCDP) [Kas et al., 2018]
11 improved local Quinary patterns (ILQP) [Armi and Fekri-Ershad, 2019]
12 Attractive-and-repulsive center-symmetric LBP (ARCSLBP) [El Merabet and Ruichek, 2019]
13 Directional neighborhood topologies based MQP (DNT-MQP) [Rachdi et al., 2020]
14 Local triangular coded pattern (LTCP) [Arya and Vimina, 2021]
15 LTP based multi-directional guided mixed mask (MDGMM-LTP) [El Khadiri et al., 2022]

TABLE I
FEATURE EXTRACTION METHODS USED IN THIS EXPERIMENT.

A. Texture datasets

Extensive tests are conducted on nine popular
datasets—BonnBTF, JerryWu, Brodatz, KTH-TIPS, KTH-
TIPS2b, USPtex1, VisTex, MBT, and NewBarkTex—to
validate MTSP’s capabilities and performance stability. These
datasets were chosen because they are representative of a
range of factors, including the number of images and classes
included, and the unique problems inherent to each dataset,
as shown in Table 6.

.

Fig. 6. Image datasets used in this study.

B. Comparative Assessment of Performance

1) Experiment #1: Investigation on Performance
Stability:

The following conclusions may be drawn from Tables II and
III, which summarize the classification accuracies achieved on
average for each technique evaluated and the overall ranking
for each dataset:

1) It can be seen that the Single-scale Ternary Pattern
(STP), the Single-scale Septenary Pattern (SSP), and
their combination (MSTP), tend to achieve the highest
and most stable discriminative accuracy of all the meth-
ods tested.

2) The proposed MTSP operator achieved a maximum
classification accuracy of 100% across four datasets
(i.e., BonnBTF, JerryWu, Brodatz, and KTH-TIPS),
indicating that our technique was able to distinguish
between all classes flawlessly and offers no space for
improvement. Note that our method was the only method
to achieve 100% over 4 different datasets.

3) A further finding from Table II shows that none of
the evaluated feature extraction methods performed well
over all the tested datasets. In fact, our proposed method
achieves the highest average accuracy over six datasets
out of the nine tested ones, indicating that the MSTP
method is more stable and strong than all the tested
methods. Note that for the three remaining datasets,
the proposed method keeps its strength by achieving
an average accuracy that is competitive with the score
provided by the top one method in each dataset, as
illustrated in Columns 6, 8, and 9 in Table II. Using
the USPtex1 dataset as an example (column 6 in Table
II), the proposed method is ranked second with an
average accuracy of 91.13%, which is a very good
classification rate (close to the average accuracy of the
top-ranked feature extraction method, DNT-MQP, which
is 92.46%). The same finding is correct for the other two
datasets.

Based on the observations outlined above, it is clear that
MSTP consistently outperforms the state-of-the-art feature
extraction approaches examined in our studies across the vast
majority of the tested texture and material datasets.



Descriptors BonnBTF JerryWu Brodatz KTH-TIPS KTH-TIPS2b USPtex1.0 VisTex MBT NewBarkTex
MTSP 100 100 100 100 95.61 91.13 80.93 87.96 85.04
STP 99.51 99.33 99.98 100 92.28 86.28 79.35 88.60 77.53
SSP 99.96 99.83 99.95 100 93.86 89.93 77.68 83.57 81.76
DNT-MQP 99.25 99.88 100 100 95.12 92.46 78.22 86.91 86.98
LETRIST 100 100 99.99 100 90.08 89.34 68.68 81.39 63.12
LCCMSP 97.64 98.18 100 100 93.32 88.42 78.27 85.41 84.72
ARCSLBP 99.17 99.53 99.88 100 93.23 86.89 75.76 83.23 78.66
LDTP 99.88 98.23 100 100 90.47 83.00 76.76 82.97 72.66
ILQP 98.72 98.03 100 100 93.39 87.54 75.39 85.80 83.85
RALBGC 98.80 97.51 100 100 93.39 87.16 77.89 86.22 84.56
MDGMM-LTP 100 98.01 100 100 93.57 89.37 79.21 87.19 85.17
LBP 95.86 97.26 100 100 89.67 81.43 74.19 85.61 79.00
LTCP 98.59 97.74 100 100 88.14 80.44 72.78 84.42 76.56
ILTP 99.17 98.32 100 100 93.91 88.83 77.44 84.74 84.44
LTP 98.64 98.06 100 100 92.92 86.42 75.38 88.56 82.81
LQP 97.06 97.69 99.97 99.90 93.17 85.42 73.83 89.31 78.54
MRELBP 98.97 99.53 100 100 89.00 84.38 64.74 75.66 61.81
MNTCDP 100 100 100 100 90.93 85.73 79.53 78.95 71.03

TABLE II
THE ACHIEVED CLASSIFICATION PERFORMANCE OF STATE-OF-THE-ART FEATURE EXTRACTION TECHNIQUES.

BonnBTF JerryWu Brodatz KTH-TIPS KTH-TIPS2b USPtex1.0 VisTex MBT NewBarkTex
MTSP(100%) MTSP(100%) MTSP(100%) MTSP(100%) MTSP(95.61%) DNT-MQP(92.46%) MTSP (80.93%) LQP(89.31%) DNT-MQP(86.98%)
LETRIST LETRIST DNT-MQP STP( 100.00 %) DNT-MQP MTSP MNTCDP STP( 88.61 %) MDGMMLTP
MNTCDP MNTCDP RALBGC SSP( 100.00 %) ILTP SSP( 89.93 %) STP(79.35%) LTP MTSP
MDGMMLTP DNT-MQP LDTP DNT-MQP SSP( 93.86 %) MDGMMLTP MDGMMLTP MTSP RALBGC
SSP( 99.51%) SSP(99.96%) ILQP LETRIST MDGMMLTP LETRIST RALBGC MDGMMLTP RALBGC
LDTP RCSLBP RALBGC RALBGC ILQP ILTP DNT-MQP DNT-MQP ILTP
STP( 99.51 %) MRELBP MDGMMLTP RCSLBP RALBGC RALBGC RALBGC RALBG ILQP
DNT-MQP STP(99.33%) LBP LDTP RALBGC ILQP SSP( 77.68 %) ILQP LTP
RALBGC ILTP LTCP ILQP RCSLBP RALBGC ILTP LBP SSP( 81.76%)
ILTP LDTP ILTP RALBGC LQP RCSLBP LDTP RALBGC LBP
MRELBP RALBGC LTP MDGMMLTP LTP LTP RCSLBP ILTP RCSLBP
RALBGC LTP MRELBP LBP STP(92.28 %) STP(86.28%) ILQP LTCP LQP
ILQP ILQP MNTCDP LTCP MNTCDP MNTCDP LTP SSP( 83.57 %) STP(77.53 %)
LTP MDGMMLTP LETRIST ILTP LDTP LQP LBP RCSLB LTCP
LTCP LTCP STP (99.98%) LTP LETRIST MRELBP LQP LDTP LDTP
RALBGC LQP LQP MRELBP LBP LDTP LTCP LETRIST MNTCDP
LQP RALBGC SSP(99.95%) MNTCDP MRELBP LBP LETRIST MNTCDP LETRIST
LBP LBP RCSLBP LQP LTCP LTCP MRELBP MRELBP MRELBP

TABLE III
ON EACH OF THE DATASETS EVALUATED, A RANKING OF THE FEATURE EXTRACTION TECHNIQUE RESULTS WAS PERFORMED. THE APPROACH

PRESENTED IS INDICATED IN LIGHT GRAY.

2) Experiment #2: Statistical significance of the achieved
results in terms of accuracy improvement:

The objective of this section is to further prove statistically
the realized performances via MTSP compared to the existing
evaluated methods by employing the Wilcoxon signed rank
test-based ranking technique [El Merabet and Ruichek, 2018].
The algorithm is applied to all the pairwise combinations of
the 18 evaluated methods, including (STP and SSP and their
combination MTSP=STP+SSP) on the nine tested databases.
Figure 7 depicts the achieved ranking results based on the nor-
malized number of victories achieved by each method across
all databases considered in our experiment. It is evident from
the findings shown in Figure 7 that MSTP is the most effective
operator among the most recent feature extraction techniques,
validating the general conclusion drawn from Tables II and
III.

V. CONCLUSION

In this paper, we introduce Multi-scale Ternary and Septe-
nary Pattern (MTSP), an innovative feature extraction method
that makes use of set theory, neighborhood topology, and

Fig. 7. Ranking results and the number of victories obtained for the 18
evaluated methods.

multiple oriented blocks. In fact, MTSP encodes the linkages
and interactions between pixels in a 3×3 grayscale image
patch using a compact coding technique that combines the
ideas of LTP and LQP-like technologies. The capabilities
and performance stability of MTSP’s were evaluated on nine
complex texture databases using the 1-NN classifier against



15 new and advanced state-of-the-art texture operators. The
MTSP descriptor performed well across all databases, both in
terms of results and dimensions, indicating that it provides
a more accurate representation of texture images. In future
work, we plan to try out more advanced classifiers in order to
improve classification accuracy.
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comparative study of texture measures with classification based on featured
distributions. Pattern recognition, 29(1):51–59.

[Rachdi et al., 2020] Rachdi, E., El Merabet, Y., Akhtar, Z., and Messoussi,
R. (2020). Directional neighborhood topologies based multi-scale quinary
pattern for texture classification. IEEE Access, 8:212233–212246.

[Shu et al., 2022] Shu, X., Pan, H., Shi, J., Song, X., and Wu, X.-J. (2022).
Using global information to refine local patterns for texture representation
and classification. Pattern Recognition, 131:108843.

[Song et al., 2017] Song, T., Li, H., Meng, F., Wu, Q., and Cai, J. (2017).
Letrist: Locally encoded transform feature histogram for rotation-invariant
texture classification. IEEE Transactions on circuits and systems for video
technology, 28(7):1565–1579.

[Tan and Triggs, 2010] Tan, X. and Triggs, B. (2010). Enhanced local texture
feature sets for face recognition under difficult lighting conditions. IEEE
transactions on image processing, 19(6):1635–1650.

[Yang and Sun, 2011] Yang, W. and Sun, C. (2011). Face recognition using
improved local texture patterns. In 2011 9th World Congress on Intelligent
Control and Automation, pages 48–51. IEEE.

[Zheng et al., 2022] Zheng, Z., Xu, B., Ju, J., Guo, Z., You, C., Lei, Q.,
and Zhang, Q. (2022). Circumferential local ternary pattern: New and
efficient feature descriptors for anti-counterfeiting pattern identification.
IEEE Transactions on Information Forensics and Security, 17:970–981.


