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This paper ideates, inspired by LBP and its variants, a novel local feature extraction operator for texture
classification, referred to as Multi-scale Ternary and Septenary Pattern (MTSP). MTSP is a histogram-
based feature reṕresentation that is composed of two single-scale STP and SSP (single-scale ternary
and septenary patterns, respectively) encoders designed according to a novel set theory based pattern
encoding scheme that integrates the concepts of both LQP’s and LTP’s operators. The essence of STP
and SSP is to compute several virtual pixels based on various local and global image statistics and pro-
gressively encode interactions between local and non-local pixels by examining the directional informa-
tion and differential excitation according to relationships between adjacent pixels rearranged in a variety
of spatial arrangements. Unlike various parametric state-of-the-art texture operators that perform
thresholding based on static thresholds, MTSP incorporates dynamic thresholds estimated automatically.
MTSP descriptor has good ability as faithfully as possible to capture more detailed image information via
complementary texture information generated from the fusion of both STP and SSP encoders.
Experimental results show that MTSP ensures reliable performance stability over ten texture datasets
and against several recent representative methods. In addition, the performance of MTSP is further
proved statistically via the Wilcoxon signed rank test demonstrating thus that MTSP is a good candidate
for texture modeling.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the field of texture analysis, the classification of textures is
increasingly seen as a serious problem. It plays a major role in a
wide range of applications, such as face presentation attack detec-
tion (Li et al., 2022), image classification (Fernandez et al., 2011),
writer identification (Bahram, 2022), image retrieval (Banerjee
et al., 2018), object and scene recognition (Torralba et al., 2008),
pedestrian detection (Zheng et al., 2017), gender classification
(Hadid et al., 2015), facial classification (Chakraborty et al.,
2018), etc. However, in the real world, textures vary in scale,
illumination, rotation and affine varieties as imaging conditions
changes. In texture analysis, extracting powerful features for tex-
ture categorization is still a gauntlet. Over the years, numerous
advanced approaches were developed in the literature with excel-
lent surveys given in Liu et al. (2019). Several traditional feature
extraction approaches have been proposed such as, co-
occurrence matrix-based approaches (Davis, 1981), filter-based
techniques such as wavelet (Porter and Canagarajah, (1997,
April).), Gabor (Manjunath and Ma, 1996) and Gaussian Markov
random fields (Cohen et al., 1991), fractal analysis-based methods
(Xu et al., 2010), texton dictionary-based methods (Varma and
Zisserman, 2008), etc. Over the past decades, local feature extrac-
tion techniques have been designed and have demonstrated great
success in the field of texture analysis. The primary benefits of
these texture descriptors come from the fact that they only depend
on a relatively modest amount of training data and their straight-
forward design (Bhattacharjee and Roy, 2021).

Among the local texture descriptors, LBP (local binary patterns)
(Ojala et al., 1996), has become one of the most remarkable and
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attractive texture descriptor and has attracted greater interest for
more than a decade. LBP is highly regarded by scientists due to
its distinctive merits including ease to train with a small amount
of data, implementation simplicity, suitability to solve high-class
texture problems with real-time applications due to its relative fast
calculation, invariability to monotonic illumination variations, etc.
(Rachdi et al., 2020). Despite these advantages, LBP also has many
limitations (Ruichek, 2018) such as: (1) It is sensitive to noise since
it is based only on the comparison between local pixels; (2) It dis-
regards the image’s comprehensive spatial information in favor of
local texture elements; (3) It is not invariant to image rotation, etc.
Several attempts have been made to overcome the shortcomings of
LBP, and as a result, many modifications and extensions built on
LBP have been designed in recent years. Guo et al. (2012), Guo
et al. (2010), Fernandez et al. (2011), Kas et al. (2018). The authors
in El Idrissi et al. (2020) provided thorough tests evaluating the
performance of various state-of-the-art texture operators in palm-
print and face recognition problems, respectively. To overcome the
sensitivity of LBP to central pixel noise, local ternary pattern (LTP)
(Tan and Triggs, 2010) has been introduced. In LTP, by assigning a
threshold to the central pixel, the descriptor is quantized into three
levels (-1, 0, and 1) and decomposed into two upper and lower
descriptors. In El-khadiri et al. (2018), the authors presented local
directional ternary pattern (LDTP) operator that encodes both
directional and contrast informations using the concepts of LDP
and LTP operators. More recently, Shih et al. (2020) designed syn-
chronized rotation local ternary pattern (SRLTP) operator for image
classification. SRLTP operator consists in improving the LTP opera-
tor by using an additional procedure on the extracted upper and
lower LTPs which are henceforth encoded to a uniform and rota-
tion invariant patterns histograms, respectively. In Tuncer and
Dogan (2020), multi kernel based local binary pattern (MKLBP)
descriptor is proposed for texture classification. The construction
process of MKLBP integrates ternary, quaternary and signum fea-
ture extraction operators into the same encoding scheme. The
authors in Al Saidi et al. (2022) proposed corner rhombus shape
LBP (CRSLBP) descriptor for texture classification. As an extension
of LBP operator, CRSLBP in addition to using a single parameter (ra-
dius) and the selected even block, it takes into account magnitude
and sign information,to threshold four center pixels. This permit to
encode relationships between the centers and the neighbor of
centers as well as neighbors. In Zheng et al. (2022), Zheng et al.
proposed circumferential local ternary pattern (CLTP) for anti-
counterfeiting pattern identification. CLTP classify each triplet of
pixels composed by two circumferential adjacent pixels and the
central pixels in each 3 � 3 square neighborhood into falling, rising
and stable structures. The local information is encoded using the
LTP’s concept.

LBP-like techniques have dominated the best position of local
feature algorithms for more than a decade. The need to develop a
discriminative local image feature operator no longer needs
approval and the emergence of new local hand-crafted methods
in pattern recognition is still ongoing, e.g., center Lop-Sided Local
Binary Patterns (CLS-LBP) (Dawood et al., 2022), quaternionic local
angular binary pattern (QLABP) (Lan et al., 2019), local concave-
and-convex micro-structure (LCCMSP) (Ruichek, 2018), multi-
direction local binary pattern (MDLBP) (Liu et al., 2019), scale-
selective and noise-robust extended local binary pattern (SNELBP)
(Luo et al., 2022), multi level directional cross binary patterns
(MLD-CBP) (Kas et al., 2020), petersen graph multi-orientation
based multi-scale ternary pattern (PGMO-MSTP) (El Khadiri et al.,
2021), oriented star sampling structure based multi-scale ternary
pattern (O3S-MTP) (El khadiri et al., 2020), orthogonal difference-
local binary pattern (OD-LBP) (Karanwal and Diwakar, 2021),
directional neighborhood topologies based multi-scale quinary
pattern (DNT-MQP) (Rachdi et al., 2020), quaternionic extended
406
local binary pattern (QxLBP) (Song et al., 2021), adaptively binariz-
ing magnitude vector (ABMV) (Hu et al., 2022) and so on.

Handcrafted texture methods appear to be progressively
replaced by CNN-based methods (Shu, 2022). However, the main
criticism of CNN come from the observation that they requires
expensive model learning on massive data to achieve high recogni-
tion accuracy, but at the expense of computation time that is very
expensive compared to hand-crafted features. In 2017, Liu et al.
(2017) evaluated large number of LBP variants and compared them
to some deep texture methods. Their findings revealed that the
best overall performance is obtained by their designed handcrafted
descriptor. Yang et al. (2020) have shown that handcrafted meth-
ods are efficient based directly on human knowledge. Song et al.
(2020) indicate that basic deep features lack some robustness to
rotation and illumination changes, while their designed hand-
crafted texture descriptor have great advantages in this regard.
On the other side, Huang et al. in Huang and Yin (2017) have
demonstrated how a structured and reliable local descriptor can
enhance deep learning’s remarkable capacity to extract more dis-
criminating features. Similar comments are highlighted in
Karczmarek et al. (2017)).

In summary and in light of above findings, the need to design a
robust handcrafted texture method with high discriminant power
is no longer to be proved. On the other hand, despite the promising
results of LBP and its extensions and modifications, still an alterna-
tive solution to strengthen their power of discrimination for better
representation of salient local texture structure, is crucial. In this
paper, to better address the limitations of local feature descriptors
and in particular LBP-like algorithms and thus to further improve
their performance while keeping their easiness and efficiency, we
develop a computationally and conceptually simple yet powerful
local texture descriptor, named multi-scale ternary and septenary
patterns (MTSP), for image texture understanding and analysis.
The idea behind MTSP method is to compute the feature represen-
tation using different neighbourhood topologies, in order to catch
comprehensive spatial information from neighbouring pixels in
multiple direction and blocks and also to characterize the spatial
relationship and the appearance of a given pixel intensity. The
MTSP operator is obtained as being a concatenation of two single
scale descriptors STP (Single-scale Ternary Pattern) and SSP
(Single-scale Septenary Pattern) where information extraction is
carried out according to a compact encoding scheme based on
set theory integrating both the concepts of LQP and LTP-like tex-
ture methods to provide more discriminative texture information.
MTSP has the advantage of being training free and conceptually
much easier to implement. Furthermore, let us note that the major
advantage of the proposed MTSP model lies in its flexibility given
by its adaptive thresholding mechanism that uses dynamic thresh-
olds estimated automatically inside each local compact neighbor-
hood. In this context, the four main contributions of this paper
are as follows:

� Two single scale feature descriptors called single-scale ternary
pattern (STP) and single-scale septenary pattern (SSP) are
designed based on novel set theory based pattern encoding
scheme. It extends the concepts of both LTP and LQP operators
using multiple oriented blocks and directions based neighbor-
hood topologies which are more suitable for texture modeling
against vast number of state-of-the-art methods.
� Both single-scale STP and SSP operators are combined together
into a single vector feature construct the distinctive MTSP
method which ought to be more effective and more reliable.
� Unlike vast number of existing parametric methods which use
static thresholds, the creation process of MTSP incorporates
dynamic thresholds which are estimated via an automatic
mechanism.
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� We provide thorough comparison on ten challenging datasets
and prove that MTSP shows superior of competitive perfor-
mance against recent powerful existing texture methods.

The structure of the rest of this paper is as follows. Section 2
briefly presents some typical state-of-the-art texture methods.
Section 3 describes in detail the proposed MTSP texture descriptor.
Comprehensive experiments and comparative evaluation are given
in Section 4. Section 5 presents the implementation details to com-
pare the processing time of all evaluated methods. Section 6 sum-
marizes the study and presents some future research directions.

2. Background: LBP, LTP and LQP

2.1. Basic Local binary pattern (LBP)

The popular texture operator LBP, which demonstrated to be a
very effective and computationally simple texture descriptor for
monochromatic images, was introduced by Ojala et al. (1996).
For each pixel in the image I of size M � N, a LBP value is computed
by comparing its intensity value with those of its surrounding
neighbors in each 3� 3 grayscale image patch. Formally, given a
central pixel Ic in a 3� 3 square neighborhood, its LBP label is gen-
erated based on the kernel function LBP �ð Þ (cf. Eq. (1)).

LBP Icð Þ ¼
XP�1
p¼0

# Ip � Ic
� �� 2p ð1Þ

where Ip p 2 0;1; :::;P� 1f gð Þ denotes the pth surrounding pixel, P
(P=8) is the number of surrounding pixels. # is defined as follows
(cf. Eq. (2)):

# að Þ ¼ 1 if a >¼ 0
0 otherwise

�
ð2Þ
2.2. Local Ternary pattern (LTP)

The authors in Tan and Triggs (2010) extended the traditional
LBP to three-value encoding scheme referred to as LTP, in which
the two conventional binary codes (0 and 1) are extended to tern-
ary codes (-1, 0 and 1). LTP uses a constant threshold value s spec-
ified by the user to compare the central pixel with its neighbouring
pixels. The 3-valued function u �ð Þ is given as follows (cf. Eq. (3)):

u Ip; Ic; s
� � ¼ þ1 if Ip >¼ Ic þ s

0 if j Ip � Ic
� � j< s

�1 if Ip <¼ Ic � s

8><>: ð3Þ

Consequently, by using the function u �ð Þ, local ternary patterns
upper (LTPU) and local ternary patterns lower (LTPL) are coded as
following (cf. Eqs. (4) and (5)):

LTPL Icð Þ ¼
X7
p¼0

2p# Ic � Ip � s
� � ð4Þ

LTPU Icð Þ ¼
X7
p¼0

2p# Ip � Ic � s
� � ð5Þ

The final LTP code generated for each pixel of the image, is the com-
bination of the two LTPU and LTPL texture features.

2.3. Local quinary patterns (LQP)

Loris Nanni et al. (2010), inspired by LTP, have extended LBP
method to five-value encoding technique referred to as LQP in
which the two conventional binary codes (0 and 1) are extended
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to quinary codes (-2, �1, 0, 1 and 2) based on two constant
thresholds s1 and s2. The 5-valued function t �ð Þ is given as follows
(cf. Eq. (6)):

t Ip; Ic; s1; s2
� � ¼

þ2 if Ip P Ic þ s2
þ1 if Ic þ s1 6 Ip < Ic þ s2
0 if Ic � s1 6 Ip < Ic þ s1
�1 if Ic � s2 6 Ip < Ic � s1
�2 otherwise

8>>>>>>><>>>>>>>:
ð6Þ

where s1 and s2 are two constant thresholds.
Subsequently, the obtained LQP is split into four binary patterns

using the bc xð ) function and c 2 2;1;0;�1;�2f g. Finally, the his-
tograms produced from the binary patterns are concatenated.

bc xð Þ ¼ 1 if x ¼¼ c

0 otherwise

�
ð7Þ
3. Multi-scale Ternary and Septenary Patterns (MTSP)

MTSP is derived from the relationship between the local neigh-
boring pixels and their central pixel in each 3� 3 patch by combin-
ing the concepts of LQP- and LTP-like texture methods in the same
compact encoding strategy, increasing the texture modeling’s
accuracy, which leads to more hopeful outcomes. The essence of
MTSP is to carry out pixels sampling and pattern encoding in the
most relevant directions present in local microstructures. The con-
struction process of MTSP descriptor that we propose, involves the
following steps:

3.1. Pattern sampling

It is worthmentioning that MTSP operator takes into account a
unit distance radius as nearest surrounding pixels keeps more dis-
criminative information for local texture modeling retaining thus
lower feature size and computational cost. Thus, the whole 3� 3
square neighborhood is chosen as spatial micro-structure to build
the MTSP descriptor which conveys valuable information between
the adjacent neighbouring pixels. Given a central pixel Ic and its 8
surrounding pixels I0; I1f , . . ., I7g and based on the commonly used
assumption that a texture information is derived from local spatial
fluctuations in pixel intensities and orientation, MTSP considers
multiple oriented blocks and directions based neighborhood
topologies to encode the relationships and interactions between
neighbouring pixels. As illustrated in Figs. 1 and 2, the pixels are
sampled around the central pixel in a variety of spatial arrange-
ments according to their angular position to catch more compre-
hensive spatial information from surrounding pixels. On the one
hand, as shown from the first row of Fig. 1, the central pixel Ic is
rearranged each time with two pixels which are symmetrically
located around it at all possible orientations, i.e. horizontal (0�),
forward slant (45�), vertical (90�), and backward slant (135�),
while from the second row, it can be seen that Ic is sampled each
time with four pixels. On the other side, it can be inferred
from Fig. 2 that the 3� 3 square neighborhood is divided into
four 2� 2 blocks where Ic is sampled with three pixel in each
direction.

It is appropriate to indicate that both mean grey value and med-
ian value are commonly used statistical metrics for texture model-
ing and analysis. In light of this and with the intention of
generating a code that is impervious to noise and more resistant
to lighting changes, various kinds of median and mean values are
used as virtual pixels into the construction process of MTSP. Math-
ematical definitions of these values are given by the following
equations (cf. Eqs. (8)–(13)):



Fig. 1. Different template-directional neighborhood topologies.

Fig. 2. Different template-block neighborhood topologies.
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Dk ¼ 1
3

Ik þ Ic þ Ikþ4ð Þ ð8Þ

eDk ¼ 1
4

Ik þ 2Ic þ Ikþ4ð Þ ð9Þ

where Dk and eDk represent respectively the mean of (Ik; Ic; Ikþ4) and
the mean of ((Ik; Ic), (Ic; Ikþ4)), where k2 0;1;2;3f g.

K0 ¼ 1
6

I0 þ I4 þ 2Ic þ I2 þ I6ð Þ ð10Þ

K1 ¼ 1
6

I1 þ I5 þ 2Ic þ I3 þ I7ð Þ ð11Þ

Bk ¼ 1
4

I2k þ 2I2kþ1 þ I2kþ2ð Þ ð12Þ

eBk ¼ 1
4

I2k þ 2Ic þ I2kþ2ð Þ ð13Þ

where Bk and eBk represent respectively the mean of ((I2k; I2kþ1),
(I2kþ1; I2kþ2)) and the mean of ((I2k; Ic), (Ic; I2kþ2)), where k
2 0;1;2;3f g

We consider (Dk; eDk) and (Bk; eBk) as virtual neighboring pixels of
the central pixel Ic and then compute their local means and medi-
ans as shown in the following equations (cf. Eqs. (14)–(19)):

mD ¼ 1
9

Ic þ
X3
k¼0

Dk þ eDk

� � !
ð14Þ

mB ¼ 1
9

Ic þ
X3
k¼0

Bk þ eBk

� � !
ð15Þ

mI ¼

XM
a1¼1

XN
a2¼1

I a1;a2ð Þ

M� N
ð16Þ
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bmD ¼ median Dð Þ ð17Þ

bmB ¼ median Bð Þ ð18Þ

bmI ¼ median Ið Þ ð19Þ
where B and D are the set of Bk;k2 0;1;2;3f g and Dk;k2 0;1;2;3f g (cf. Eqs. 8 and
12), respectively.

3.2. Coding scheme

First of all, in order to establish relationships between pixels
and different sets of pixels, we use the set theory and in particular
Venn diagrams which is a diagrammatic representation of different
possible relationships between different sets of a finite number of
elements. Let’s consider the following definitions:

Definition 1. A set is an unordered collection of objects, called
members or elements of the set. A real interval x is a nonempty
set of real numbers A ¼ a; b½ � ¼ x j a 6 x 6 bf g where a is called
the infimum and b is called the supremum.

Definition 2. Let A and B be two sets. The set containing those
elements in both A and B is the intersection of the sets A and B,
indicated by A \ B.

Definition 3. Let E be a set and A a subset of E. The complement
of A in E is the set x j x 2 E et x R Af g. We denote it CEA or E n A or

AC or A.
Accordingly, by considering the neighbouring pixels and the vir-

tual pixels as well as their mean and median values, we construct
six sampling sets denoted as SSi;i2 1;...;6f g (cf. Eqs. (20)–(25)).

SS1 ¼ D0;D1; I4; I5; I6; I7f g ð20Þ

SS2 ¼ D2;D3; I0; I1; I2; I3f g ð21Þ

SS3 ¼ mI;K0; I1; I3; I5; I7f g ð22Þ

SS4 ¼ bmI;K1; eBk;k2 0;::;3f g
n o

ð23Þ
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SS5 ¼ min mD;mBð Þ
2

;
min bmD; bmB

� �
2

;min eDk; eBk

� �
k2 0;::;3f g

� �
ð24Þ

SS6 ¼ max mD;mBð Þ
2

;
max bmD; bmB

� �
2

; . . .max eDk; eBk

� �
k2 0;::;3f g

� �
ð25Þ

To visualize set operations, we define two kinds of Venn dia-
grams, i.e., Venn diagrams in lower and upper modes, as schema-
tized in Figs. 3 and 4, respectively.

Given the defined six sampling sets SSi;i2 1;...;6f g, an ensemble of
sets of pixels relationship based on three dynamic threshold values
s1; s2 and s3 are constructed according to both upper and lower
Venn diagrams modes as well as the three definitions (given in
Definition 1 to Definition 3). Denoted as A, they are expressed as
follows (cf. Eqs. (26)–(39)):

AU
1 xð Þ ¼ x 2 SS1 j x P Ic � s1f g ð26Þ

AU
2 yð Þ ¼ y 2 SS2 j y P Ic þ s1f g ð27Þ

AU x; yð Þ ¼ AU
1 xð Þ \AU

2 yð Þ ð28Þ

AL
1 xð Þ ¼ x 2 SS1 j x 6 Ic þ s1f g ð29Þ

AL
2 yð Þ ¼ y 2 SS2 j y 6 Ic � s1f g ð30Þ

AL x; yð Þ ¼ AL
1 xð Þ \AL

2 yð Þ ð31Þ

AU
3 xð Þ ¼ x 2 SS3 j x P Ic þ s2f g ð32Þ

AU
4 yð Þ ¼ y 2 SS4 j y P Ic � s3f g ð33Þ

AU
5 zð Þ ¼ z 2 SS5 j z P Ic þ s1f g ð34Þ

AU x; y; zð Þ ¼ AU
3 xð Þ \AU

4 yð Þ \AU
5 zð Þ ð35Þ

AL
3 xð Þ ¼ x 2 SS3 j x 6 Ic � s2f g ð36Þ

AL
4 yð Þ ¼ y 2 SS4 j y 6 Ic þ s3f g ð37Þ

AL
5 zð Þ ¼ z 2 SS6 j z 6 Ic � s1f g ð38Þ

AL x; y; zð Þ ¼ AL
3 xð Þ \AL

4 yð Þ \AL
5 zð Þ ð39Þ
Fig. 3. A schematic image of the
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The local texture relationship between each points within the
established six sampling sets SSi;i2 1;...;6f g and the central pixel, is
encoded using three and seven-valued coding schemes (hence
the name is ternary respectively septenary) according to the
ensemble of sets of pixels relationship based on the three dynamic
threshold values s1; s2 and s3. Note that s1; s2 and s3 are employed
to reduce the influence of outside factors like noise that disturbs
patterns. We design a texture operator called Multi-scale Ternary
and Septenary Pattern (MTSP) in order to clearly extract compre-
hensive micro structure features contained in these relationships.
Conceptually, MTSP is composed of Single-scale Ternary Pattern
(STP) and Single-scale Septenary Pattern (SSP) defined as follows:

3.2.1. Single-scale Ternary Pattern (STP)
By employing a three-valued coding scheme (i.e., concept of

LTP-like methods), we design Single-scale Ternary Pattern (STP)
to encode relationship between the central pixel and points of both
the sampling sets SS1 and SS2. The exploited indicator function
/pattern �ð Þ that converts each couple relationship in ternary form is
given by Eq. 40.

/ að Þ ¼
þ1 if a 2 AU x; yð Þ
0 if a 2 AU x; yð Þ \AL x; yð Þ
�1 if a 2 AL x; yð Þ

8><>: ð40Þ

The local information is then encoded using the following encoder
noted STP and expressed as follows:

STPPattern Icð Þ ¼
X5
p¼0

/pattern Ip
� �� 2p ð41Þ

where

/pattern xð Þ ¼ 1 if / xÞ ¼ 1;2f g0otherwiseðf ð42Þ
3.2.2. Single-scale Septenary Pattern (SSP)
Similarly to LQP which extended LTP method to five-value

encoding technique and in order to capture more comprehensive
features, we propose, in this paper, to encode relationship between
points within the rest of sampling sets SSi;i2 3;::;6f g and the central
pixel using a seven-value encoding scheme based on three
dynamic threshold values (s1; s2 and s3). Called Single-scale Septe-
nary Pattern (SSP), it can capture discriminant micro structure
information from the perspective of the established ensemble of
lower Venn diagrams mode.



Fig. 4. A schematic image of the upper Venn diagrams mode.
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sets of pixels relationship. SSP employs the following indicator
denoted as wpattern �ð Þ (cf. Eq. 45):

w að Þ ¼

þ3 if a 2 AU
3 xð Þ \AU

4 yð Þ \AU x; y; zð Þ
þ2 if a 2 AU

4 xð Þ \AU
5 yð Þ \AU x; y; zð Þ

þ1 if a 2 AU
3 xð Þ \AU

5 yð Þ \AU x; y; zð Þ
�1 if a 2 AL

3 xð Þ \AL
5 yð Þ \AL x; y; zð Þ

�2 if a 2 AL
4 xð Þ \AL

5 yð Þ \AL x; y; zð Þ
�3 if a 2 AL

3 xð Þ \AL
4 yð Þ \AL x; y; zð Þ

0 otherwise

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð43Þ

where AU x; y; zð Þ (resp. AL x; y; zð Þ) is the complement of AU x; y; zð Þ
(resp. AL x; y; zð Þ) as defined in Definition 2.

The local information is then encoded using the following enco-
der noted SSP and expressed as follows:

SSPPattern Icð Þ ¼
X5
p¼0

wpattern Ip
� �� 2p ð44Þ

where pattern 2 1;2;3;4;5;6f g are six binary patterns by taking
into account its lower-positive, lower-negative, upper-positive,
upper-negative, middle-positive and middle-negative components
denoted as w þ3ð Þ;w þ2ð Þ;w þ1ð Þ;w �1ð Þ;w �2ð Þ and w �3ð Þ respec-
tively. It is worth noting that SSP encodes a texture image in seven
channels but gives six bit patterns. The resultant image encoded by
SSP is divided into six bit patterns using the wpattern function defined
by (cf. Eq. 45):

wpattern xð Þ ¼ 1 if w xÞ ¼ 1;2;3;4;5;6f g0otherwiseðf ð45Þ
3.3. Features extraction

At this step, two code maps are generated for each grayscale
image using both the STP and SSP encoders. Two histograms are
then produced from these two code maps using Eqs. 46 and 47.

hSTP kð Þ ¼
X
Ic2I
bd STP Icð Þ;kð Þ ð46Þ

hSSP kð Þ ¼
X
Ic2I
bd SSP Icð Þ;kð Þ ð47Þ

where k 2 0;26
h i

is the number of STP and SSP patterns and bd(�) is
the Kronecker delta function given by (cf. Eq. 48):
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bd a; bð Þ ¼ 1 if a ¼ b

0 otherwise

�
ð48Þ

Considering the fact that several texture features have different
capabilities to describe images and in order to take advantage of
their performances, the trend towards integrating them into a sin-
gle row feature vector seems to be the best way forward. To
accomplish such a task and to capture more salient texture fea-
tures, a multi-scale fusion operation is used to generate a novel
hybrid texture description model. The obtained texture operator,
which is the fusion of both STP and SSP operators is called multi-
scale ternary and septenary pattern (MTSP). It is expected to be
more powerful as it leads to improved power of discrimination
and expressiveness of STP and SSP operators via their complemen-
tary informations. The generated single feature vector of multi-
scale analysis is expressed as follows:

hMTSP ¼ hSTP;hSSPh i ð49Þ

where is the concatenation operator.
3.4. Dynamic thresholds

In order to realize a high trade-off between classification accu-
racy and computational efficiency, we plan to define locally and
dynamically the three parameters s1; s2 and s3 of MTSP. Given a
3� 3 square neighborhood, we first calculate the neighbor to cen-
ter difference to form a difference vector dv3�3 (cf. Eq. 50). After
that, the mean of all negative and positive difference values (i.e.,

dvmean�
3�3 and dvmeanþ

3�3 , respectively) are produced (cf. Eqs. 51 and 52).

dv3�3 ¼ 1
2

I0 � 3 � Icð Þ;1
2

I1 � 3 � Icð Þ; . . . ;1
2

I7 � 3 � Icð Þ
� 	

ð50Þ
dvmeanþ
3�3 ¼ 1

pv
Xpv
k¼1

dvþk ð51Þ
dvmean�
3�3 ¼ 1

nv
Xnv
k¼1
j dv�k j ð52Þ

where dvþk and dv�k are, respectively, the negative (i.e.,
1
2 Ik � 3 � Icð Þ < 0) and positive (i.e., 1

2 Ik � 3 � Icð ÞP 0) difference
values in the dv3�3 set, nv is the number of dv�k elements and pv
is the number of dvþk elements (pv + nv = P). Finally, the parameters
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s1; s2 and s3 are calculated using these equations (cf. Eqs. (53)–
(55)):

s1 ¼ j dvmeanþ
3�3 � dvmean�

3�3 j
max dvmeanþ

3�3 ;dvmean�
3�3

� � ð53Þ

s2 ¼ dvmeanþ
3�3 þ dvmean�

3�3

min dvmeanþ
3�3 ;dvmean�

3�3
� � ð54Þ

s3 ¼ 1
2
s1 þ s2ð Þ ð55Þ

Algorithm 1 illustrates the pseudo-code of the designed MTSP
descriptor.

Algorithm 1. Computing MTSP method

Require: I grayscale texture image IM�N .
Output: hMTSP  the multi-scale histogram feature.
1: Obtain the median of the grey-scale values bmI of the whole
image IM�N using Eq. 19.

2: Obtain the average global gray levels mI of the whole
image IM�N using Eq. 16

3: for Each central pixel Ic of IM�N do
4: Consider a grayscale image patch of dimension 3� 3
around Ic .

5: Obtain the difference between the central pixel and its
surrounding pixels df3�3 and then obtain the dynamic
thresholds s1; s2 and s3 using Eqs. (53)–(55), respectively.

6: Obtain local means of the virtual pixels (Dk;
eDk) and

(Bk;
eBk) using Eqs. 14 and 15.

7: Obtain local medians of the virtual pixels (Dk;
eDk) and

(Bk;
eBk) using Eqs. 17 and 18.

8: Obtain (using Eqs. 41 and 44, respectively):
� STPPattern Icð Þ  the single-scale ternary pattern (STP) based
on indicator function /pattern �ð Þ and associated to the set of
pixels relationship AU x; yð Þ and AL x; yð Þ.
� SSPPattern Icð Þ  the single-scale septenary pattern (SSP)
based on indicator function wpattern �ð Þ and associated to
the set of pixels relationship
AU

3 xð Þ;AU
4 xð Þ;AU

5 xð Þ;AL
3 xð Þ;AL

4 xð Þ;AL
5 xð Þ;AU x; y; zð Þ and

AL x; y; zð Þ.
9: end for
10: Obtain (using Eqs. 46 and 47, respectively):
� hSTP kð Þ  histogram feature of STPPattern Icð Þ code map.
� hSSP kð Þ  histogram feature of SSPPattern Icð Þ code map.

11: Obtain the multi-scale histogram feature hMTSP using Eq.
49.

12: return hMTSP

4. Experimental results and discussion

In this section, the efficiency and performance of the proposed
MTSP descriptor were extensively evaluated on several publicly
available texture datasets and compared to 19 recent state-of-
the-art methods using a series of experiments (cf. Table 2). The
experiments herein were conducted under the split-sample valida-
tion protocol where half of the samples are randomly chosen for
training and the rest of samples are used for testing. The 1-NN
technique with L1-city block distance is used for classification pur-
pose. Let us stress out that the classification experiments are
repeated over 100 random splits to avoid any bias resulting from
the database’s partition, and estimated accuracies is measured as
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averaged results. In the following, the considered texture data-
bases and the impact of feature combination process of the two
SSP and STP encoders are first presented and the findings of the
experiments are then discussed.

4.1. Texture datasets

To further verify the capabilities and performance stability of
MTSP, extensive experiments are carried out on ten well-known
datasets such as JerryWu, KTH-TIPS2b, BonnBTF, MBT, Kylberg,
Brodatz, VisTex, CUReTgrey and KTH-TIPS (the same datasets used
in (Rachdi et al., 2020)) and STex. These considered datasets were
selected to cover different representative characteristics in terms
of number of images and classes, and specific challenges. It can
be inferred from Table 1 that each database presents specific chal-
lenges in terms of translation, scale, view angle, rotation, illumina-
tion, etc., allowing thus to evaluate the performance of the tested
existing methods as well as the designed descriptor against these
factors.

4.2. Impact of feature combination process

As pointed out previously, the combination of different feature
extraction methods is suitable to exploit their advantages simulta-
neously with the objective of strengthening the discriminant
power of the produced encoder and promote the overall classifica-
tion results. MTSP is composed of two encoders namely STP and
SSP and in order to highlight the impact of the combination pro-
cess, we evaluate the MTSP performance compared to its STP and
SSP components applied alone. Fig. 5 illustrates the comparison
results obtained using KTH-TIPS2b, VisTex, MBP, CUReT and STex
datasets. It can be inferred from Fig. 5 that none of the two enco-
ders gives always the best score against the other, i.e., there are
some datasets where STP achieves the best accuracies against
SSP and vice versa. Remarkably, we can notice that MTSP, as a
hybrid texture description model which extracts complementary
texture information from combined components, improves signif-
icantly the classification results of both STP and SSP encoders
applied alone giving reasons thus for their combination.

4.3. Comparative assessment of performance

4.3.1. Experiment #1: Investigation on performance stability
Table 2 summarizes the achieved average classification accura-

cies (i.e., over 100 splits) of each tested method over each dataset
as well as the GAP (global average performance) over all the ten
used datasets.

Concerning the results shown in Table 2, one can notice that
some handcrafted descriptors LDENP, DC and EULLTP are emerged
in majority of cases as the three weakest methods of the panel (il-
lustrated in bolditalic) and on almost all the used database.

The majority of the tested methods with the obvious exception
of those previously mentioned, produces promising classification
results on KTH-TIPS database (dataset 4 in Table 2) with a score
exceeds 97%. Moreover, some methods like DNT-MQP, LETRIST,
MNTCDP, LDEBP, etc. and the proposed MTSP to get the score of
100%, leaving then potentially no possibility for improvement. This
same observation can be made for Brodatz dataset (database 3 in
Table 2) where MTSP as well as various evaluated existing methods
are able to accurately discern between all classes.

The performance of all the tested methods degrades consider-
ably on VisTex and MBT datasets (datasets 6 and 7 in Table 2)
where the achieved scores do not exceed respectively 81% and
88% (obtained with the proposed method). The overall perfor-
mance may be improved if more complicated machine learning



Table 1
Image databases considered in this work. The Table illustrates the properties of each database, including the variety of samples in view point, rotation, illumination changes, scale,
the number of classes, etc.

No. Name Classes Total samples Challenges

1 Jerry Wu 39 156 Images captured under different imaging direction, surface rotation and illumination direction.
2 Bonn BTF 10 160 Images captured under varying illumination and viewing angle.
3 Brodatz 13 208 Images are not-corrected and acquired with a lack of intraclass variations and without controlled conditions.
4 KTH-TIPS 10 40 Images captured under three poses, nine illumination conditions and nine scales.
5 KTH-TIPS2b 11 176 Image captured under pose scale, rotation and illumination changes.
6 VisTex 167 2672 Images captured under real world conditions.
7 MBT 154 2464 Images in high spatial resolution, which are common in areas such as remote sensing and astronomy.
8 Kylberg 28 4480 Images are corrected for aberration, vignetting and lens distortion and captured under controlled conditions.
9 CUReT 61 5612 Images with photometric and geometric properties as variations in illumination, viewing angle and rotation.
10 STex 476 7616 Images representing scenes, materials and objects, such as leather, buildings, bark, metal, flowers, etc.

Fig. 5. Accuracies obtained with single-scale image descriptors as well as their combinations.

Table 2
Overall accuracy by method and texture dataset. The last column represents the GAP of each descriptor over all the considered databases. The best method over each dataset is
highlighted in bold, the three worst in bolditalic. As a bold and bolditalic texture operator, QxLBP is assessed only on bold and bolditalic texture databases (it is tested with
pyramid level L=3 as it gives the highest scores).

Descriptor Reference Year 1 2 3 4 5 6 7 8 9 10 GAP Rank

MTSP this paper - 100 100 100 100 95.61 80.93 87.96 99.71 94.98 88.66 94.766 1
STP this paper - 99.54 99.97 99.99 100.00 93.16 78.97 86.93 98.62 91.86 85.38 93,442 2
SSP this paper - 99.83 99.96 99.95 100.00 93.86 77.68 83.57 99.80 94.32 84.73 93,37 3
LBP (Ojala et al., 1996) 1996 97,26 95,86 100 100 89,67 74,19 85,61 97,07 90,71 79,73 91,01 4
LTP (Tan and Triggs, 2010) 2010 98,06 98,64 100 100 92,92 75,38 88,56 98,96 90,26 81,38 92,416 5
DNT-MQP (Rachdi et al., 2020) 2021 99.88 99.25 100 100 95.12 78.22 86.91 99.86 95.32 87.8 94.238 6
FLNIP (Ghose et al., 2020) 2020 97.91 95.42 100 100 93.78 78.42 86.92 99.14 93.45 85.51 93.055 7
RALBGC (El Khadiri et al., 2018) 2018 97.51 98.8 100 100 93.39 77.89 86.22 99.09 93.31 83.77 92.998 8
ARCSLBP (Ruichek, 2019) 2018 99.53 99.17 99.88 100 93.23 75.76 83.23 99.8 94.03 83.25 92.788 9
MNTCDP (Kas et al., 2018) 2018 100 100 100 100 90.93 79.53 78.95 98.48 92.4 86.27 92.656 10
ILQP (Armi and Fekri-Ershad, 2019) 2019 98.03 98.72 100 100 93.39 75.39 85.8 98.33 91.03 83.21 92.39 11
LETRIST (Song et al., 2017) 2018 100 100 99.95 100 94 70.16 80.12 99.88 97.08 81.41 92.258 12
KLBP (Tuncer and Dogan, 2020) 2019 97.49 97.34 100 100 91.24 76.36 86.78 98.6 91.12 82.49 92.142 13
LQP (Nanni et al., 2010) 2010 97.72 97.34 100 100 90.55 76.58 86.76 98.28 91.21 82.35 92.079 14
LDTP (El-khadiri et al., 2018) 2018 98.23 99.88 100 100 90.47 76.76 82.97 97.74 91.54 82.97 92.056 15
LOOP (Chakraborti et al., 2018) 2018 96.86 98.78 99.97 100 85.81 73.25 83.99 97.75 90.61 77.81 90.483 16
LDEBP (Sucharitha and Senapati, 2019) 2019 98.87 92.96 99.96 100 87.3 71.26 84.15 98.8 89.33 82.11 90.474 17
LDZP (Roy et al., 2018) 2019 96.72 96.85 100 99.75 88.53 68.62 84.18 92.5 84.84 71.07 88.306 18
LGONBP (Song et al., 2020) 2021 99.35 99.28 99.84 100 85.51 54.62 72.31 99.85 97.21 69.51 87.748 19
LNIP (Banerjee et al., 2018) 2019 96.86 77.86 99.73 98.45 82.97 72.42 83.99 96.55 85.88 78.29 87.3 20
DC (Ouslimani et al., 2019) 2018 94.95 93.36 99.48 100 79.78 58.6 56.24 97.92 80.67 51.94 81.294 21
EULLTP (Kabbai et al., 2019) 2019 92.58 93.4 99.38 93.9 78.63 53.53 71.75 94.87 73.35 58.26 80.965 22
LDENP (Pillai et al., 2018) 2018 88.5 88.29 95.4 88.8 65.8 48.93 60.4 87.13 64.61 43.43 73.129 23
QxLBP (Song et al., 2021) 2021 - - - - - - 70.05 - - 74.03 72,04 24
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algorithms such as extended nearest neighbor (ENN) and SVM are
used instead of the 1-NN classifier.

Moreover, none of the existing methods achieve good perfor-
mance on all the used datasets. Indeed, it is important to note that
obtaining good results on certain datasets, does not necessarily
ensure obtaining satisfactory classification results on the others.
LGONBP illustrates clearly this behavior where it can be seen that
it realizes outstanding scores on six databases out of ten, but no on
KTH-TIPS2b (dataset 5), VisTex (dataset 6), MBT (dataset 7) and
412
STex (dataset 10 in Table 2) datasets. Indeed, the realized scores
decline dramatically compared to the MTSP operator (i.e., the top
1 descriptor). This same observation is valid for several other tex-
ture operators such as LETRIST, LQP, EULLTP and DC and so on.

It can also be inferred from Table 2 that MTSP offers satisfactory
classification results and positions itself as the best texture opera-
tor as it works meaningfully better for eight datasets out of ten:
Jerry Wu, Bonn BTF, Brodatz, KTH-TIPS, KTH-TIPS2b, Vistex, MBT
and STex (databases 1 to 7 and 10 in Table 2) with a score upper



Table 3
Ranking results obtained using the Wilcoxon-based ranking test according to the
normalized number of victories reached by each evaluated texture operator on all the
employed databases.

Ranking 1-NN Texture descriptor Victories/comparisons Dimension

1 MTSP 0.788 256
2 DNT-MQP 0.738 384
3 FLNIP 0.600 1024
4 MNTCDP 0.588 2048
5 LETRIST 0.572 413
6 ARCSLBP 0.566 256
7 RALBGC 0.561 1022
8 ILQP 0.483 1024
9 LDTP 0.477 1022
10 KLBP 0.466 1280
11 LQP 0.461 1024
12 LGONBP 0.427 1404
13 LDEBP 0.366 64
14 LOOP 0.311 256
15 LDZP 0.261 354
16 LNIP 0.216 512
17 DC 0.122 225
18 EULLTP 0.077 32
19 LDENP 0.011 15
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than 80.93 %. It obtains the best rank with a score equal to 94.76 %
when we consider the global average performance (GAP) against
all the existing descriptors. Furthermore, it is in the top 5 and 4
texture operators on Kylberg and CUReT datasets, respectively.
Nevertheless, let us mention that when MTSP does not realize
the highest overall accuracies, it yields an interesting competitive
score compared to the one realized by the top 1 method. Taking
the Kylberg database as an example (database 8 in Table 2), MTSP
is ranked at the 5th best position (i.e., MTSP has the fifth-highest
accuracy), but in contrast, it reached a score of 99.71% which is
seen as a very satisfying result as it is very close to the one of
the texture operator ranked at the first position reaching a score
of 99.88%. Remarkably, MTSP provides superior scores against
QxLBP, which was originally conceived for color image representa-
tion, on MBT and STex color texture databases. QxLBPP, like a large
number of color image descriptors, shows a tendency to be more
sensitive to resolution and illumination. Additionally, it typically
either ignores spatial correlations between pixels in the image or
gives them less weight (Rachdi et al., 2020).

It is interesting to note that the satisfactory results realized on
KTH-TIPS2b and Jerry Wu indicate that MTSP can tolerate a certain
degree of rotation variations. Good performance on these two data-
sets indicate that MTSP shows reasonable tolerance to rotation
when compared to LETRIST, which was originally designed for
rotation-invariant texture description. In particular, MTSP gives
95.61% on KTH-TIPS2b vs 90.08% by LETRIST, indicating a perfor-
mance improvement about 5,53%. Furthermore, the good scores
of MTSP (upper 94,98%) on Jerry Wu, Bonn BTF, KTH-TIPS2b,
KTH-TIPS, CUReT, and Kylberg datasets indicate that MTSP has
good tolerance to illumination changes. The significant accuracy
(100%) obtained on KTH-TIPS2b indicate that MTSP has also good
tolerance to scale changes.

Considering the findings above, it can be concluded that the
developed handcrafted MTSP method, despite its smaller feature
vector length (28 codes), is relatively efficient. The proposed
method ranks first with scores that are relatively high and stable
against the 19 evaluated existing methods on almost all the 10 sev-
eral texture databases used. These findings indicate that the com-
bination of both STP and SSP features describes better the
characteristics of texture images helping thus to construct a
descriptor that works well on various texture databases.
4.3.2. Experiment #2: Statistical significance of the achieved results in
terms of accuracy improvement

The purpose of this section is to further prove statistically the
realized performances via MTSP vs the existing evaluated methods
by employing the ranking procedure based on the Wilcoxon signed
rank test introduced in Ruichek (2018). The algorithm is applied on
all the pairwise combinations of the 19 evaluated existing texture
operators including MTSP on the ten tested databases. Table 3
shows the reached ranking results according to the normalized
number of victories (number of wins/(number of used databases*
(number of evaluated methods - 1))) realized by each descriptor
on all the considered databases. Fig. 6 illustrates the produced clas-
sification results in the form of a scatter plot. The Xaxis is the
dimension of feature vectors (on log 2 scale), while the Y axis is
the normalized number of victories reached by each evaluated tex-
ture operator.

It emerges from both Table 3 and Fig. 6 that the conclusions that
can be highlighted from the analysis of the realized results are
coherent with those drawn previously in Section 4.3.1. Indeed,
these results reinforce the conclusion that the combination of both
STP and SSP is capable of representing local texture well which
allows to construct a texture descriptor which is clearly the most
effective descriptor among all the others methods. In particular,
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the normalized number of victories realized by MTSP is 0.788, vs.

0.738 with DNT-MQP (top 2nd). vs. 0.60 with FLNIP vs. 0.588 with
MNTCDP vs. 0.572 with LETRIST, etc. As mentioned previously,
MTSP is based on the LQP concept. Hence, if we consider the per-
formance of LQP as the benchmark, MTSP gives about 71,73%
improvement over the ten used databases.

5. Implementation and reproducible research

The experiments herein was carried out on a laptop equipped
with 2.10 GHz Core i7 CPU, 8 GB of RAM and having Ubuntu
14.04 trusty operating system. The evaluated methods have been
implemented in MATLAB R2013a. Fig. 7 illustrates the processing
time (in minutes) over 2464 samples of the MBT dataset (dataset
7 in Table 1), including computation of feature extraction, distance
calculation and 1-NN classification, for all the evaluated methods.
It is clear that the designed MTSP texture operator makes the best
compromise between computational cost and classification
performance.

6. Conclusion

In this paper, we have proposed an efficient feature descriptor
referred to as Multi-scale Ternary and Septenary Pattern (MTSP)
based on multiple oriented blocks and directions based
neighborhood topologies as well the set theory. MTSP combines
the concepts of both LQP and LTP-like descriptors in the same
compact encoding scheme to encode the interactions between
pixels within 3� 3 grayscale image patch. The capabilities and
performance stability of MTSP have been evaluated on ten
challenging texture databases using 1-NN classifier against 19
recent and advanced state-of-the-art texture operators. MTSP
descriptor showed considerable performance over all used
databases, indicating that it better describes the characteristics of
texture images.

7. Limitations and future work

The proposed texture operator requires images to be converted
to grayscale before any transformation step. Thus, one of the limi-
tations of the proposed method is that it is mathematically and
theoretically unsuitable for direct application to color images. As



Fig. 6. Ranking results on all the used databases. Blue and orange dots indicate, respectively, the evaluated state-of-the art methods and the proposed method.

Fig. 7. The processing time (in minutes) of the evaluated methods.
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indicated in the analysis of the results, all the evaluated methods
as well as the proposed descriptor show their weaknesses in
classifying images captured under real world conditions and or
those presenting high spatial resolution, which indicates that the
proposed method is less tolerant to ambiguities due to complex
image patterns and different kinds of disturbances. Furthermore,
the construction process of the proposed method only considers
a unit distance radius and the sampling neighbourhood P and
sampling radius R parameters have not been fully investigated.

In future work, we plan to test other sophisticated classifiers in
the aim of increasing the classification rate. We plan also to extend
the proposed descriptor in order to exploit color information and
therefore explore its applicability for the classification of color tex-
tures. We suggest directing our research work towards the incor-
poration of the proposed descriptor into deep architectures.
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