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ABSTRACT1
A Tradable Credit Scheme (TCS) is a demand management policy aiming for more sustainable2
travel behaviors. The regulator defines the total credit cap and the credit distribution among the3
population. It also determines the required credit charges for each travel alternative at different4
times of the day, which modifies the perceived travel costs by users. The credit price is deter-5
mined by the trade of credits between travelers. Defining the credit scheme at the urban level and6
estimating its impacts on user travel decisions and the network congestion dynamics is challeng-7
ing. We propose a modeling framework wherein travelers change their departure times and choose8
between solo car driving, Public Transportation (PT), and carpooling to complete their trips un-9
der a dynamic TCS, meaning the credit charge is time-dependent. This framework extends the10
generalized bathtub model to capture the congestion dynamics for the different transport modes.11
Additionally, we consider different values of time, trip lengths, and desired arrival times for the12
demand profile.13

The modeling framework enables us to find the optimal credit charge to minimize the con-14
gestion cost (the sum of all travelers’ schedule costs) and the carbon emissions. The stochastic15
user equilibrium is computed through an iterative method. The methodology is implemented and16
applied to a realistic test case in Lyon (France). The dynamic TCS profiles result in 36% fewer17
carbon emissions than static TCS for the same congestion reduction of 19%. Besides, 94% of the18
travelers benefit from the TCS as their travel costs decrease in the case study.19

20
21

Keywords: generalized bathtub; tradable credit scheme; mode choice; departure time22
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INTRODUCTION1
Automotive congestion has been an issue for many cities worldwide for decades. The traffic en-2
gineering and transportation economics communities proposed different demand management ap-3
proaches to foster demand shift to off-peak periods and sustainable transportation modes. Tradable4
Credit Scheme (TCS) is a quantity-based framework introducing a commodity for traveling: cred-5
its. The regulator issues and distributes credits to the travelers. Depending on the departure time6
and transportation mode, a traveler needs to spend credits to access the transportation network.7
The credits can be traded between travelers through a dedicated marketplace. The offer and de-8
mand for credits are linked to the travel times of the different travel alternatives. Thus, estimating9
the congestion over the scale of a city is essential. Also, the design of the TCS, especially the10
number of credits needed for the different travel options, is linked to the goals the regulator wants11
to achieve. The most used objective function is related to the economic aspect of the congestion:12
the total travel time or the total schedule cost. It represents the time and money lost due to conges-13
tion. Other objectives linked to the environmental footprint of the transportation network, like the14
emissions of pollutants, can also be considered. However, reducing congestion or pollution might15
lead to different TCS, and trade-offs must be found. In this context, our contribution proposes a16
complete modeling framework to look for the optimal credit charging profile to minimize a given17
global objective considering the network equilibrium equilibration process. We proceed with a18
literature review on traffic congestion models and multimodality in TCS frameworks.19

Congestion models20
The problem of peak-hour congestion, i.e., when the travel demand exceeds the capacity for spe-21
cific time periods, has been investigated for more than half a century (1, 2). The most common22
model in the literature of macroscopic traffic models is Vickrey’s bottleneck. (3) represented the23
congestion as a point queue with a fixed capacity. The queue disappears by implementing marginal24
cost pricing, and the total schedule cost is reduced by a factor of two. In 1991, Vickrey relaxed25
the fixed capacity assumption (4) (work published posthumously) with a new model, named the26
classical bathtub model. The main idea is to define the network as an undifferentiated movement27
area with a mean speed function. The mean speed is defined as a function of network density28
and the network characteristics (5, 6). Therefore, the network speed decreases as the demand in-29
creases. (7) extended the framework to account for different desired arrival times. (8) proposed30
a numerical framework for determining the departure times distribution. (9, 10) introduced the31
trip-based Macroscopic Fundamental Diagram (MFD) to consider any trip length distribution. The32
mean speed is a function of vehicle accumulation, which is the key state variable of the classical33
bathtub and MFD models. (11) describes a numerical resolution method to compute the departure34
times distribution at equilibrium. (12) introduces an extension for the classical bathtub model,35
named generalized bathtub. The author presents a numerical framework for computing the travel36
times. The key state variable is the distribution of the remaining trip lengths of the travelers, which37
has also been introduced in (11). However, the departure times optimization is not addressed. Re-38
cently, (13) applied the Mean Field Game theory to compute the deterministic user equilibrium,39
and (14) computes the Stochastic User Equilibrium (SUE) for the generalized bathtub model. In40
this work, we use this modeling framework to capture the traffic dynamics and calculate the SUE.41
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Multimodality1
Considering different transportation modes requires integrating different vehicle types into the road2
network. Multimodal macroscopic congestion models consider different travel times for the differ-3
ent vehicles and their interactions, especially between personal cars and buses. We can distinguish4
different approaches to represent multimodality in the literature: (i) the speeds for buses and cars5
are the same, and the bus dwelling time is explicitly considered (15); (ii) the bus speed is affine in6
the car speed (16, 17); (iii) modes other than the private car undergo an additional delay depending7
on the congestion level (18); (iv) each mode has its speed function, which is affine in the accumu-8
lation of every mode in the system (19). In this work, we use the second approach to capture the9
impact of car congestion on PT without adding too much complexity and calibration requirements.10

Considering different vehicles may not be enough to account for the diversity of the mo-11
bility offer, especially with the rise of ride-hailing and -sharing services. A passenger car offers12
two different transportation alternatives if driven alone or used for carpooling. Some recent con-13
tributions in the literature (20–23) promoted carpooling to foster more sustainable travel behavior14
by reducing the number of driving vehicles. In the general framework, two travelers with similar15
trips would use only one car instead of two cars. On the one hand, users can drive on the High16
Occupancy Vehicle (HOV) lane, and the travelers share the expenses: fuel, congestion pricing, or17
credit/permit purchase. On the other hand, carpooling induces a penalty representing the detour and18
waiting time or the discomfort of not driving alone. This work aims at integrating time-dependent19
TCS, congestion dynamics, and multimodality, including carpooling, into a single framework.20

TCS models in urban areas21
A substantial part of the literature on TCS aims to optimize the travelers’ route choices by charg-22
ing the links of the networks, e.g., (24). Implementation of those contributions in an urban area23
is practically complex. The present work focuses on mode and departure time choices at the net-24
work level. Most studies in the literature used Vickrey’s bottleneck model to address TCS at the25
network level to reduce the congestion (25–30). Besides (31) considered Chu’s model (32) which26
is based on the BPR function. In the mentioned studies, the credit charge is dynamic, meaning the27
number of credits required to pass the bottleneck is time-dependent (i.e., based on the departure28
time choice). The purpose is to encourage travelers to switch from on-peak to off-peak hours.29
However, most of them only consider a single transportation mode with a homogeneous traveler’s30
profile. (26, 28, 30) accounted for different Values of Time (VoT) to represent the heterogeneity of31
monetary valuation of the travel time for the personal car with Vickrey’s bottleneck.32

In our previous study, we proposed a TCS based on the trip-based MFD to capture trip33
heterogeneity (trip length) and congestion dynamics at a large scale (33). We considered Public34
Transportation (PT) with fixed cost based on a given departure time and origin-destination loca-35
tions. The credit charge was static, i.e., the required number of credits does not depend on the36
departure time, as the focus is the shift from personal cars to PT. Recently, (34) also used trip-37
based MFD as well without PT, while the dynamic credit charge is designed proportionally to the38
travel distance. In this work, the TCS is dynamic and depends on the users’ departure time and39
mode (private car, PT, and carpooling) choices. In addition, we consider a multimodal extension40
of the generalized bathtub model (12) to address the network equilibrium with a heterogeneous41
demand profile and to investigate the effect of a TCS on mode and departure time choices.42

Moreover, we take into account environmental measures (CO2 emissions) not only to eval-43
uate the performance of TCS but also to optimize the dynamic charging profile. In the literature,44
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there are few studies that consider environmental goals with TCS (35). To highlight our contribu-1
tions, we compare the most relevant studies on TCS at the network level, including the departure2
time choice problem in Tab. 1, along with our previous work on MFD under TCS. This study3
addresses the gap between realistic congestion representation and dynamic TCS. Recall that dy-4
namic TCS means that the credit charge may change depending on the time. The time- and mode-5
dependent TCS aims to foster mode and departure times shift to mitigate congestion and reduce6
the carbon footprint of the transportation network. We consider three travel modes: personal car,7
PT, and carpooling.8

TABLE 1: Comparison of the different contributions on TCS

Article Congestion
model

Travel
choice

Different
VoT

Charging
scheme

Pollution

(25) Vickrey Departure
time and
elastic de-
mand

No Dynamic No

(26) Vickrey Mode and
departure
time

Yes Dynamic No

(27) Vickrey Departure
time

No Dynamic No

(28) Vickrey Departure
time

Yes Dynamic No

(29) Vickrey Departure
time

No Dynamic No

(30) Vickrey Departure
time

Yes Dynamic No

(31) Vickrey /
Chu

Departure
time

No Dynamic No

(34) Trip-based
MFD

Departure
time

Yes Dynamic
and
distance-
based

No

(33) Trip-based
MFD

Mode No Static Yes

This work Multimodal
generalized
bathtub

Mode and
departure
time

Yes Dynamic Yes

The remainder of this paper is organized as follows. In Sect. 2, we present the multimodal9
generalized bathtub framework with the TCS. Sect. 3 formulates the computation of the SUE under10
a dynamic TCS. The case study and the associated results are presented in Sect. 4 for a realistic11
morning commute in Lyon (France). Sect. 5 concludes this paper.12
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FIGURE 1: Framework of the multimodal bathtub under TCS.

PROBLEM FORMULATION1
This section describes the proposed modeling framework to represent the TCS problem, including2
the SUE calculation based on the multimodal generalized bathtub under TCS. Fig. 1 depicts an3
overview of the different components and interactions in our framework. In Fig. 1, the travelers4
get a fixed amount of credits daily from the regulator. Obviously, this amount is insufficient to5
travel by car during peak hours. Otherwise, the TCS would be pointless. Travelers can trade the6
credits on a specific market. They choose their transportation mode and departure time according7
to the credit charging profiles and scheduling preferences. The regulator determines the credit8
charging profile to achieve its economic and environmental goals. The related measures (e.g., total9
travel time and carbon emissions) depend on the travelers’ behaviors. The credit price results from10
the offer (supply) and demand in this market, so it depends on the travelers’ choices. Thus, there11
are complex interdependencies between travelers’ choices, the market, and the traffic congestion12
level. While describing credit price evolution during the transitional phase is very challenging,13
it is possible to calculate the credit price at equilibrium when all interactions stabilize. The next14
subsection presents the congestion model based on the generalized bathtub. Then the TCS is15
presented with a dynamic charging profile. Finally, we present the user choice model and the SUE16
formulation.17

Multimodal generalized bathtub18
Here we introduce the concepts, assumptions, and notations related to the congestion model. In this19
framework (see Fig. 1), travelers have different characteristics: trip length l ∈ L , desired arrival20
time, ta ∈ Ta, and scheduling preferences αc, β̃c, and γ̃c associated to their socioeconomic class21
c ∈ C . The capital and curly letter represents the domain of validity of the respective parameter22
or variable. They choose their departure times td ∈ Td and travel modes m ∈ M according to the23
corresponding travel costs. The overall travel demand is described by the distribution d = d(c, l, ta).24
The total number of travelers is denoted by D. A demand scenario (the result of traffic assignment)25
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is represented by distribution f = f (c, l, ta, td,m). In this paper, we consider three transportation1
modes: car solo (one traveler per car), carpooling (two travelers per car), and public transportation2
(PT). ζm is the waiting time linked to mode m. We set it to zero for the solo car drivers and PT3
riders. It represents the extra time related to carpooling (waiting and small detour time) in this4
paper. We make no distinction between driver and passenger for carpooling: both have the same5
travel time and credit charge. It means the driver waits at the origin, and its waiting time in the car6
is equivalent to the passenger walking time to the driver’s origin during ζpool. Then both start their7
trips.8

The travel cost of mode m is calculated based on the arrival time obtained by bathtub9
dynamics equations. This congestion model assumes all trips take place in the same urban region,10
where the speed is spatially uniform. The mean speed for a given time is a function of the number11
of vehicles (personal cars, buses, tramways) circulating in the network at this time. A vehicle enters12
the network at the departure time td and leaves it once it has driven its trip length l. The generalized13
bathtub model provides a set of equations per transport mode. For each mode m, we define a virtual14
traveler t 7→ zm(t) which keeps track of the cumulative traveled distance since the origin of times,15
as introduced by (11) (a.k.a. characteristic travel distance in (12)). We also define Hm(t) as the16
accumulation, i.e., the number of vehicles of type m in the network at time t. The number of active17
trips with remaining distance higher than x at t is denoted km(x, t). This state variable is specific to18
the generalized bathtub. The accumulation is then computed by Hm(t) = km(x = 0, t). Recall that19
the accumulation is a state variable common to both MFD and bathtub representations. The speed20
of mode m vm depends on the accumulations of all modes (16–19, 36). The coupling between the21
modes in the bathtub model occurs through the speed functions.22

The accumulation at time t consists of the trips that started before t and are long enough23
to be ongoing by t. Therefore, we introduce the density, with respect to departure time td , of the24
number of vehicles with trip length longer than l: Fm(l, td)dtd . The traffic dynamics are based on25
the formulation of (13) and extended here to account for different modes. The bathtub dynamics26
of mode m ∈ M is given by Eq. 1.27 

zm(t) =
∫ t

0 vm({Hm′(s)}m′∈M )ds
Hm(t) =

∫ t
0 Fm(zm(t)− zm(td), td)dtd

Fm(l, td) =
∫

l′>l,l′∈L

∫
ta∈Ta ∑c∈C f (c, l′, ta, td,m)dl′dta

(1)28

The first equation states that the mean speed depends on the accumulations and computes29
the trajectory of the virtual traveler zm(t). The second computes the accumulation Hm(t): the sum30
of the trips that started earlier and are long enough to remain active. It depends on the trajectory31
of the virtual traveler zm(t). The third equation is the computation of the density Fm(l, td) based on32
the traffic assignment f . The natural setting for the solutions of Eq. (1) is the space of Lipschitz33
continuous functions of time. In this space, it can be shown that given a distribution f , the solution34
(zm,Hm) of Eq. (1) exists, is unique, and depends continuously on f for the weak topology of35
bounded measures. This follows by adapting propositions 1 to 4 and their proofs (appendices B to36
E) in (13).37

The arrival time t̂a is computed by using the inverse of the virtual traveler x 7→ z−1
m (x). The38

inverse is correctly defined as long as the mode speeds are always non-zero. We assume the mean39
speeds are always strictly positive, meaning we exclude the possibility of a complete gridlock. A40
user starting at td with trip of length l and using mode m will arrive at41
t̂a = td + z−1

m (zm(td)+ l)+ζm. (2)42
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If the mode speeds are bounded from below, it can be shown that t̂a depends continuously on (l, td)1
and that the function (l, td) 7→ t̂a depends continuously on f for the weak topology of bounded2
measures. This result follows by adapting proposition 5 and its proof (appendix G) in (13). To3
address the realistic demand profile based on trip data, we use the discretization approach to rep-4
resent the formulation of the multimodal generalized bathtub to compute the arrival times via the5
trajectory of the virtual traveler zm and the accumulation Hm, which are inter-dependent.6

Discretization7
The discretization approach aims to compute the arrival times of the multimodal generalized bath-8
tub (Eq. (1)) in uniform intervals. Note that the discretization is not applied in our previous study,9
(33), since we used a more advanced trip-based MFD simulation framework, wherein the arrival10
times are computed following an event-based simulation: the state variables are updated each time11
a vehicle enters or leaves the network. The equilibrium computation was based on the linearization12
of the travel times with respect to the mode choices (37). This former approach is not suited here13
for the following reasons: (i) the travel time linearization while accounting for departure time be-14
comes too complex as it adds another dimension to the problem; (ii) for each trip length, departure15
time, and mode, we would need one agent to account for the effect of this specific demand on16
the congestion. The computational cost of event-based resolution of the trip-based MFD increases17
quickly with the number of agents, as the state variables are updated each time an agent enters or18
leaves the network Idoudi et al. (38). To sum up, the main difference between the two approaches19
is that the trip-based MFD framework specifically follows each traveler and tracks its remaining20
travel distance. On the contrary, the generalized bathtub focuses on the distribution of the remain-21
ing trip lengths with fixed time steps. It is advantageous in terms of complexity and computation22
time to use the generalized bathtub framework, which is continuous. However, in a later section23
(4.4), we will simulate the optimal TCS solution with the more advanced trip-based MFD formu-24
lation to show that using the simplified approximation through the discretization of the generalized25
bathtub model in the optimization process makes perfect sense.26

Since the solution is Lipschitz continuous, we approximate the solution (zm(t),Hm(t)) as27
piece-wise linear functions calculated at nodal points. The numerical resolution of the bathtub28
requires the discretization of the trip length, departure time, and desired arrival times. The values29
of those discretized parameters and variables are identified by the following indexes:30 

il = ⌊(l − lmin)/∆l +0.5⌋;
itd = ⌊td/∆t +0.5⌋;
ita = ⌊(ta − ta,min)/∆ta +0.5⌋,

(3)31

with lmin the minimum trip length and ta,min the minimum desired departure time. ⌊x⌋ is the integer32
part of x, i.e., the highest integer smaller than x. The first admissible departure time is taken as33
reference, i.e., is zero. The simulation time shares the same discretization as the departure times.34
One can come back to the continuous value of the variables from the indexes:35 

l = lmin + il∆l;
t = it∆t ;
ta = ta,min + ita∆ta.

(4)36

In the rest of the paper, we use both the discrete and continuous formulations for the arguments of37
the functions interchangeably. The discrete versions of the demand and the assignment are defined38
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lmin

lmax

∆tit

zm(it)− zm(td)

td

l

∆l

∆t

0

aitd ,il

FIGURE 2: Discretization of the accumulation computation.

by:1 {
d(c, il, ita) =

∫
Θ(ita)

∫
Θ(il) d(c, l, ta)dtadl;

f (c, il, ita, itd ,m) =
∫

Θ(ita)
∫

Θ(il)
∫

Θ(itd )
f (c, l, ta, td,m)dtadldtd;

(5)2

with3 
Θ(ita) = [ta,min +(ita −0.5)∆ta, ta,min +(ita +0.5)∆ta],

Θ(il) = [lmin +(il −0.5)∆l, lmin +(il +0.5)∆l],

Θ(itd) = [(itd −0.5)∆t ,(itd +0.5)∆t ].

(6)4

The dynamics computation involves the resolution of Eq. (1) time step by step. The integration5
of the virtual traveler trajectory is straightforward: on each time step it , the traveled length zm6
increased with the speed corresponding to the previous accumulation Hm(it−1) plus the trips start-7
ing in this step. The accumulation computation is represented by the yellow area in Fig. 2. Each8
square contributes to the accumulation at it with aitd ,il

∈ [0,1] the ratio of the square above the line9
td 7→ zm(it)− zm(td) (i.e., the yellow part) multiplied by the number of trips starting at itd with trip10
length il , ∑c,ita f (c, il, ita, itd ,m).11 

zm(it) = zm(it−1)+∆tvm

(
{Hm′(it−1)+∑c,ita ,il f (c, il, ita, it ,m

′)}m′∈M

)
Hm(it) = ∑itd≤it Fm

(
max(0,⌊ (zm(it)−zm(itd )−lmin)

∆l
⌋), itd

)
Fm(il, itd) = ∑il′≥il ∑c,ita aitd ,il′

f (c, il′, ita, itd ,m)

(7)12

Recall that Fm is a density with respect to td . Fm(il, itd) is defined as the integral of Fm(l, td) over13
Θ(itd). zm and Hm are initialized with zero. The second part of the first equation allows us to14
account for the accumulation due to the trips starting during the current time step it . It counterbal-15
ances the fact that the bathtub tends to underestimate the congestion compared to the exact solution16
(computed via the trip-based MFD framework). Without this correction, the underestimation can17
be significant: with the case study, the equilibrium without TCS based on the generalized bathtub18
corresponds to gridlock with the exact solution (trip-based MFD).19
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Dynamic Tradable Credit Scheme1
Some mobility alternatives require credits depending on the transportation mode m and departure2
time td . The credit charge is significant for highly congestive modes like private cars during peak3
hours and low for more sustainable choices like PT or carpooling outside peak hours. The regulator4
should set the charging profile τ(td,m) according to congestion and carbon emissions goals. In the5
following, the regulator only chooses the profile for car drivers τ(td,car). It is free for PT riders:6
τ(td,PT) = 0 and only the half for carpoolers as we assume two travelers per car: τ(td,pool) =7
1
2τ(td,car). Travelers receive a free initial allocation of κ credits from the regulator. They can8
trade the credits between themselves in a dedicated market. The credit price p is not fixed by the9
regulator. It is determined by the law of offer and demand in the market. We do not consider the10
details of the trade mechanism. We adopt the widely used Market Clearing Condition (MCC), as11
in (24), to represent the market mechanism: the price is zero or all issued credits are spent.12

Mode and departure time choice13
The travel time (T T ) of a traveller leaving at td and arriving at t̂a is14
T T = t̂a − td. (8)15
The schedule cost (SC) accounts for the early or late arrival on top of the T T . The SC of a traveler16
of the class c with the desired arrival time ta finishing its trip at t̂a is17

SC = αc

(
(t̂a − td)+ β̃c max(0, ta − t̂a)+ γ̃c max(0, t̂a − ta)

)
. (9)18

αc, β̃c, and γ̃c are respectively the VoT and the normalized marginal cost for early and late arrival.19
The travel cost (TC) is obtained by adding the TCS-related cost, i.e., the monetary value of the20
required credits:21
TC = SC+ pτ(td,m). (10)22
Both SC and TC depend on trip length, departure time, mode, desired arrival time, and class.23
However, we do not make it explicit in the equations to keep the notations light. The discrete logit-24
based decision depends on the TC of all alternatives regarding departure time and mode choice,25
and on the logit parameter θc:26

ψ(c, il, ita, itd ,m) =
e−θcTC(c,il ,ita ,itd ,m)

∑it′d
,m′ e

−θcTC(c,il ,ita ,it′d
,m′)

. (11)27

ψ(c, il, ita, itd ,m) is the ratio of travelers with characteristics c, il, ita wanting to travel at td with28
mode m. It may be different from the actual travel assignment f (c, il, ita, itd ,m)/d(c, il, ita).29

Equilibrium formulation30
The SUE formulation is based on (14). It is extended to account for the mode choice and the TCS31
constraints. The SUE is reached when the flow distribution matches the logit distribution:32
d(ω)ψ(ω) = f (ω) ∀ ω ∈ Ω, (12)33
with Ω =C ×L ×Ta×Td ×M the space of all travelers’ characteristics and degrees of freedom.34
The flow conservation requires the travel demand with specific characteristics to match the sum of35
the flows with the same characteristics:36

∑
itd ,m

f (c, il, ita, itd ,m) = d(c, il, ita) ∀ c, il, ita. (13)37
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FIGURE 3: Algorithm flowchart.

The TCS-specific constraints are respectively the credit cap (CC): the consumed credits cannot1
exceed the allocated amount, the MCC, and the positivity of the price:2 

∑ω∈Ω f (ω)τ(ω)≤ Dκ;
(∑ω∈Ω f (ω)τ(ω)−Dκ) p = 0;
p ≥ 0.

(14)3

METHODOLOGICAL FRAMEWORK4
The equilibration of the multimodal generalized bathtub model under TCS is decomposed into two5
imbricated loops. Basically, the outer loop increases (respectively decreases) the price if too many6
(too few) credits are consumed until the MCC and CC hold: (i) price is zero and some credits are7
not used, or (ii) all credits are consumed. The inner loop changes the travelers’ departure times8
and travel modes until their logit-based decisions match their actual travel assignments. The two9
loops form two imbricated fixed-part problems to be solved. Fig. 3 presents the two loops: blue10
for the assignment and green for the credit price. The red one indicates the optimization of the11
charging profile. This optimization process is adapted based on our previous study (33). The idea12
of charging profile optimization is presented in (33). Here, we only describe credit price evolution13
and SUE calculation.14

Credit price15
We define the credit consumption excess R as16

R =
1
D ∑

ω∈Ω

f (ω)

(
τ(ω)

κ
−1

)
. (15)17

It is the normalized number of credits used minus the initial allocation. The CC dictates it should18
be negative: we accept unused credits but not the consumption of non-existing ones. The CC error19
is defined as the positive part of R:20
ECC = max(0,R). (16)21
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The MCC error is defined as1
EMCC = pκ|R|. (17)2
It is high when the price is non-zero and all credits are not consumed. We use the absolute value3
of R to ensure a positive metric for the MCC error.4

We change the credit price if one of the error measures ECC or EMCC is higher than the5
given respective thresholds E∗

CC and E∗
MCC. The price variation of the CC and MCC loop for the6

iteration istep,pri of the price loop is7

∆p =
1√

istep,pri

1
κ

R. (18)8

The amplitude of the change decreases as the loop iterates to force convergence but not too fast to9
allow for space exploration. We bound ∆p by ±εp, a fixed threshold to prevent large oscillations.10
The price is then updated, by ensuring it stays positive:11
p = max(p+∆p,0). (19)12
The price loop iterates until the maximum number of iterations is reached, or both CC and MCC13
errors fall below the given thresholds.14

Assignment15
The SUE error quantifies the difference between assignment and logit-based decision:16

ESUE =
1
D ∑

ω∈Ω

| f (ω)−d(ω)ψ(ω)|. (20)17

The assignment loop starts with an initial solution based on free flow mean speed and then iterates18
until the maximum number of iterations is reached or the SUE error falls below a threshold E∗

SUE.19
A heuristic reassignment algorithm is designed to correct the worst decisions (assignment far from20
logit) with a procedure similar to the MSA. We first rank the assignment based on the SUE error.21
Then, we choose the proportion of the assignments with larger errors and reassign their departure22
time and mode choice. This procedure is inspired from (39). The proportion corresponds to the23
step size of the algorithm. A search index is defined and initialized with r = 1. For each iteration24
of the SUE loop, the fraction 1/r of the assignment characteristics ω ∈ Ω where the assignment25
error | f (ω)/d(ω)−ψ(ω)| is the largest is updated. We name this part of the travel characteristics26
F . The rest of the characteristics define the ensemble F̄ . Thus F ∪ F̄ = Ω and F ∩ F̄ = ∅.27
The step size formulation is the same as the step size of the MSA method; however, we use the28
smart step size approach (40) to update the step size for the following iterations. If the new flow29
distribution leads to a smaller SUE error ESUE, then the search index stays the same. Otherwise,30
the search index r increases by one, decreasing the search radius. The convergence of this approach31
is discussed in (41). We stop once the SUE error falls below a given threshold, or the best solution32
(lowest SUE error) is returned if the maximum number of iterations is reached.33

NUMERICAL EXPERIMENTS34
Case Study35
The travel demand considered for the case study represents the typical morning commute of36
384,200 travelers in Lyon (France) between 7:00 and 10:00. There are ten regions and five bound-37
aries, creating 224 different OD-pairs with non-zero demand Alisoltani et al., Alisoltani et al.38
(42, 43). The travel demand consists of trips in Lyon and also trips through Lyon, i.e., we also39
account for travelers starting or/and ending their trip outside the city Amelia et al. (44). Fig. 4(a)40
represents the studied network. The synthetic desired arrival times are shown in Fig. 4(b). The41



Balzer, Ameli, Leclercq, and Lebacque 13

(a)

7:00 7:30 8:00 8:30 9:00 9:30 10:00
Desired arrival time

20
30
40
50
60
70
80

Tr
av

el
 d

em
an

d 
(1

03 )

(b)

FIGURE 4: Supply and demand for the scenario: (a) the ten regions formed by the IRIS areas and
the access points merged in five boundaries (circles) (b) and the distribution of the desired arrival
times.

distribution has a bell shape: the demand is low at 7:00 and 10:00 and high between 8:00 and 9:001
Ameli et al. (45).2

An MFD speed function represents the network capacity. All trips occur in the same region.3
The mean speed depends only on the car accumulation (solo drivers and carpoolers). We assume4
the number of operating buses is given and thus already accounted for in the speed function. The5
speed function does not depend explicitly on the accumulation of buses. We calibrated the affine6
formulation from (16, 46) with the travel times and distances retrieved from the city navigator (47).7
The travel demand acts as the weighting factor. The PT speed is assumed affine in the car speed.8
It is computed by (numerical values for speed in m/s):9

VPT = 0.12Vcar

(
Hcar +

1
2

Hpool

)
+3.17. (21)10

Note that the constant factor is higher and the proportionality factor lower than in (16). In the11
former study, the authors represented the speed of buses only, whereas we consider tramways and12
subways as well. Those modes are not or very little impacted by the car congestion Ameli et al.13
(48).14

The trip length is discretized with 50 steps (precision of 304 m) and the departure time15
with 100 steps (precision of 145 s). We assume seven possible desired arrival times: every 30 min16
from 7:00 to 10:00. Those numerical values are chosen as a trade-off between computation times,17
numerical rounding errors, and simulation precision. To account for the equity of the TCS con-18
cerning the travelers’ wealth, we consider travelers with a low VoT of 10.8 EUR/h for low revenue19
and a high VoT of 21.6 EUR/h to represent high revenue. We assume there are evenly distributed20
across the travel demand. These VoT correspond to the order of magnitude of Lyon inhabitants’21
VoT distribution, as used in (49, 50). The normalized early factor is chosen as 1/2 and the late one22
as 2. It represents that being late is worse than traveling a long time, which is worse than arriving23
early. It is a common assumption when computing schedule cost as a proxy for the perceived travel24
cost. This choice of discretization leads to 210,000 different combinations of travelers’ character-25
istics and trip choices: 50 trip lengths, 100 departure times, seven desired arrival times, two VoT,26
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and three modes. The trip-based MFD (event-based resolution) solution is expensive to compute1
for such a large set of trips. One simulation lasts about 470 s with the trip-based MFD and only2
0.1 s with the generalized bathtub. The trip-based framework is only used to confirm that the gen-3
eralized bathtub approximation provides a close approximation of the system states for the optimal4
solution.5

We estimate the carpooling penalty ζpool with additional 10 min. The main parameters used6
for the numerical computation are gathered in Tab. 2. Note that the allocation κ is only meaningful7
compared to the charging profile τ , as only the ratio matters.8

TABLE 2: The parameters used for the simulation.

Parameter Notation Value
VoT αc {10.8, 21.6} EUR/h
Scaled early factor β̃ 1/2
Scaled late factor γ̃ 2
Endowment κ 1 credit
SUE goal E∗

SUE 10−2

CC goal E∗
CC 5×10−3

MCC goal E∗
MCC 5×10−3

Maximum price variation εp 1 EUR
Logit parameter θc 1 1/EUR
Carpooling penalty ζpool 10 min
Charging period Tcharges 30 min

The charging period is chosen based on the travel times distribution without TCS. The9
credit charge changes every 30 min, and most of the trips (about 90%) last less than this period. It10
means most of the trips finish at most in the period after which they started. It is essential not to11
have too many trips impacting a large number of periods, as these travelers would impact the traffic12
conditions without paying the appropriate charge. It goes in the sense of marginal cost pricing: the13
traveler pays for the externality that it causes to the rest of the travelers.14

Results at the network level15
We generate different dynamic TCS forming a Pareto front, i.e., the ones with no other solution16
being better at the same time for congestion and carbon emission reduction. The carbon emissions17
are estimated using the COPERT IV (51) model of (52). We also compute the equilibrium under18
static credit charging, with different ratios charge over allocation τ(car)/κ between 3 and 16. The19
Pareto front is shown in Fig. 5, with the static solutions and the no TCS case for comparison. A20
static charge of 4 credits means that, on average, only one car can drive for every four travelers21
(one solo driver or two carpoolers). It already enables a congestion reduction of about 19% and22
pollution of 59%. To achieve a low carbon footprint, the TCS greatly penalizes the car, and many23
travelers switch to PT and carpooling. The mode shift is large, the traffic improvement does not24
offset the use of slower modes, and the total congestion cost increases due to increased travel times.25
The congestion cost reduction of 20% (dynamic charging ’cong’) cannot be reached with static26
charging. Even if static charging enables a congestion reduction of 19%, the associated carbon27
emissions are 36% higher than the dynamic TCS ’cong’. We keep the dynamic solutions with28
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FIGURE 5: Congestion cost vs. carbon emissions for different static and dynamic TCS. The
numbers are the ratios charge over allocation for the static cases. For comparison, the no TCS case
leads to a congestion cost of 2.63×106EUR and a carbon emission of 275 t.

the lowest congestion cost (’cong’) and the lowest CO2 emission (’emis’) for further comparison1
against static charging. An intermediate case of dynamic charging (’mid’) is used for comparison2
against the no TCS scenario.3

We compare the modal shares for the different scenarios in Fig. 6. As expected, we see4
from Fig. 6(a) that the share of solo drivers diminishes with TCS as the associated travel costs5
increases. Looking more closely reveals the car share decreases with dynamic charging during6
the peak demand, while it increases with static charging. There are two effects to explain this:7
it becomes expensive to take the car as the credit charge is high during the peak in the dynamic8
case. The credit charge is the same in the static case, but the travel demand is higher. The TCS9
’cong’ strongly reduces car share for a limited time (8:00 to 9:00), while the TCS ’emis’ creates10
a substantial reduction across the whole time frame to reach ambitious pollution targets. The11
PT share (Fig. 6(b)) increases with the charging profile as it requires no credits. The share of12
carpoolers is captured in Fig. 6(c). The carpooling mode is more used with TCS than without13
TCS. However, the carpooling share decreases with the charging profile when the credit charge is14
high, as a carpooler still needs to spend credits. When looking at the shares with respect to the15
charging slots for all modes in Fig. 6(d), the TCS seems to make travelers leave later. The traffic16
conditions are improved, the travel times decrease, and thus travelers start their trip later to arrive17
around their desired arrival time. There is, however, very little difference between the different18
TCS. The conclusion is that the TCS affects the mode choice more than it affects the departure19
time distribution.20

In Fig. 7, the traffic conditions with and without TCS are compared through the mean21
speeds. Without TCS, the mean speeds of PT and car (represented in Fig. 7(a)) are similar during22
the peak of the demand. As expected, the TCS improves the traffic conditions by reducing the23
number of circulating cars. The gain is considerable for cars, which circulate about 6 m/s (about24
20 km/h) faster during the peak. The PT speed increases by about 1 m/s (about 4 km/h). The waves25
come from the discretization of the desired arrival times. It creates some local demand peaks every26
half an hour. Fig. 7(b) compares car speed for different objectives. When focusing on congestion27
reduction, i.e., reducing the total schedule cost, the TCS still allows mean speed reductions of more28
than 3 m/s. Especially, the credit charge is low before 8:00, and the demand is already high; thus,29
the mean car speed is lower than after 8:00. The TCS designed for emission reduction keeps the30
mean speed around 11 m/s. It is expected as the emissions decrease with the mean car speed for31
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FIGURE 6: Evolution of the mode shares and the departure times for: (a) solo car, (b) PT, (c)
carpool, and (d) total shares.
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FIGURE 8: Distribution of the benefits of the TCS: (a) trade gains (money earned or spent through
the market) and (b) travel costs gains.

the range of urban speeds.1

Individual gains2
As we consider heterogeneous travelers in terms of desired arrival times, OD pairs, and VoT, it is3
crucial to look at the equity of the TCS. By looking at the distributions of the gains brought by the4
TCS (’mid’), we can quantify the number of travelers better off and worse off with the proposed5
policy.6

The travel cost gain is the difference between travel costs without and with TCS. It is the7
sum of the schedule cost gain and trade gain from the market. A positive gain is favorable for8
the traveler as it means its cost decreases with the TCS. The trade gains from the market and the9
travel cost gains are represented in Fig. 8. A positive trade gain means the traveler earns money10
by selling credits while a negative gains means it spends money to buy credits. Fig. 8(a) gives an11
overview of the market outcomes. Travelers with a high VoT tend to buy credits from travelers12
with a smaller VoT; thus, they earn less money through the market. A traveler can earn around13
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FIGURE 9: Comparison of the mean speeds with and without TCS for the bathtub and trip-based
MFD resolutions: (a) car and (b) PT.

0.8 EUR by riding PT and spend around 5.4 EUR driving its car alone during the highest charging1
period. When weighting the trade gains by the flow distribution, some travelers spend up to 4 EUR2
while others earn up to 0.7 EUR, depending on their characteristics (VoT, trip length, and desired3
arrival time). The effect of TCS on the travel cost (schedule cost plus credit trade) is represented4
in Fig. 8(b). Most travelers are better off with the TCS, as they decrease their travel costs by 0 to5
2 EUR. About 6% of the travelers see their travel cost increase with this TCS, meaning 94% benefit6
from the TCS. The worst off lose 2.9 EUR, while those better off earn up to 10.8 EUR. Note that7
those estimations do not account for the benefits linked to the lower pollution levels, such as better8
air quality.9

Comparison with the trip-based MFD10
To assess the discretization effects, we compute the trip-based MFD simulation for the reference11
test case without TCS and the intermediate TCS ’mid’. The trip-based MFD, via its event-based12
resolution, provides the exact computation of the arrival times. It serves as the plant model. It does13
not use any discretization. It is, however, significantly more time-consuming to compute the arrival14
times for a given assignment than the discretization of the bathtub. Typically, the computation time15
is higher by three orders of magnitude. The trip lengths are the ones from the continuous demand16
before the discretization. The departure times are smooth: the trip linked to a departure time index17
itd in the bathtub corresponds to a departure time randomly drawn from the uniform distribution18
[(itd −0.5)∆t ,(itd +0.5)∆t ]. We only consider trips with a flow higher than one traveler. Less than19
2% of the travel demand is lost in the process. The mean car and PT speed are compared in Fig. 9.20
Some deviations, up to 1 m/s for car speed (Fig. 9(a)) and 0.1 m/s for PT speed (Fig. 9(b)), can21
be observed in the no TCS case between the network speed in the MFD and the bathtub. The22
differences are barely noticeable with TCS. The generalized bathtub tends to underestimate the23
congestion. To quantify the error made in congestion and pollution estimation with the bathtub,24
we compare the TCS and the carbon emissions both with and without TCS in Fig. 10.25

The errors stay below 3% for congestion cost (Fig. 10(a)) and 11% for carbon emission26
(Fig. 10(b)). The numerical approximations of the multimodal generalized bathtub are below the27
differences between the scenarios with and without TCS. The numerical resolution of the bathtub28
still gives a reasonable quantification of the economic and environmental benefits of the TCS at a29
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FIGURE 10: Variations of the objectives measures between bathtub and trip-based MFD: (a)
congestion cost (total schedule cost) and (b) carbon emission.

lower computational cost than the trip-based MFD.1

CONCLUSION2
During the last two decades, the literature improved the bottleneck’s model to quantify better the3
economic losses caused by congestion. It also allowed us to understand better the potential benefits4
of demand management policies such as congestion pricing and Tradable Credit Scheme (TCS).5
The main mean of action was the spread of the departure times. We formulate a multimodal6
generalized bathtub to account for different types of vehicles and transportation modes with this7
work. Each traveler’s choices consist of mode and departure time. We add a TCS to foster mode8
shift during the peak hour. Public Transportation (PT) users ride for free, solo car drivers pay9
the total charge, and carpoolers only half. We compute the Stochastic User Equilibrium (SUE) to10
account for the uncertainty of users’ choices. A realistic scenario based on the morning commute11
in Lyon illustrates the proposed methodology.12

The proposed framework makes it possible to compare the advantage of a dynamic TCS13
over a static one. The dynamic TCS accounts for the different demand levels depending on the14
time of the day. It permits a better reduction of the congestion costs, i.e., the sum of all travelers’15
schedule costs. The SUE is based on schedule cost; thus, the departure time shift of the travelers is16
relatively limited. The most considerable consequence is the mode shift: PT and carpooling mode17
shares increase at the expense of the car share. We draw a Pareto front to present how TCS can18
lead to different compromises in terms of congestion cost and carbon emissions.19

As TCS is a policy involving the trade of credits, it raises the question of the individual20
gains when people have different VoT (different economic classes). The results show no significant21
disadvantage for one category of VoT. With the TCS, more than 94% of the population benefit from22
the TCS, as their travel costs are reduced with the TCS. Furthermore, It does not even account for23
the environmental aspects, like air quality. The numerical resolution of the multimodal generalized24
bathtub approximates the travel times. A comparison against the exact solution via trip-based MFD25
showed that the numerical error is below the order of benefits of the TCS. Moreover, the proposed26
methodology can efficiently assess and optimize the benefits of TCS. The framework uses the27
advantages of macroscopic simulation to limit the need for computation power and data collection28
requirement.29
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Further steps in the evaluation of dynamic TCS include the validation of the traffic simu-1
lation through micro-simulation and the estimation of travelers’ behavior and acceptance through2
surveys.3

ACKNOWLEDGEMENTS4
This project has received funding from the European Union’s Horizon 2020 research and innova-5
tion program under Grant Agreement no. 953783 (DIT4TraM).6

REFERENCES7
1. Li, Z. C., H. J. Huang, and H. Yang, Fifty years of the bottleneck model: A bibliometric8

review and future research directions. Transportation Research Part B: Methodological,9
Vol. 139, 2020, pp. 311–342.10

2. Ameli, M., J.-P. Lebacque, and L. Leclercq, Improving traffic network performance with11
road banning strategy: A simulation approach comparing user equilibrium and system12
optimum. Simulation Modelling Practice and Theory, Vol. 99, 2020, p. 101995.13

3. Vickrey, W. S., Congestion Theory and Transport Investment. Source: The American Eco-14
nomic Review, Vol. 59, No. 2, 1969, pp. 251–260.15

4. Vickrey, W., Congestion in midtown Manhattan in relation to marginal cost pricing. Eco-16
nomics of Transportation, Vol. 21, 2020, p. 100152.17

5. Fosgerau, M. and K. A. Small, Hypercongestion in downtown metropolis. Journal of Ur-18
ban Economics, Vol. 76, No. 1, 2013, pp. 122–134.19

6. Arnott, R., A bathtub model of downtown traffic congestion. Journal of Urban Economics,20
Vol. 76, No. 1, 2013, pp. 110–121.21

7. Fosgerau, M., Congestion in the bathtub. Economics of Transportation, Vol. 4, 2015, pp.22
241–255.23

8. Arnott, R. and J. Buli, Solving for equilibrium in the basic bathtub model. Transportation24
Research Part B: Methodological, Vol. 109, 2018, pp. 150–175.25

9. Mariotte, G., L. Leclercq, and J. A. Laval, Macroscopic urban dynamics: Analytical and26
numerical comparisons of existing models. Transportation Research Part B: Methodolog-27
ical, Vol. 101, 2017, pp. 245–267.28

10. Leclercq, L., A. Sénécat, and G. Mariotte, Dynamic macroscopic simulation of on-street29
parking search: A trip-based approach. Transportation Research Part B: Methodological,30
Vol. 101, 2017, pp. 268–282.31

11. Lamotte, R. and N. Geroliminis, The morning commute in urban areas with heterogeneous32
trip lengths. Transportation Research Part B: Methodological, Vol. 117, 2018, pp. 794–33
810.34

12. Jin, W.-L., Generalized bathtub model of network trip flows. Transportation Research Part35
B, Vol. 136, 2020, pp. 138–157.36

13. Ameli, M., M. S. S. Faradonbeh, J.-P. Lebacque, H. Abouee-Mehrizi, and L. Leclercq,37
Departure Time Choice Models in Urban Transportation Systems Based on Mean Field38
Games. https://doi.org/10.1287/trsc.2022.1147, 2022.39

14. Lebacque, J.-P., M. Ameli, and L. Leclercq, Stochastic departure time user equilibrium40
with heterogeneous trip profile. In The 10th symposium of the European Association for41
Research in Transportation (hEART), 2022.42



Balzer, Ameli, Leclercq, and Lebacque 21

15. Dakic, I., K. Yang, M. Menendez, and J. Y. Chow, On the design of an optimal flexible1
bus dispatching system with modular bus units: Using the three-dimensional macroscopic2
fundamental diagram. Transportation Research Part B: Methodological, Vol. 148, 2021,3
pp. 38–59.4

16. Loder, A., L. Ambühl, M. Menendez, and K. W. Axhausen, Empirics of multi-modal traffic5
networks – Using the 3D macroscopic fundamental diagram. Transportation Research Part6
C: Emerging Technologies, Vol. 82, 2017, pp. 88–101.7

17. Loder, A., I. Dakic, L. Bressan, L. Ambühl, M. C. Bliemer, M. Menendez, and K. W. Ax-8
hausen, Capturing network properties with a functional form for the multi-modal macro-9
scopic fundamental diagram. Transportation Research Part B: Methodological, Vol. 129,10
2019, pp. 1–19.11

18. Loder, A., L. Bressan, M. J. Wierbos, H. Becker, A. Emmonds, M. Obee, V. L. Knoop,12
M. Menendez, and K. W. Axhausen, How Many Cars in the City Are Too Many? Towards13
Finding the Optimal Modal Split for a Multi-Modal Urban Road Network. Frontiers in14
Future Transportation, Vol. 0, 2021, p. 5.15

19. Paipuri, M. and L. Leclercq, Bi-modal macroscopic traffic dynamics in a single region.16
Transportation Research Part B: Methodological, Vol. 133, 2020, pp. 257–290.17

20. Xiao, L. L., T. L. Liu, and H. J. Huang, On the morning commute problem with carpooling18
behavior under parking space constraint. Transportation Research Part B: Methodological,19
Vol. 91, 2016, pp. 383–407.20

21. Yu, X., V. A. van den Berg, and E. T. Verhoef, Carpooling with heterogeneous users in the21
bottleneck model. Transportation Research Part B: Methodological, Vol. 127, 2019, pp.22
178–200.23

22. Xiao, L. L., T. L. Liu, H. J. Huang, and R. Liu, Temporal-spatial allocation of bottleneck24
capacity for managing morning commute with carpool. Transportation Research Part B:25
Methodological, Vol. 143, 2021, pp. 177–200.26

23. Xiao, L. L., T. L. Liu, and H. J. Huang, Tradable permit schemes for managing morning27
commute with carpool under parking space constraint. Transportation, Vol. 48, 2021, pp.28
1563–1586.29

24. Yang, H. and X. Wang, Managing network mobility with tradable credits. Transportation30
Research Part B: Methodological, Vol. 45, No. 3, 2011, pp. 580–594.31

25. Nie, Y. M. and Y. Yin, Managing rush hour travel choices with tradable credit scheme.32
Transportation Research Part B: Methodological, Vol. 50, 2013, pp. 1–19.33

26. Tian, L. J., H. Yang, and H. J. Huang, Tradable credit schemes for managing bottleneck34
congestion and modal split with heterogeneous users. Transportation Research Part E:35
Logistics and Transportation Review, Vol. 54, 2013, pp. 1–13.36

27. Nie, Y. M., A New Tradable Credit Scheme for the Morning Commute Problem. Networks37
and Spatial Economics, Vol. 15, No. 3, 2015, pp. 719–741.38

28. Xiao, L. L., H. J. Huang, and R. Liu, Tradable credit scheme for rush hour travel choice39
with heterogeneous commuters. Advances in Mechanical Engineering, Vol. 7, No. 10,40
2015, p. 168781401561243.41

29. Jia, Z., D. Z. Wang, and X. Cai, Traffic managements for household travels in congested42
morning commute. Transportation Research Part E: Logistics and Transportation Review,43
Vol. 91, 2016, pp. 173–189.44



Balzer, Ameli, Leclercq, and Lebacque 22

30. Miralinaghi, M., S. Peeta, X. He, and S. V. Ukkusuri, Managing morning commute conges-1
tion with a tradable credit scheme under commuter heterogeneity and market loss aversion2
behavior. Transportmetrica B, Vol. 7, No. 1, 2019, pp. 1780–1808.3

31. Bao, Y., E. T. Verhoef, and P. Koster, Regulating dynamic congestion externalities with4
tradable credit schemes: Does a unique equilibrium exist? Transportation Research Part5
B: Methodological, Vol. 127, 2019, pp. 225–236.6

32. Chu, X., Endogenous Trip Scheduling: The Henderson Approach Reformulated and Com-7
pared with the Vickrey Approach. Journal of Urban Economics, Vol. 37, No. 3, 1995, pp.8
324–343.9

33. Balzer, L. and L. Leclercq, Modal equilibrium of a tradable credit scheme with a trip-10
based MFD and logit-based decision-making. Transportation Research Part C: Emerging11
Technologies, Vol. 139, 2022, p. 103642.12

34. Liu, R., S. Chen, Y. Jiang, R. Seshadri, M. Ben-Akiva, and C. L. Azevedo, Managing13
network congestion with a trip- and area-based tradable credit scheme. Transportmetrica14
B: Transport Dynamics, 2022, pp. 1–29.15

35. Gao, G. and H. Sun, Internalizing Congestion and Emissions Externality on Road Net-16
works with Tradable Credits. Procedia - Social and Behavioral Sciences, Vol. 138, 2014,17
pp. 214–222.18

36. Paipuri, M., E. Barmpounakis, N. Geroliminis, and L. Leclercq, Empirical observations of19
multi-modal network-level models: Insights from the pNEUMA experiment. Transporta-20
tion Research Part C: Emerging Technologies, Vol. 131, 2021, p. 103300.21

37. Ameli, M., J. P. Lebacque, and L. Leclercq, Evolution of multimodal final user equilib-22
rium considering public transport network design history. Transportmetrica B: Transport23
Dynamics, Vol. 10, No. 1, 2022, pp. 923–953.24

38. Idoudi, H., M. Ameli, C. N. Van Phu, M. Zargayouna, and A. Rachedi, An agent-based25
dynamic framework for population evacuation management. IEEE Access, Vol. 10, 2022,26
pp. 88606–88620.27

39. Ameli, M., J.-P. Lebacque, and L. Leclercq, Simulation-based dynamic traffic assignment:28
Meta-heuristic solution methods with parallel computing. Computer-Aided Civil and In-29
frastructure Engineering, Vol. 35, No. 10, 2020, pp. 1047–1062.30

40. Ameli, M., J.-P. Lebacque, and L. Leclercq, Cross-comparison of convergence algorithms31
to solve trip-based dynamic traffic assignment problems. Computer-Aided Civil and In-32
frastructure Engineering, Vol. 35, No. 3, 2020, pp. 219–240.33

41. Ameli, M., Heuristic Methods for Calculating Dynamic Traffic Assignment. Ph.D. thesis,34
IFSTTAR Paris and Université de Lyon, 2019.35

42. Alisoltani, N., M. Ameli, M. Zargayouna, and L. Leclercq, Space-time clustering-based36
method to optimize shareability in real-time ride-sharing. Plos one, Vol. 17, No. 1, 2022,37
p. e0262499.38

43. Alisoltani, N., M. Zargayouna, and L. Leclercq, Data-oriented approach for the dial-a-39
ride problem. In 2019 IEEE/ACS 16th International Conference on Computer Systems and40
Applications (AICCSA), IEEE, 2019, pp. 1–6.41

44. Amelia, M., N. Alisoltanib, and L. Leclercqb, Lyon Metropolis realistic trip data set42
including home to work trips with private vehicles during the morning peak. URL:43
https://doi. org/10.25578/MLIDRM, doi, Vol. 10, 2021.44



Balzer, Ameli, Leclercq, and Lebacque 23

45. Ameli, M., N. Alisoltani, and L. Leclercq, Lyon North realistic trip data set during the1
morning peak. URL http://dx. doi. org/10.25578/HWN8KE, 2021.2

46. Chen, R., L. Leclercq, and M. Ameli, Unravelling System Optimums by trajectory data3
analysis and machine learning. Transportation Research Part C: Emerging Technologies,4
Vol. 130, 2021, p. 103318.5

47. HERE Developer, 2020.6
48. Ameli, M., J. P. Lebacque, and L. Leclercq, Day-to-day multimodal dynamic traffic as-7

signment: Impacts of the learning process in case of non-unique solutions. In DTA 2018,8
7th International Symposium on Dynamic Traffic Assignment, 2018, p. 5p.9

49. Ameli, M., J. P. Lebacque, and L. Leclercq, Computational Methods for Calculating Mul-10
timodal Multiclass Traffic Network Equilibrium: Simulation Benchmark on a Large-Scale11
Test Case. Journal of Advanced Transportation, Vol. 2021, 2021.12

50. Ameli, M., J.-P. Lebacque, and L. Leclercq, Multi-attribute, multi-class, trip-based, multi-13
modal traffic network equilibrium model: Application to large-scale network. In Traffic14
and Granular Flow’17 12, Springer, 2019, pp. 487–495.15

51. Ntziachristos, L., D. Gkatzoflias, C. Kouridis, and Z. Samaras, COPERT: A European road16
transport emission inventory model. Environmental Science and Engineering (Subseries:17
Environmental Science), 2009, pp. 491–504.18

52. Lejri, D., A. Can, N. Schiper, and L. Leclercq, Accounting for traffic speed dynamics when19
calculating COPERT and PHEM pollutant emissions at the urban scale. Transportation20
Research Part D: Transport and Environment, Vol. 63, 2018, pp. 588–603.21


	Introduction
	Congestion models
	Multimodality
	TCS models in urban areas

	Problem formulation
	Multimodal generalized bathtub
	Dynamic Tradable Credit Scheme
	Mode and departure time choice
	Equilibrium formulation

	Methodological Framework
	Credit price
	Assignment

	Numerical experiments
	Case Study
	Results at the network level
	Individual gains
	Comparison with the trip-based MFD

	Conclusion
	Acknowledgements

