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Accurate real-time positioning, i.e. at the lane level, is a big challenge for a lot of advanced 
driver assistance systems (ADAS) under study or development. To reach the sub-meter 
accuracy necessary for the lane discrimination, the best from the existing technologies and 
state-of-the-art data fusion algorithms must be used, keeping in mind that the final 
commercial solution will have to be available at an acceptable price for the customer. In the 
frame of the European project CVIS, the LCPC is addressing this issue and this paper presents 
the choices that have been made: EGNOS (the European WAAS) for the main positioning 
technology, a new model of enhanced digital maps compliant with the lane-level objective 
and an innovative particle filter proposed by the LCPC team to merge sensor and map data 
into a unique positioning and map-matching process. 
 
Key words: Advanced Driver Assistance Systems, lane-level real-time positioning, WAAS, 
enhanced digital maps, particle filtering, map-matching 
 
 

FRAMEWORK AND OBJECTIVE OF THE RESEARCH  
 
The CVIS integrated project of the European Commission 6th framework program aims at 
creating a unified technical solution allowing all vehicles and infrastructure elements to 
communicate with each other in a continuous and transparent way using a variety of media 
and with enhanced localization. The POMA (POsitioning and MApping) sub-project will 
research, develop, test and validate advanced positioning and mapping solutions in order to 
provide a set of positioning and mapping services that will run across CVIS entities (vehicle, 
roadside equipment, service center, etc.). In the frame of POMA activities, a specific research 
action aims at developing a new system capable of locating vehicles at lane-level. This 
capability is valuable for a panel of ADAS, for instance Enhanced Driver Awareness warning 
the driver of any danger or obstacle that he can potentially find on his trajectory, like a wrong 
way driving vehicle, or new services called Lane utilization information, In-vehicle variable 
speed limit information or Intelligent speed alert with links to infrastructure. 
The research that is presented below aims at demonstrating the feasibility of this concept, on 
given areas where the lane-level accuracy is relevant and where the general environmental 
situation is not too stringent, for instance on large interchanges and crossroads. The idea is not 
to target sub-meter accuracy always and in all conditions, which is unrealistic, but to target a 
system capable to tell the user application on which lane the vehicle is likely to drive and with 
which confidence this information is true. 
 
 

ASSUMPTIONS AND BASIC COMPONENTS OF THE SYSTEM 
 
The first necessary condition to reach a sub-meter accuracy is the availability of an 
augmented GNSS system, such as the American WAAS or the European EGNOS, which is 
the unique cost-effective available technology capable of this performance. The use of phase-
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differential techniques known as RTK is not realistic today in the context of road 
transportation for obvious cost and availability reasons. Today, GPS+WAAS or 
GPS+EGNOS systems are definitely the best candidates before the other systems such as 
Galileo are ready to increase the GPS-only performances.  
Yet, the weak point of WAAS, i.e. its poor availability due to satellites outages, has to be 
improved by data fusion using other sources of information such as dead-reckoning sensors. 
Traveled distance is commonly available on most modern vehicles through the CAN bus and 
low-cost gyroscopes providing the yaw angle speed will also be accessible in a near future, 
for instance those used in ESP (Electric Stability Program) systems. With these sensors, it is 
possible to mitigate short-term GPS perturbations or outages and to yield, as output of a 
fusion algorithm such a Kalman filter, a more available, accurate and integer position. 
Nevertheless, given the poor quality of automotive sensors, this improvement is limited and it 
is not reasonable to expect good absolute position after a satellite outage exceeding a few tens 
of seconds. 
Another very important point is that absolute position in a geocentric frame such as WGS 84 
is finally useless since all the applications need map-matched position, i.e. absolute position 
projected on a digital map reference. From this point, two observations can be made: first, the 
map-matching process needs to be considered; second, it should be extremely interesting for 
the data fusion itself to use this important a priori information contained in digital maps. 
Hence, we decided to design an innovative algorithm merging the 2 processes of data fusion 
and map-matching in a unique one, the output being an accurate map-matched position.  
 
 

THE SENSOR SET 
 

The experimental set-up that has been used for this paper comprises the following sensors: 
- GPS/WAAS receiver: mono frequency L1, EGNOS compliant, with internal Kalman 

filter off. 
- yaw rate gyroscope: FOG (Fiber Optic Gyro): 

o noise (random walk): 0.083°/sqrt(h) 
o short term bias stability (at constant temperature) (1 hour): not significant 
o bias (over temperature range): < 0.4 °/s 

- odometer: encoder located in the gearbox of the test car, delivering 1 pulse for each 
19.54 cm traveled by the front wheel in average. 

 
 

THE ENHANCED DIGITAL MAPS  
 

Model 
 
Considering that lane-level accuracy is targeted, the digital maps that should be used need to 
describe all the lanes of the road with a sufficient accuracy, let’s say 10 times better than the 
final accuracy requested, i.e. around 10 cm. This requirement is nowadays totally reasonable 
with the dramatic progresses achieved recently in the mobile mapping and aerial 
photogrammetry technologies. Moreover, these enhanced maps need to be established only 
for some critical areas in which the lane-level accuracy is needed. 
The new Emap data model is presented on Figure 1. Compared to a standard digital map used 
for simple navigation, generally based upon GDF standard, this new model adds 
Carriageways and Lane segments and the description of both longitudinal and transversal 
geometry. 
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Figure 1: the Emap data model 
 
The lane segment is the basic element described by its geometry and its topology. 
The lateral geometry is limited to the width whereas the longitudinal geometry is compliant 
with a clothoïde model of the segment central axis and described by the following Fresnel 
integrals using the parameter l  (curvilinear abscissa): 
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Each segment is determined by a unique set of parameters: the coordinates of the origin 
(x0,y0), the tangent angle (τ0) and the curvature (k0) at the origin and the variation rate (c) of 
the curvature with respect of the curvilinear abscissa (c). This model is also valid for straight 
line (k0 = c = 0) or circular segments (k0 ≠ 0, c = 0). 
 
The longitudinal topology is described by the physically accessible segments that precede or 
follow the current one (we call this relation: longitudinal connectivity) and the lateral is 
described by the accessible segments at the right or the left hand side of the current one (we 
call this relation: transversal connectivity). 

 
Construction 

 
Several different techniques can be used to build such enhanced digital maps, the most 
promising being aerial photogrammetry and land mobile mapping vehicles. We have 
developed a method suited to the estimation of the series of parameters (x0,y0,τ0,k0,c) based 
on an Extended Kalman Filter using mobile mapping data. For this purpose, the DGPS 
receiver of the sensor set presented before was replaced by a kinematic receiver, which enable 
post-processing of phase data and achievement of centimeter level solutions (PPK: post-
processed kinematic GPS). 
The initial step in the Emap construction consists in fusing dead-reckoning and kinematic 
GPS solutions so that continuous positioning is available everywhere. This is done in a 
software module developed by the LCPC that is basically an EKF followed by a Raugh 
linearized smoother on the complete data set time interval. Next step performs the clothoïdes 
extraction. It takes the preceding vehicle smoothed positions as observations in a filtering 
process, whose prediction model simply keeps parameters at instant k+1 equal to those at 

 EMap 

Road 

Carriageway 

Lane 

Lane Segment 

Origin 
position 

x0 
y0 

Transversal 
geometry 

D 

Longitudinal 
geometry 

τ0 
k0 
c 
L 

Longitudinal 
topology 

preceding 
segments # 

following 
segments # 

Transversal 
topology 

left   
segments # 

right 
segments # 



 -4- 

instant k, and observation model uses an approximation of the Fresnel integrals of the on-
going clothoïde to compute (x,y) position and the corresponding innovation with respect to 
local smoothed position. When this innovation exceeds a threshold (that we fixed at 5 cm), the 
clothoïde is ended and a new set of parameters is initialized. Last step in the Emap 
construction is still manual and aims at filling the connectivity relationships between all 
clothoïdes identified before, and store data in a database. Note that trajectories in crossroads 
will not be modeled. 
Figure 2 shows two extracted clothoïdes before a crossroad: the black crosses represent the 
surveyed points obtained with our mobile mapping vehicle and the red crosses the extremities 
of the elements. Figure 2 also illustrates the difference between longitudinal and transversal 
connectivity. 
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Figure 2: Longitudinally and transversally connected road elements 
 

 
THE POSITIONING/MAP-MATCHING ALGORITHM 

 
The hybridization principle  

 
Traditionally, the positioning information is processed in 3 steps (for instance in navigation 
systems): 1) estimation of the absolute position of the vehicle in a geographical reference 
frame, using GPS only or through data fusion between GPS and proprioceptive sensors, 2) 
map-matching of the absolute position on the digital map, 3) extraction of the relevant 
information from the data base (attributes of map elements).  
Our process hybridizes tightly the first 2 steps and estimates together the absolute position 
and orientation, the lane segment on which the vehicle is driving as well as the position of the 
vehicle in the lane segment reference system. In addition to the fact that this process is more 
likely to be optimum and more direct, it brings the very significant advantage to constraint the 
solution within the carriageway, making it possible the elimination of outliers. Of course, the 
quality of the final result depends directly on the measurement accuracy, like any other 
positioning process, as well as on the geometry of the map. 
 
The lane reference system, also called Frenet reference system in which the map-matched 
position is expressed is illustrated in Figure 3. The coordinates of the current map-matched 
point P are: the id of the segment m , the curvilinear abscissa of the orthogonal projection of 
P  onto the lane axis mNl  and the orthogonal signed distance from P  to the lane axis m

Nd .  

Longitudinal connectivity 

Transversal connectivity 
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Figure 3: The lane reference system for the map-matched position on the lane segment 
 

Map matching with Emap 
 
There are several approaches to the map matching issue.   
1) The geometrical approach like so-called point to point or point to curve methods using only 
distance criteria to select the matched road element. These methods are simple to implement 
but are very sensitive to the map bias and/or errors and positioning errors. Moreover, the map-
matching can fail when the vehicle evolves in a dense road network due to possible 
ambiguities in road elements selection.  
2) The second kind of approach is called multidimensional approach. To improve the 
geometric approach, some people propose to add other criteria to select the matched road 
element like the driving direction, the speed limit, the heading information or the traveled 
distance on the road element, etc.  
3) The last kind of map matching method is the topological approach. Either the topological 
information is used to drive the selection step and filter out the road elements which cannot be 
reached with respect to previous map-matching results, or the vehicle trajectory is compared 
with pieces of curve constituted by a set of connected road elements and a L2 norm criterion 
is used to select the best curve. This last method is so called curve to curve map-matching.  
 
Within the context of enhanced maps, errors and bias on the geometry of the road network are 
small and the topology is perfectly known. Therefore, to achieve the map-matching included 
inside our process, we have decided to implement a point to curve method (1) (2) (3) driven 
by topological information using the two following selection distance criteria: 1) the signed 

orthogonal distance mNd  between the positioning result ( )Tyx,=P  in a Cartesian reference 

system and the central axis of lane segment m  and 2) the curvilinear abscissa m
Nl  associated 

to this orthogonal distance (see Figure 3). These two criteria define also the vehicle position 
in the Frenet reference system associated with lane segment m , which we call “map-matched 
position”.  
 
A relationship between these two representations exists [2] + [3] and will be used to evaluate 
the map matching result: 
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Moreover, in order to limit map-matching errors when the positioning accuracy is poor, we 
propose to constrain the positioning results with the map by taking into account the map-
matching results and the geometry of the lane segment. Therefore a positioning result can be 
considered as acceptable if the position is located onto a lane segment, i.e.: 

( )( )
else

L<l<aD<d<Dif=dyx,=Pp mm
N

mm
N

mm
N

T

0

nd_02_/2/1/  [4] 

where mD and mL are respectively the width and the length of the lane segment m . 
 

In this case, the matching and positioning processes cannot be dissociated and must be 
combined in a single hybrid system so called map-aided system. These systems are based on 
Bayesian filtering schemes like Kalman filtering where the map matching result is considered 
as a new observation in the positioning system. Two kinds of map-aided system can be found 
in the literature: the loosely coupled map-aided systems (4) (5) where the map-matching 
results are only used to observe and correct the vehicle positioning and the tightly coupled 
map-aided systems (6) (7) (8) where the map-matching results are used to observe the GPS 
errors. Generally, due to the conventional polyline representation of roads, this new 
observation is considered as a Gaussian unimodal observation. However, when the vehicle 
evolves in complex environments such as crossroads or junctions where several road 
segments are probable, the fusion process fails. In these cases, the unimodal filtering is not 
appropriate and it is necessary to switch to a multi-hypothesis fusion scheme running several 
filters in parallel (9) or to use particle filter (5). This multi-modal situation is even more 
frequent when using Emaps since multi-lane carriageways generally offer also the possibility 
to drive on all the lanes, increasing consequently the matching ambiguities. 
 

The hybrid state system 
 

According to the state-of-the-art and our context, we decided to use a particle filtering scheme 
in our positioning system, and also to use the map-matching results as a possible multi-modal 
observation. However, due to the complexity and the ambiguity of the relationship between 
position and map-matching results (see equation [2]), the map-matching results cannot be 
used directly as an observation. To turn around this problem, we propose to estimate the map-
matched position in the fusion process together with the standard position parameters (pose). 
The augmented state vector of this new hybrid positioning/map matching system can be 
expressed as: 

[ ] [ ]( )Tm
N

m
N

TFC m,d,l,γy,x,=X)X,=(X  [5] 

The first sub-state ( )TC γy,x,=X  is the traditional Cartesian 2D pose composed of the 
coordinates of the reference point of the vehicle P  and the heading angle. The second sub-

state, called the Frenet sub-state ( )Tm
N

m
N

F m,d,l=X  represents the map-matched position of 

P , expressed in the lane reference system. The two sub-states are partially redundant, but this 
approach offers the advantage to compute in one shot all the relevant variables that are 
necessary for applications. 
 
Finally, taking into account the particle filtering scheme, the augmented position probability 
density function is approximated at time k  by the sample set: { } N=i

i
k

i
k w,X 1... , whereN is the 

number of samples or particles and iw is the importance weight of sample i  in the probability 
density.  
The augmented position estimate is given by: 
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kkk i
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1:1 )/( δ  [6] 

where i
kX

δ is the Dirac function centered on ikX . 

 
Steps of the particle filter 

 
As a matter of fact, our particle filter will be composed of two different filters running in 
parallel and in a synchronized way: one for the evolution in time of the Cartesian sub-state 
and the other for the evolution in time of the Frenet sub-state. The main advantage of this 
method is the improvement of the observability of the positioning problem. Indeed, the 
positioning problem will be observed directly and separately by GPS data in the Cartesian 
representation and by the map constrains in the Frenet representation. 
 

Evolution of the Cartesian sub-state 
 
The Cartesian sub-state system is in fact the state system used classically: its behavior is 
defined by the following relationship: 
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where:   
- ( ).fC  is the evolution model of the vehicle in the Cartesian coordinate system, a 

bicycle model is used in our case,    
- kU  is the input vector of the evolution model, inputs are the speed ( )2

vσv,Nv ~  

and the turn rate ( )2
ωσω,Nω ~  of the vehicle,    

- kW  is the evolution model uncertainty,   

- ( )gpsgpsgps y,x=Y  is a GPS observation at instant k, 

- gpsH  is the observation matrix linking GPS data to the sub-state k
C X , 

- ( )gpsgps RNV 0,~  is the uncertainty vector on the GPS data, with gpsR  the 

covariance matrix associated to GPS data. 

1. Prediction. Applying Monte Carlo scheme to the dynamic equation [7], prediction at time 
k of the Cartesian part of each particle is provided by the following equations:   
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where iv and i
ω are pure random variables drawn according to the probability densities of the 

uncertainties of the speed v and the turn rate ωof the vehicle and T∆  is the time elapsed 

between the time k  and 1−k . 
 
2. Correction. The weights of the particles are updated to take into account the measurement 
equation. As a Gaussian hypothesis has been made on the GPS observation, the likelihood 
density function can be written that way: 
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where observation matrix is equal to: 








010

001
=H gps   [11] 

and the weight updating of each particle is given by:  
( ) i

k
i
k

C
gps

i
k wXYp=w 1/ −  [12] 

 
Evolution of the Frenet sub-state 

 
The behavior of the Frenet sub-state system is more complex since it is a vector composed of 
continuous and discrete variables. Such state systems are governed by a so-called Jump 
Markov state system (10) (11) which is, in our case, of the following form:  
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where :   
- m  is the mode of the Jump Markov state, in our case the mode corresponds to a 

description of the lane segment associated to map matching result, 
- ( ).mF f  is the evolution model of map-matched position, this model changes for 

each modem and is defined by the geometry description of lane segment  
associated with the mode m , 

- 
m

mapY  is the map observation (or map constraint), 

- 
m

mapV  is the uncertainty on the map observation. 

 
1. Prediction. According to Monte Carlo scheme and the geometric description of the lane 
segment m , and to the evolution of the vehicle position in the Cartesian reference system [9], 
prediction at time k  of the map-matched position of each particle is provided by the 
following equation: 
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As a matter of fact, this equation represents the projection of the vehicle evolution in the 
Cartesian reference system onto the middle axis of the associated lane segment and its 
perpendicular. This equation assumes small displacements of the vehicle. 
 
The transition of modes depends on the probability that the vehicle evolves on a new lane 
segment after the evolution i.e. ( )i

k
Fi

k
i
k

i
k X,mmmp 11 / −−≠ . This probability can be computed in 

taking into account the topological information (connectivity) of each segment and the new 
position of the vehicle on the current lane segmenti

km . 

Then four transitions of mode are possible: 
- a “left” transition occurs if the segment ikm  has a left-connex segment and 2/im,im,

kN, D<d − ,  

- a “right” transition occurs if the segment ikm  has a right-connex segment and 2/im,im,
kN, D>d , 
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- a “next” transition occurs if  the segment i
km  has a next-connected segment and im,im,

kN, L>l , 

- a “previous” transition occurs if  the segment i
km  has a previous-connected segment and 

im,
kN,l<0 . 

Notice that, if a transition of mode has occurred, the map-matched position must be 
reevaluated taking into account the geometry of the new lane segments. This is done by 
minimizing the distance between the Cartesian position and the Fresnel integrals computed 
iteratively using equation [1]. 
 
2. Correction. Finally, the weight of each particle is updated taking into account the map 
constraints relation. 
The likelihood density of each particle with respect of the distance criteria is:  

( )
else

L<l<D<d<Dif=X,Yp im,im,
kN,

im,im,
kN,

im,i
k

Fm
map

0

and_0_2/2/1 −  [17] 

and the weights are updated the following way: 
( ) i

k
i
k

Fm
map

i
k wXYp=w 1/ −   [18] 

According to the previous description, there are three main advantages to introduce map 
matching result in the filtering scheme:   

1. the evaluation of map matched position at each time is not needed because it is 
provided by the filter itself,  

2. the map constrains are easy to implement, 
3. the map matching process (used only to reevaluate the map-matched position during 

lane change) is improved because it takes into account both the topology and the 
vehicle behavior.  

 
Final hybrid positioning and map matching algorithm 
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EXPERIMENTAL RESULTS 
 
Our lane-level positioning system has been experimented using real data collected during a 
benchmarking campaign carried out on a closed test track located in VERSAILLES-SATORY 
at the end of 2005. An Emap model of the loop composed of 2 separate lanes has been 
established using the very accurate survey data describing the track. 
Figure 4 presents a general view of the track, the Emap clothoïde elements that have been 
determined, the starting point and the part of the circuit where EGNOS has been available. 

 

 

Figure 4: General view of the test track with the Emap elements 

Figures 5 to 10 show some comparative results obtained on the one hand with the traditional 
positioning + map-matching processes (system A) and on the other hand with our novel 
hybridized unique process (system B). A standard Extended Kalman Filter has been used for 
the positioning data fusion and a distance minimization to the closest clothoïde element for 
the map-matching.  
 

  
Figure 5: Initialization area with system A Figure 6: Initialization area with system A 

  
Figure 7: No-EGNOS area with system A Figure 8: No-EGNOS area with system B 
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driving 
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Figure 9: No-GPS simulation with system A Figure 10: No-GPS simulation with system B 

  
On all the figures, the 2 lane axes are represented, as well as the absolute position coming 
from the sensor data fusion (thick magenta line), true absolute position (thin pink line), 
estimated map-matched position (green squares) and true map-matched position (purple 
squares). 
For system B, the estimated absolute position comes from the estimated Cartesian component 
of the composite state vector and the map-matched position is the projection of the current 
point onto the most likely lane axis, determined by the estimated element parameter m . 
 
On Figures 5 and 6, it can be seen that the Kalman filter initialization time can be much 
higher than the particle filter one when the initial heading angle is not correctly initialized; 
Moreover, when EGNOS data are available, the global accuracy is good enough to determine 
the right lane. 
 
Looking at Figures 7 and 8, it can be noticed that without EGNOS, the stand-alone accuracy 
of the GPS is not good enough to keep the estimation on the right lane, whatever the fusion 
system, but the advantage of system B is that the estimated absolute position stays closer to 
the lane axis, meaning that, at least for a while, the Emap constraint is efficient to correct the 
GPS bias. 
 
Figures 9 and 10 have been obtained after having created a virtual total GPS outage just after 
the point where EGNOS is lost. It can be easily noticed that the important drift of the dead-
reckoning navigation results in totally erroneous traditional map-matching whereas the map 
constraint prevents the position to leave the road, even if the estimated lane is not correct after 
a while. 
 
 

CONCLUSION AND PERSPECTIVES 
 

This paper presents a novel combined positioning/map-matching data fusion system that 
merges sensor data from a GPS-WAAS receiver, dead-reckoning sensors and a precise 
description of the geometry and the topology of the road at lane-level called Emap model, 
developed in the frame of the European integrated project CVIS. This system has been 
designed to bring a solution to the lane-level positioning issue, which is necessary for a larger 
and larger number of new co-operative ADAS under development.  
Compared to traditional methods that realize first the sensor data fusion, generally by Kalman 
filtering, and then the map-matching, our novel method based upon a particle filter estimating 
a composite state vector, offers several advantages: 

1. the estimated position is constrained to stay on the road, even when large absolute 
positioning errors occur, 
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2. when a WAAS augmentation system such as EGNOS is available, the system is able 
to estimate the exact lane on which the vehicle is moving, with a better reliability than 
the standard dissociated methods, 

3. the system has been designed to cope with multi-modal situations, often met on real 
roads.  

 
This paper summarizes the first research investigations that we have carried out in the context 
of lane-level positioning using enhanced digital maps. Our future work will be mainly focused 
on the experimental assessment of the method in more complex environments such as 
crossroads or interchanges, where the ability of the algorithms to comply with multi-modal 
situations at junctions will be highlighted. In the meanwhile, the automatic computing of 
geometry, and connectivity relationships in Emaps is under development. 
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