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Accurate real-time positioning, i.e. at the laneeleis a big challenge for a lot of advanced
driver assistance systems (ADAS) under study oreldgwnent. To reach the sub-meter
accuracy necessary for the lane discrimination,btb&t from the existing technologies and
state-of-the-art data fusion algorithms must bedudeeeping in mind that the final
commercial solution will have to be available atamteptable price for the customer. In the
frame of the European project CVIS, the LCPC israsing this issue and this paper presents
the choices that have been made: EGNOS (the Eurdpg®AS) for the main positioning
technology, a new model of enhanced digital mapaptiant with the lane-level objective
and an innovative particle filter proposed by teéFIC team to merge sensor and map data
into a unique positioning and map-matching process.

Key words: Advanced Driver Assistance Systems,-laxel real-time positioning, WAAS,
enhanced digital maps, particle filtering, map-rhatg

FRAMEWORK AND OBJECTIVE OF THE RESEARCH

The CVIS integrated project of the European Comimis$" framework program aims at
creating a unified technical solution allowing akhicles and infrastructure elements to
communicate with each other in a continuous anasparent way using a variety of media
and with enhanced localization. The POMA (POsitignand MApping) sub-project will
research, develop, test and validate advancediguael and mapping solutions in order to
provide a set of positioning and mapping servites will run across CVIS entities (vehicle,
roadside equipment, service center, etc.). Initiimé of POMA activities, a specific research
action aims at developing a new system capableoddting vehicles at lane-level. This
capability is valuable for a panel of ADAS, for iasceEnhanced Driver Awareness warning
the driver of any danger or obstacle that he cdaantially find on his trajectory, like a wrong
way driving vehicle, or new services calledne utilization information, In-vehicle variable
speed limit information or Intelligent speed alert with links to infrastructure.

The research that is presented below aims at deémtng the feasibility of this concept, on
given areas where the lane-level accuracy is raetesad where the general environmental
situation is not too stringent, for instance ogé&interchanges and crossroads. The idea is not
to target sub-meter accuracy always and in all itimmd, which is unrealistic, but to target a
system capable to tell the user application on wkaoe the vehicle is likely to drive and with
which confidence this information is true.

ASSUMPTIONS AND BASIC COMPONENTS OF THE SYSTEM
The first necessary condition to reach a sub-memuracy is the availability of an

augmented GNSS system, such as the American WAABeoEuropean EGNOS, which is
the unique cost-effective available technology b#paf this performance. The use of phase-

-1-



differential techniqgues known aRTK is not realistic today in the context of road
transportation for obvious cost and availabilityasens. Today, GPS+WAAS or
GPS+EGNOS systems are definitely the best candidatéore the other systems such as
Galileo are ready to increase the GPS-only perfones.

Yet, the weak point of WAAS, i.e. its poor availilygi due to satellites outages, has to be
improved by data fusion using other sources ofrmfgion such as dead-reckoning sensors.
Traveled distance is commonly available on mostenodehicles through the CAN bus and
low-cost gyroscopes providing the yaw angle spegidaiso be accessible in a near future,
for instance those used in ESP (Electric StabRitggram) systems. With these sensors, it is
possible to mitigate short-term GPS perturbation®utages and to yield, as output of a
fusion algorithm such a Kalman filter, a more aablé, accurate and integer position.
Nevertheless, given the poor quality of automosigasors, this improvement is limited and it
is not reasonable to expect good absolute posifiien a satellite outage exceeding a few tens
of seconds.

Another very important point is that absolute gositin a geocentric frame such as WGS 84
is finally useless since all the applications nesp-matched position, i.e. absolute position
projected on a digital map reference. From thisipdwo observations can be made: first, the
map-matching process needs to be considered; seit@mbuld be extremely interesting for
the data fusion itself to use this important a grioformation contained in digital maps.
Hence, we decided to design an innovative algorithenging the 2 processes of data fusion
and map-matching in a unique one, the output bamgccurate map-matched position.

THE SENSOR SET

The experimental set-up that has been used fop#mper comprises the following sensors:
- GPS/WAAS receivermono frequency L1, EGNOS compliant, with interKalman
filter off.
- yaw rate gyroscopd-OG (Fiber Optic Gyro):
o noise (random walk): 0.083°/sqrt(h)
o short term bias stability (at constant temperat(téjour): not significant
o bias (over temperature range): < 0.4 °/s
- odometerencoder located in the gearbox of the test aiveting 1 pulse for each
19.54 cm traveled by the front wheel in average.

THE ENHANCED DIGITAL MAPS
Model

Considering that lane-level accuracy is targetied,digital maps that should be used need to
describe all the lanes of the road with a suffit@ccuracy, let's say 10 times better than the
final accuracy requested, i.e. around 10 cm. Tédgirement is nowadays totally reasonable
with the dramatic progresses achieved recently he tobile mapping and aerial
photogrammetry technologies. Moreover, these erdthntaps need to be established only
for some critical areas in which the lane-leveluaacy is needed.

The new Emap data model is presented on Figuremp@red to a standard digital map used
for simple navigation, generally based upon GDFnddiad, this new model adds
Carriageways and Lane segments and the descripfidooth longitudinal and transversal
geometry.
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Figure 1: the Emap data model

The lane segment is the basic element describé&d ggometry and its topology.

The lateral geometry is limited to the width wherdle longitudinal geometry is compliant
with a clothoide model of the segment central axid described by the following Fresnel
integrals using the parametefcurvilinear abscissa):

2
X(|):x0+J:COSQ'O+KO|+%)d| O<l<L
[1]
2
y(l):y0+£sin(ro+/(o| +%)d| 0<l <L

Each segment is determined by a unique set of mdeas the coordinates of the origin
(X0,Y0), the tangent angled) and the curvature ¢kat the origin and the variation rate (c) of
the curvature with respect of the curvilinear afsai(c). This model is also valid for straight
line (kp=c = 0) or circular segmentsyk 0, c = 0).

The longitudinal topology is described by the phsly accessible segments that precede or
follow the current one (we call this relatiolongitudinal connectivity) and the lateral is
described by the accessible segments at the rigitedeft hand side of the current one (we
call this relationtransversal connectivity).

Construction

Several different techniques can be used to buikch ssnhanced digital maps, the most
promising being aerial photogrammetry and land meolmapping vehicles. We have
developed a method suited to the estimation ofstrees of parameterso(yo,To,Ko,C) based
on an Extended Kalman Filter using mobile mappirdgad For this purpose, the DGPS
receiver of the sensor set presented before wiscezpby a kinematic receiver, which enable
post-processing of phase data and achievement raineter level solutions (PPKpost-
processed kinematic GPS).

The initial step in the Emap construction consiatgusing dead-reckoning and kinematic
GPS solutions so that continuous positioning isilabke everywhere. This is done in a
software module developed by the LCPC that is b#lgian EKF followed by a Raugh
linearized smoother on the complete data set tntexval. Next step performs the clothoides
extraction. It takes the preceding vehicle smootpesitions as observations in a filtering
process, whose prediction model simply keeps paemat instant k+1 equal to those at



instant k, and observation model uses an approjomatf the Fresnel integrals of the on-
going clothoide to compute (x,y) position and tloeresponding innovation with respect to
local smoothed position. When this innovation exisee threshold (that we fixed at 5 cm), the
clothoide is ended and a new set of parametersiiiglized. Last step in the Emap
construction is still manual and aims at fillingetltonnectivity relationships between all
clothoides identified before, and store data iratalohse. Note that trajectories in crossroads
will not be modeled.

Figure 2 shows two extracted clothoides beforeogstoad: the black crosses represent the
surveyed points obtained with our mobile mappingicle and the red crosses the extremities
of the elements. Figure 2 also illustrates theeddhce between longitudinal and transversal
connectivity.
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Figure 2: Longitudinally and transversally connected road el ements

THE POSITIONING/MAP-MATCHING ALGORITHM

The hybridization principle

Traditionally, the positioning information is prased in 3 steps (for instance in navigation
systems): 1) estimation of the absolute positiorthef vehicle in a geographical reference
frame, using GPS only or through data fusion betw&®S and proprioceptive sensors, 2)
map-matching of the absolute position on the digmap, 3) extraction of the relevant

information from the data base (attributes of miaments).

Our process hybridizes tightly the first 2 stepsl a&stimates together the absolute position
and orientation, the lane segment on which theckelis driving as well as the position of the

vehicle in the lane segment reference system. ditiad to the fact that this process is more
likely to be optimum and more direct, it brings thexy significant advantage to constraint the
solution within the carriageway, making it possitile elimination of outliers. Of course, the

quality of the final result depends directly on timeasurement accuracy, like any other
positioning process, as well as on the geomettii®@map.

The lane reference system, also calfednet reference system in which the map-matched
position is expressed is illustrated in Figure BeTcoordinates of the current map-matched
point P are: the id of the segment, the curvilinear abscissa of the orthogonal prtapacof

P onto the lane axi] and the orthogonal signed distance frénto the lane axisly .
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Figure 3: The lane reference system for the map-matched position on the lane segment

Map matching with Emap

There are several approaches to the map matclsng.is

1) The geometrical approach like so-calpetht to point or point to curve methods using only
distance criteria to select the matched road elenférese methods are simple to implement
but are very sensitive to the map bias and/or ®@od positioning errors. Moreover, the map-
matching can fail when the vehicle evolves in asgemoad network due to possible
ambiguities in road elements selection.

2) The second kind of approach is calleditidimensional approach. To improve the
geometric approach, some people propose to add otieria to select the matched road
element like the driving direction, the speed lintite heading information or the traveled
distance on the road element, etc.

3) The last kind of map matching method is the logical approach. Either the topological
information is used to drive the selection step filtel out the road elements which cannot be
reached with respect to previous map-matching tesoit the vehicle trajectory is compared
with pieces of curve constituted by a set of cotestcoad elements and a L2 norm criterion
is used to select the best curve. This last mehed callecturve to curve map-matching.

Within the context of enhanced maps, errors ansl tmathe geometry of the road network are
small and the topology is perfectly known. Therefdo achieve the map-matching included
inside our process, we have decided to implemegaira to curve method (1) (2) (3) driven

by topological information using the two followirsglection distance criteria: 1) the signed

orthogonal distancd;] between the positioning resiP= (x,y)T in a Cartesian reference

system and the central axis of lane segrmrand 2) the curvilinear abscisl, associated

to this orthogonal distance (see Figure 3). Thesedriteria define also the vehicle position
in the Frenet reference system associated withdagmen m, which we call “map-matched
position”.

A relationship between these two representatiorge}?] + [3] and will be used to evaluate
the map matching result:

X=X +j'”cosrm(|g*)d| —d™sinz™(I™)
° [2]

Y=Y + J‘;W sint™(17)dl +dg cost™ (1)

where: rm(l,;“): Ty + Koy +ﬂ|2ﬂmx [3]



Moreover, in order to limit map-matching errors whée positioning accuracy is poor, we
propose to constrain the positioning results with map by taking into account the map-
matching results and the geometry of the lane sagméerefore a positioning result can be
considered as acceptable if the position is locatdd a lane segment, i.e.:

plP=(xy)'/d7)=1 if D"/2<dT<D"/2.and 0<IT<L™  [4]

0 dse
where D™ ancL™ are respectively the width and the length of tmelsegmerm.

In this case, the matching and positioning processenot be dissociated and must be
combined in a single hybrid system so calleap-aided system. These systems are based on
Bayesian filtering schemes like Kalman filteringevé the map matching result is considered
as a new observation in the positioning system. Kinds of map-aided system can be found
in the literature: thdoosely coupled map-aided systems (4) (5) where the map-matching
results are only used to observe and correct thecheepositioning and théghtly coupled
map-aided systems (6) (7) (8) where the map-majctesults are used to observe the GPS
errors. Generally, due to the conventional polylirepresentation of roads, this new
observation is considered as a Gaussian unimodaradition. However, when the vehicle
evolves in complex environments such as crossraadgunctions where several road
segments are probable, the fusion process failthdgse cases, the unimodal filtering is not
appropriate and it is necessary to switch to airhyfothesis fusion scheme running several
filters in parallel (9) or to use particle filteb)( This multi-modal situation is even more
frequent when using Emaps since multi-lane camiays generally offer also the possibility
to drive on all the lanes, increasing consequeh#ymatching ambiguities.

The hybrid state system

According to the state-of-the-art and our conteid,decidedo use a particle filtering scheme
in our positioning system, and also to use the magehing results as a possible multi-modal
observation. However, due to the complexity andatmbiguity of the relationship between
position and map-matching results (see equatio)y fAg map-matching results cannot be
used directly as an observation. To turn arourglghoblem, we propose to estimate the map-
matchedposition in the fusion process together with ttendard position parameters (pose).
The augmented state vector of this new hybrid mwsrig/map matching system can be
expressed as:

X=X X" = (xysl iz az.m) 5]
The first sub-stat“X = (x,y,y)T is the traditional Cartesian 2D pose composedhef t
coordinates of the reference point of the vel Pland the heading angle. The second sub-
state, called th&renet sub-state © X = (I;,“,d;,“,m)T represents the map-matched position of

P, expressed in the lane reference system. Theulxstates are partially redundant, but this
approach offers the advantage to compute in oné ahdhe relevant variables that are
necessary for applications.

Finally, taking into account the particle filterirgheme, the augmented position probability
density function is approximated at tirk2by the sample se{xf( ’Wli<}i=1...N , WwhereN is the

number of samples or particles ew is the importance weight of samyi én the probability
density.
The augmented position estimate is given by:

-6-



P(X /Yy ) = zi,\ilW,;é_ ; [6]
where 5X‘k is the Dirac function centered ox, .

Steps of the particle filter

As a matter of fact, our particle filter will be mposed of two different filters running in
parallel and in a synchronized way: one for thel@ian in time of the Cartesian sub-state
and the other for the evolution in time of the Ftesub-state. The main advantage of this
method is the improvement of the observability loé tpositioning problem. Indeed, the
positioning problem will be observed directly argparately by GPS data in the Cartesian
representation and by the map constrains in theefrepresentation.

Evolution of the Cartesian sub-state

The Cartesian sub-state system is in fact the stigem used classically: its behavior is
defined by the following relationship:

p(cxklcxxk—l):cxkch (ka—l’Uk 'Wk) [7][8]

p(YQDS/CXk) : YQPS = H QDSC Xk + VQPS
where:

© () is the evolution model of the vehicle in the Carescoordinate system, a
bicycle model is used in our case,
- U, is the input vector of the evolution model, inpate the speev ~ N(v,avz)

and the turn ratw ~ N(co,aj) of the vehicle,
- W, is the evolution model uncertainty,

- Y= (xgps,ygps) is a GPS observation at instant k,

- H, is the observation matrix linking GPS data to thie-state X,

- Vgps~N(O,Rgps) is the uncertainty vector on the GPS data, VR, the
covariance matrix associated to GPS data.

1. Prediction Applying Monte Carlo scheme to the dynamic equafin prediction at time
k of the Cartesian part of each patrticle is providedhe following equations:

X, =Xy +Vacody  +w'd 12)  [9]
Ve = Yia t ViATSin(VL—1+ ' A /2)

V|i< = 7|i<—1+ CUiAT
whereV' and ' are pure random variables drawn according to thbaiility densities of the
uncertainties of the speivhnd the turn rat w of the vehicle ani4; is the time elapsed
between the timk and k —1.

2. Correction.The weights of the particles are updated to take account the measurement
equation. As a Gaussian hypothesis has been matlee0BPS observation, the likelihood
density function can be written that way:



1 .
o _Z(H gpscxik _ng)ngés(H gpscxik _YQDS)
plY,./°X] )= e [10]
. . 00
where observation matrix is equal H = 010 [11]

and the weight updating of each particle is givgn b
W, = plYose/ X Wy [22]

Evolution of the Frenet sub-state

The behavior of the Frenet sub-state system is wmrglex since it is a vector composed of
continuous and discrete variables. Such state regs@re governed by a so-callddmp
Markov state system (10) (11) which is, in our case, of the followifaym:

p(FXk/FX:L'k—l):FXk: °f m(ka—l’Uk ’Wk) [13] [14] [19]
plvm /X, ) Ym = H P X VT
m, ~ p(m /m_.FX,)

where :

- mis the mode of the Jump Markov state, in our casentode corresponds to a
description of the lane segment associated to naphimg result,

- F fm(.) is the evolution model of map-matched positions tmodel changes for
each modim and is defined by the geometry description of lasgment
associated with the motm,

- Yn, is the map observation (or map constraint),

m o . :
- Vi is the uncertainty on the map observation.

1. Prediction.According to Monte Carlo scheme and the geometescdption of the lane
segmenm, and tothe evolution of the vehicle position in the Cadesreference system [9],
prediction at timek of the map-matched position of each particle isviged by the

following equation:

AR codr™(dmi L)) sin(em(ami )Y V4, codyi, + o', 12 161
im )l ) (=sin(zm(am L)) codem{dm )\ v 4psinly,+ o' 4, 12

As a matter of fact, this equation represents tbgeption of the vehicle evolution in the
Cartesian reference system onto the middle axiseohssociated lane segment and its
perpendicular. This equation assumes small displestnof the vehicle.

The transition of modes depends on the probabiidy the vehicle evolves on a new lane
segment after the evolution i p(m{ # m_,/m_, F X! ). This probability can be computed in
taking into account the topological informationrjoectivity) of each segment and the new
position of the vehicle on the current lane segim| it

Then four transitions of mode are possible:

- a “left” transition occurs if the segmem|, has a left-connex segment zdy, < -D™ /2,

- a “right” transition occurs if the segmem], has a right-connex segment ed,’““’f( >D™ /2,



- a “next” transition occurs if the segmem, has a next-connected segment I, > L™ ,

- a “previous” transition occurs if the segmm], has a previous-connected segment and
o<y .

Notice that, if a transition of mode has occurtéé, map-matched position must be
reevaluated taking into account the geometry oh#he lane segments. This is done by

minimizing the distance between the Cartesian jposéand the Fresnel integrals computed
iteratively using equation [1].

2. Correction.Finally, the weight of each particle is updatedirigkinto account the map
constraints relation.
The likelihood density of each particle with respeicthe distance criteria is:

plvm, FXi)=1 if  -D™/2<d™ <D™ /2_and_0<IT <™  [17]

0 dse
and the weights are updated the following way:
w, = p(Yrrn\;p/ FXIL)Wk—l [18]
According to the previous description, there areg¢lhmain advantages to introduce map
matching result in the filtering scheme:
1. the evaluation of map matched position at eimech ts not needed because it is
provided by the filter itself,
2. the map constrains are easy to implement,
3. the map matching process (used only to reevathatmap-matched position during
lane change) is improved because it takes intouastdmoth the topology and the
vehicle behavior.

Final hybrid positioning and map matching algorithm

« Initialization :

draw {“X} 1}, according to the intial distribution p(Y,,.(0), “X;)

evaluate {¥ X1 | in using map matching function
« Prediction :

draw {“ X[}/ according to the propesal distribution p(“X .., "Xy _1)

draw {"X}1¥  according to the proposal distributions p(¥ X, “X,;_1) and

plmlmye—, ¥ X

if 7y # myg— reevaluate 7 X}, in using map matching function.
« Correction :

evaluate importance weights:

+ for GPS observation : @ o p{ ¥, |“ X5 ,)
+ for map observation : @} o p( Y., " X1,

normalize weights: 1w} = J-g_;")—:j-:._ tir,
« Resampling :

Multiply /Discard particles with respect of high/low importance weights 1}, to obtain a new

particle set { X}, wi}Y,

set weight u, = 1/N
« Estimation :

samples set { X}, i},
P X1k Vi) = o1 wi Oy (dX4)

=

approximate the posterior distribution:




EXPERIMENTAL RESULTS

Our lane-level positioning system has been experieteusing real data collected during a
benchmarking campaign carried out on a closedrast located in VERSAILLES-SATORY
at the end of 2005. An Emap model of the loop coragosf 2 separate lanes has been
established using the very accurate survey dat@itesy the track.

Figure 4 presents a general view of the track,BEhep clothoide elements that have been
determined, the starting point and the part ofciheuit where EGNOS has been available.

[ Inner lane & Segment nodes Outside lane & Segmentnodes |
1211 ‘ ‘ ‘ ‘ ‘ ‘
1210 + . starting point -
1209 1 - driving 1
= directior
S 1208 T \ ]
] N
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’ reception
1204 ; 1 1 1 1 1 1 1
5812 5814 5816 5818 5820 5822 5824 5826 5828 5830 5832
X Axis (10°3)

Figure 4: General view of the test track with the Emap elements

Figures 5 to 10 show some comparative results mdédaon the one hand with the traditional
positioning + map-matching processes (system A) amdhe other hand with our novel
hybridized unique process (system B). A standareéided Kalman Filter has been used for
the positioning data fusion and a distance minitionato the closest clothoide element for
the map-matching.
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Figure5: Initialization area with system A Figure 6: Initialization area with system A
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Figure 7: No-EGNOS area with system A Figure 8: No-EGNOS area with system B
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Figure 9: No-GPS simulation with system A Figure 10: No-GPS simulation with system B

On all the figures, the 2 lane axes are represematedavell as the absolute position coming
from the sensor data fusion (thick magenta ling)e tabsolute position (thin pink line),
estimated map-matched position (green squares)traed map-matched position (purple
squares).

For system B, the estimated absolute position cdroes the estimated Cartesian component
of the composite state vector and the map-matclesdign is the projection of the current
point onto the most likely lane axis, determinedliiy estimated element parameter

On Figures 5 and 6, it can be seen that the Kalfitign initialization time can be much
higher than the particle filter one when the initi@ading angle is not correctly initialized,;
Moreover, when EGNOS data are available, the glabaliracy is good enough to determine
the right lane.

Looking at Figures 7 and 8, it can be noticed thighout EGNOS, the stand-alone accuracy
of the GPS is not good enough to keep the estimatiothe right lane, whatever the fusion
system, but the advantage of system B is that shimated absolute position stays closer to
the lane axis, meaning that, at least for a wilile,Emap constraint is efficient to correct the
GPS bias.

Figures 9 and 10 have been obtained after haviemfex a virtual total GPS outage just after
the point where EGNOS s lost. It can be easilyasatithat the important drift of the dead-

reckoning navigation results in totally erroneoreditional map-matching whereas the map
constraint prevents the position to leave the readn if the estimated lane is not correct after
a while.

CONCLUSION AND PERSPECTIVES

This paper presents a novel combined positioning/majching data fusion system that
merges sensor data from a GPS-WAAS receiver, degdning sensors and a precise
description of the geometry and the topology of thad at lane-level calleEmap model,
developed in the frame of the European integrategepr CVIS. This system has been
designed to bring a solution to the lane-level pasing issue, which is necessary for a larger
and larger number of new co-operative ADAS undeetipment.
Compared to traditional methods that realize tinstsensor data fusion, generally by Kalman
filtering, and then the map-matching, our novelmetbased upon a particle filter estimating
a composite state vector, offers several advantages

1. the estimated position is constrained to staythenroad, even when large absolute

positioning errors occur,
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2. when a WAAS augmentation system such as EGN@Saitable, the system is able
to estimate the exact lane on which the vehichaasing, with a better reliability than
the standard dissociated methods,

3. the system has been designed to cope with moitial situations, often met on real
roads.

This paper summarizes the first research investigatinat we have carried out in the context
of lane-level positioning using enhanced digitajpseOur future work will be mainly focused
on the experimental assessment of the method ire momplex environments such as
crossroads or interchanges, where the ability efalgorithms to comply with multi-modal
situations at junctions will be highlighted. In tineeanwhile, the automatic computing of
geometry, and connectivity relationships in Emapsider development.
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