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Introduction1

The aggregated traffic models based on the Macroscopic Fundamental Diagram (MFD) (Daganzo, 2007,2

Geroliminis & Daganzo, 2008, Jin, 2020) present promising prospects to mimic the network-wide dynamics3

with a low computational cost. These models require the partitioning of urban networks into regions (Batista4

et al., 2021b), which permits to define an aggregated or regional network. In each region, vehicles travel5

at the same average speed and the dynamics are regulated by an MFD. The MFD reflects the relationship6

between the region’s mean speed and the accumulation of vehicles. Exchange flows between the different7

regions represent the traffic dynamics in the network. The application of these aggregated traffic models8

range from control strategies (Yang et al., 2018, Sirmatel & Geroliminis, 2019) to perimeter control with route9

guidance (Yildirimoglu et al., 2018), multi-modal systems control (Haitao et al., 2019, Paipuri & Leclercq,10

2020, Ameli et al., 2019) and traffic management (Batista & Leclercq, 2019, Ambühl et al., 2021, Chen et al.,11

2021), as some examples. Johari et al. (2021) presents a good review of the MFD applications and future12

challenges.13

One crucial component of any traffic model is the assignment of travelers in the network. In urban14

networks, vehicles are assigned to routes that are represented by a sequence of links with a fixed physical15

length. The case of regional networks is slightly different, as it requires the identification of paths on the16

regional network (Batista et al., 2021a), and the characterization of their explicit distribution of travel17

distances (Batista et al., 2019, Ameli et al., 2022). A path in the regional network is represented by the18

ordered sequence of traveled regions between the Origin (O) and Destination (D) regions. These are two19

main differences compared to conventional assignment modules in urban networks.20

Batista & Leclercq (2019) proposed a framework to target the Dynamic User Equilibrium on regional21

networks, where the travel time of a path p, TT OD
p , is defined by the ratio between the explicit distribution22

of travel distances (Lrp) and the evolution of the mean speed in the regions (vr(nr)):23

TT OD
p =

∑
r∈X

Lrp

vr(nr) · δrp, ∀r ∈ X (1)

where r is a generic region; X represents the set of regions defining the regional network, r ∈ X; nr is the24

region’s accumulation; and δrp is a binary variable that equals 1 if path p travels on region r, or 0 otherwise.25
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Generally, traffic assignment models aim to calculate System Optimum (SO) based on systems ob-1

jectives and/or users goals. Mathematically speaking, at the network level, the equilibrium problem is2

equivalent to minimizing the travel time for each path, while the SO model minimizes the marginal travel3

time of each path (Ameli, 2019). Both problems are well-defined and studied in urban networks (Wang et al.,4

2018). However, in the regional networks, even though some studies have focused on the network equilibrium5

conditions (Yildirimoglu & Geroliminis, 2014, Laval et al., 2018), little attention has been paid to the System6

Optimum. The reason is the complexity behind the calculation, Only Yildirimoglu et al. (2015) discussed7

a perimeter control application with route guidance that targets the Dynamic System Optimum. However,8

the work did not consider the concept of paths as introduced by (Batista et al., 2021a), nor explicit travel9

distances (Batista et al., 2019) or the explicit calculation of the path marginals. In this paper, we propose10

a methodological framework to calculate the Dynamic System Optimum on regional networks, considering11

MFD-based traffic models. We propose an explicit formulation to calculate the path marginals based on the12

network dynamics. We showcase the application of this methodology on a test network, and briefly analyze13

the network dynamics compared to the User Equilibrium conditions.14

Simulation-based Dynamic System Optimum on regional networks15

Under the System Optimum (SO) conditions of the network, drivers’ routes are assigned such that the total16

travel time (TTT ) of the whole system is minimized. Mathematically, we can describe the SO in terms of17

travel time minimization as the following nonlinear constrained optimization problem:18

min−→
Q

TTT =
∑
r∈X

TTr

=
∑

O

∑
D

∑
r∈X

∑
p

Lrp

vr(nr)δrp (2a)

19

s.t.:20

21 ∑
p

QOD
p = QOD, ∀(O, D) ∈ W (2b)

QOD
p ≥ 0, ∀(O, D) ∈ W (2c)

where −→
Q represents the vector that contains the flows of all paths of the regional network; TTr is the total22

travel time of a region r; QOD
p represents the path flow traveling on path p that connects the OD pair;23

QOD represents the demand of the OD pair; and W is the set of all regional OD pairs of the network. We24

note that in the calculation of the travel times in Equation 2a, one can consider the distribution of travel25

distances Lrp or an average travel distance Lrp. Equation 2b represents the demand conservation equation26

of each regional OD pair. Equation 2c represents the non-negativity of the flows traveling on path p that27

connects the OD pair.28

The accumulation nr of a generic region r is related to the accumulation of all paths p (nrp) that29

travel on this region:30

nr =
∑

p

nrp · δrp

=
∑

O

∑
D

∑
p

QOD
p · QOD · δrp (3)

Due to paths correlations, the calculation of the path marginals is not trivial. Even in urban networks,31

usually, the path marginals are computed by surrogate functions that aggregate the approximation of link32

marginals (Peeta & Mahmassani, 1995). The only study of link marginals at the macroscopic level has33
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been done by Yildirimoglu & Kahraman (2018). They used GPS records with map-matching to estimate1

link marginals on OD graph without calculation of SO. Here, we formulate the path marginals on regional2

networks. The marginal travel time, T marginal
p , of path p is:3

T marginal
p = TTp + ∂TTp

∂nrp
· nrp, ∀p ∈ Ψ (4)

where TTp represents the travel time of path p (see Eq. 1); and Ψ is the of all paths in the regional network.4

In this paper, we consider only average travel distances Lrp.5

Using the chain rule, we can express the derivative in Eq. 4 as:6

∂TTp

∂nrp
= ∂TTp

∂vr
· ∂vr

∂nr
· ∂nr

∂nrp

= −
∑
r∈X

Lrp

v2
r(nr) · ∂vr

∂nr
· δrp (5)

We determine the Dynamic System Optimum equilibrium using a quasi-dynamic approximation,7

where we split the total simulation period T into smaller intervals δt. We determine the network equilibrium8

for each of these intervals during which the path flows are maintained constant. This quasi-static approx-9

imation permits to capture the evolution of the traffic dynamics and changes in demand over time Ameli10

et al. (2018). Therefore, we calculate the derivative term ∂nr

∂nrp
in Eq. 5 as:11

∂vr

∂nr
= vr(nrp(t + ∆t)) − vr(nr(t))

nr(t + ∆t) − nr(t) (6)

Note that, Eq. 6 is determined based on the MFD dynamics on the regional network.12

Substituting Eq. 6 and Eq. 5 in Eq. 4, the path marginals become:13

T marginal
p =

∑
r∈X

Lrp

vr(nr)δrp − Lrp

v2
r(nr)

· vr(nr(t + ∆t)) − vr(nr(t))
nr(t + ∆t) − nr(t) · nrp · δrp, ∀p ∈ Ψ (7)

As one can observe, the path marginal became a negative term in Eq. 4. We now analyze the14

consistency of this equation. First, recall that the MFD assumes that all vehicles travel at the same average15

speed inside a given region r. This average speed decreases as the accumulation of vehicles in the region16

increase and vice-versa. We consider three scenarios in this analysis:17

1. The demand on path p is constant. This implies that ∂vr

∂nr
= 0, and the path marginal travel time18

becomes T marginal
p =

∑
r∈X

Lrp

vr(nr) δrp. Then the SO and UE conditions of the network are equivalent19

under constant demand.20

2. The increase of the demand on path p (nrp), leads to a reduction on the region’s mean speed vr(nr).21

This implies that ∂vr

∂nr
< 0 and the path marginals become an additive term in Eq. 4.22

3. The decrease of the demand on path p (nrp), leads to an increase on the region’s mean speed vr(nr)23

which in turn also leads to ∂vr

∂nr
< 0. Therefore, the path marginal is also an additive term in this case24

in Eq. 4.25

We determine the network equilibrium using the classical Method of Successive Averages, with a26

descent step of 1/j, where j is the descent iteration. The network equilibrium is reached when the Gap27

(Ameli et al., 2020b) is inferior to 0.1 or when the number of violations N(ϕ) (Sbayti et al., 2007) is inferior28

than 0.01. The Gap acts as an indicator of how far the network is from the equilibrium conditions (Ameli29

et al., 2020a). The number of violations indicate how many paths have a difference of path flows between30

two consecutive descent iterations superior to a pre-defined threshold. We also set as a stopping criterion a31

maximum of 100 descent iterations.32
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Preliminary results1

Figure 1 (a) depicts the test network that consists of the 3rd and 6th districts of Lyon and the city of2

Villeurbanne (L63V) (Ameli et al., 2020c, Batista & Leclercq, 2020). This network has 1883 nodes and 33833

links, and is partitioned into seven regions. Figure 1 (b) shows the calibrated MFD functions for each region.4

Figure 1 (c) shows the demand scenarios taken into account, which consists of a total of 7 OD pairs and 215

possible paths. We have calibrated the travel distances following the procedure described in Batista et al.6

(2019). We consider a total simulation period of T = 3 [h], and a time interval δt = 300 [s]. We utilize an7

accumulation-based MFD model (Mariotte et al., 2017, Mariotte & Leclercq, 2019) to model the network8

dynamics (Amelia et al., 2021).9

We determine the Dynamic System Optimum and User Equilibrium (following the methodology de-10

scribed in Batista & Leclercq (2019), Ameli et al. (2021)) on this test network and demand scenarios. Figure 211

shows the evolution of the accumulations in the regions as a function of the simulation time t [hr]. The blue12

lines represent the results for the User Equilibrium (UE), while the green lines show the ones of the System13

Optimum (SO). As one can observe the SO assignment permits to reduce the congestion in the regions14

compared to the UE case, as expected. The selfish behavior of drivers for their path selection, increases the15

total travel time of the system, degrading its performance. Also, the price of anarchy (PoA) for the scenario16

depicted in Figure 2 is 1.0362, which confirms that the performance of the system is improved under System17

Optimum conditions, as previously discussed.18

This paper formulates the SO conditions for aggregated networks and MFD-based models. As a next19

step, we will incorporate this framework on a control strategy that mitigates the network-wide emissions,20

and investigate how the travelers’ rationality influences the controller’s performance.21
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