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ABSTRACT1
This study proposed a new framework to solve dynamic population evacuation (DPE) problems,2
considering the planning phase and vehicular communication during the online evacuation man-3
agement phase. In the planning phase, an initial evacuation plan is obtained by dynamically solv-4
ing the shelter allocation problem for destination choice and dynamic traffic assignment (DTA) for5
path choice towards the chosen destinations. The DPE process then starts with the initial plan, and6
thanks to vehicular ad hoc network (VANET), evacuees communicate during the evacuation. We7
use VANET under the vehicular cloud computing (VCC) architecture to update vehicle decisions8
chosen by the initial plan, considering the dynamic evolution of the hazard and traffic congestion9
levels. To validate the proposed framework, we apply it to a real test case of Luxembourg city. We10
compare the proposed solution with existing planning methods in the literature. Results show that11
online solving of DPE can minimize mean evacuation time and network clearance time by more12
than 10% compared to other models with the only initial plan. In other words, updating evacua-13
tion guidance messages during the DPE process leads us to a more effective evacuation process.14
In addition, we analyze the performance of the proposed framework by changing the penetration15
rate of connected vehicles in VANET, and we observe that by increasing the penetration rate, the16
clearance time decreases.17

18
Keywords: Network evacuation, disaster online management, Telecommunication network, VANET,19
shelter allocation, dynamic traffic assignment.20
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INTRODUCTION1
Natural disasters and catastrophes endanger all the population located in hazardous areas. The fre-2
quency of these natural disasters is increasing (due to, e.g., climate change), leading to more deaths3
and significant destruction to the environment (1). To mitigate and decrease losses caused by dis-4
asters, we need to evacuate people from the affected areas to safe areas, i.e., shelters. Evacuation5
orders are then vital and should be effective in evacuating people safely. Evacuation orders must6
dynamically change with the hazard evolution and the evacuees’ requirements for real-time guid-7
ance. This real-time aspect of evacuation orders could only be targeted with telecommunication8
technology (2). In other words, dynamic population evacuation (DPE) could be studied by new9
emerging technologies of vehicle-to-everything (V2X) communication (3). Taking into account10
the characteristics of a disaster is an essential task in determining the best and optimal evacuation11
plans. In a sense, the type of disaster influences the choice of objectives of the evacuation orders12
given to evacuees. The most frequent objectives of these orders are minimizing the mean evacua-13
tion or the total time (4–6), minimizing the network clearance time (7–9), and minimizing the total14
traveled distance (10, 11).15

In this context, the success of an evacuation plan depends mainly on two choices of evac-16
uees: the locations of shelters and the evacuation route toward the selected shelter. (12) developed17
a model for shelter selection problem (SAP) to tackle the problem of determining shelter locations.18
Their objective was to have a successful evacuation plan with minimum evacuation time, using a19
static function to measure travel time in edges, which may affect the accuracy of congestion esti-20
mation. The route choice models of evacuees used in the literature are based on three principles:21
user equilibrium (UE), known as Nash Equilibrium (13), system optimum (SO) (14, 15), and the22
nearest allocation (NA) approach. The difference between these models relies on the evacuees’23
behaviors. In UE models, each traveler aims to minimize his individual travel time (16).24

From the system point of view, the ultimate goal is to minimize the total evacuation time25
or network clearance time. Under the SO principle, travelers may not be assigned to the fastest26
route for the benefit of the overall system, which could be difficult to accept by evacuees (17). The27
NA model assigns evacuees the shortest path based on the distance between the origins (hazardous28
zone) and the destination (shelters). Such a model cannot provide acceptable results from evacuees’29
and system points of view.30

Mathematically speaking, finding the solution of UE or SO models considering the dy-31
namic relationships between paths, time, and network characteristics are known as solving dy-32
namic traffic assignment (DTA) problems (18, 19). Since the 1970s, DTA models have been used33
to analyze long-term and short-term planning problems (20).34

The reactive nature of both SAP and DTA limits their effectiveness during the evacuation35
process, i.e., they are more contributing to the planning phase compared to online management36
(21). In this context, adding telecommunication technologies moves one step forward by providing37
effective methods for proactive rerouting when an emergency is predicted based on real-time traffic38
information. Since traffic conditions are very time-varying during an evacuation process, updating39
evacuation guidance messages frequently and quickly is critical.40

With the emergence of intelligent and connected vehicles, vehicular networks, particularly41
vehicular ad hoc networks (VANET), were introduced in 2001 as a part of ad hoc mobile networks42
(22, 23). VANET have received much attention from research communities in the last few years43
since it opened new doors of research (e.g., on vehicle and road safety, traffic efficiency, etc.) in44
intelligent transportation systems (ITS) (24, 25).45
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With the growing demands of drivers, vehicles require empowering themselves in process-1
ing power, computing resources, and storage space. Despite all the efforts made to satisfy all these2
requirements, VANET show some disadvantages, such as the high costs generated by communica-3
tion between vehicles due to the high mobility of vehicles (26). To support and serve all drivers’4
needs and ensure their comfort and safety, we have to increase the resources of VANET. As a5
result, the concept of vehicular cloud computing (VCC) has emerged (27, 28) to enable vehicles6
to harness the benefits of cloud computing to satisfy certain requirements. VCC concept refers to7
the use of cloud computing in VANET (27, 28). VCC allows vehicles to use the cloud resources8
required for a particular period, representing the time they need to achieve their goals.9

In this study, we first perform a literature review on population evacuation, focusing on the10
application of telecommunication technologies. Based on this, we realize that there is no study11
in the literature about considering vehicle rerouting in the DPE context. However, the rerouting12
decision is a critical part of the evacuation process and can impact the success of the evacuation.13
This study proposes an online evacuation framework to solve the DPE problem. The proposed14
methodology can dynamically assign evacuees to the best shelter considering the current traffic15
conditions. Our model uses an initial plan for evacuation that represents the output of solving SAP16
and DTA based on (29). In our model, we consider two phases of the evacuation process:17

• Planning phase, considering the initial evacuation plan solving both SAP and DTA prob-18
lems, and19

• Online evacuation management phase, which employs vehicular cloud computing tech-20
nology to modify the initial evacuation plan by rerouting evacuees according to the dy-21
namics of the network and evolution of the risk due to the disaster status.22

Our methodology includes rerouting evacuees based on their distance from the risky zone23
and the density of vehicles on the way toward the shelters, considering their communication ca-24
pacity. We implement the designed framework for a city-scale real test case to validate the model25
and compare the evacuation results in the presence and absence of telecommunication technology.26
In addition, we perform a sensitivity analysis on the penetration rate of equipped vehicles that can27
use the VANET.28

Prior research has delved into evacuation simulations using diverse methodological frame-29
works. An approach includes simulating traffic dynamics through multi-agent systems, as evi-30
denced by (30–32). Recent developments have emphasized the integration of traffic simulation31
with evacuation processes, as highlighted by (33–35), which is further elaborated in the sections32
that follow.33

The rest of the paper is organized as follows. In the next section, we review the literature34
on DPE, focusing on traffic assignment and vehicular communication. Then, we highlight our35
contributions to the literature. In Section 4, we illustrate the population evacuation problem. Then,36
in Section 5, we present the framework to solve the evacuation problem. Section 6 is dedicated to37
present the case study and optimization scenarios. We discuss the results in Section 7 and present38
the concluding remarks in Section 8.39

LITERATURE REVIEW AND CONTRIBUTION STATEMENT40
In the literature, two main categories of studies focus on evacuation models. The first group solves41
both shelter allocation or/and traffic assignment to minimize users’ or/and system costs. The sec-42
ond group focused on vehicular communication techniques and protocols to handle the DPE. In43
this section, we carry out a literature review of these two groups and highlight the existing research44
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gaps.1
In many studies, the problem of evacuation planning is formulated as a bi-level problem.2

The upper level is the shelter location-allocation level dedicated to the system operator’s point of3
view, and the lower level is the routing level that represents the evacuee’s route choice behavior.4
We list the studies that used the bi-level programming approach:5

(36) proposed a planning model to study the effects of shelter locations on the evacuation6
process. They considered the interest of system operators and evacuees at the same time. However,7
they address the problem with a static formulation.8

(37) used a hybrid model to tackle the problem of evacuation planning. The upper level was9
dedicated to shelter site selection in a system optimal fashion, and the lower level was for static10
traffic assignment in a UE manner. The presented model was solved by employing a simulated11
annealing heuristic, and for calculating the arcs congestion level, they used the BPR function.12

(38) presented a scenario-based model. The upper level is a two-stage model. In the first13
stage, the shelter location is determined, and in the second stage, the selected shelters are chosen,14
considering the hurricane conditions. Then the lower level is for traffic assignment between origins15
and destination selected by the upper one. They solved the problem using the Lagrangian relaxation16
algorithm. For calculating each edge’s travel time, they used the BPR function.17

(39) proposed a hybrid model based on scenarios in the central area of Beijing. They18
modeled the problem based on distance measures to choose the nearest shelters and shortest path.19
In their solving method, they have used modified particle swarm optimization (PSO) algorithm20
with a simulated annealing heuristic.21

Few studies considered both SAP and traffic assignment in the dynamic context. (7) con-22
sidered the evacuation planning process, including the DTA problem with a fixed shelter allocation23
schema. In our previous study, (29), we tackled both dynamic problems sequentially, minimizing24
the total travel time in SAP, and calculating UE for DTA. However, we did not consider telecom-25
munication networks. To the best of our knowledge, no study in the literature address DPE prob-26
lem considering both the planning phase (optimization methodology for SAP and DTA) and the27
online management phase (take into account vehicle communication). However, DPE problem28
is addressed with telecommunication technologies in the literature independently of the planning29
phase.30

Many studies focus on evacuation models with vehicular communication capacity. These31
papers consider evacuation in different aspects using different communication architectures, pro-32
tocols and types of emergency messages. Here, we review the related works to DPE problem.33

Some studies focused on network architectures used for emergencies situation. They aim34
to rapidly collect data and use it to ensure a successful evacuation process. For instance, (40)35
used Software Defined Network (SDN) to manage emergencies. The control part of the SDN36
collects the data from the different Internet of Things (IoT) networks formed by traffic lights,37
traffic surveillance cameras, etc (41–43). It combines them to obtain the best and fastest evacuation38
routes and access roads to the emergency services units. In addition, the authors used the delay39
measure to quantify the quality of their solution. However, this study did not propose any rerouting40
process and did not consider a realistic test case. Other studies target evacuation by proposing41
different and less redundant emergency message exchange schema. To this end, (44) focused on42
only highway scenarios and proposed a novel safety-related message exchange protocol based on43
the Non-Redundant Communication Range (NRCR).44

(45) applied and evaluated an evacuation strategy called Speed Strategy (SS) to quantify45
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driver response to evacuation pre-plans in emergencies. To implement this strategy, the authors1
deployed the VCC architecture. However, this paper only considered the responsiveness of evac-2
uees to SS orders and did not propose any replanning orders for evacuees to change their routes3
or destinations. Our study considers the VCC architecture for rerouting and includes the bi-level4
programming in the initial planning phase.5

The main contributions of this study are two folds: (i) investigating the impact of VANET6
on the success of solving the DPE problem by having an initial plan determined by solving the7
SAP and DTA; (ii) developing a novel model to integrate the vehicular cloud computing, SAP,8
and the DTA problem. The application of our methodology offers a simulation-based optimiza-9
tion framework for the DPE problem, integrating online orders, system operators’ decisions and10
evacuees’ interests. Our model considers the travel time in rerouting vehicles and VCC delays in11
the telecommunication exchanges. Besides, we apply our methodology to the realistic network of12
Luxembourg city to validate and evaluate its performance.13

PROBLEM FORMULATION14
Evacuation operation needs to be fulfilled as fast as possible. We use two phases to represent15
the achieving steps to this goal. The first phase is carried out offline, creating an initial plan for16
evacuation and solving two main problems, SAP and DTA. While the second phase is online,17
in which we consider vehicular communication under the cloud computing paradigm. From the18
planning point of view, an evacuee has two main decisions to be made in DPE: (i) Which shelter19
to choose as the destination and (ii) Which route to choose to reach the destination. By taking20
into account all evacuees, the first decision problem is the SAP and the second one is the DTA21
problem. We formulate the SAP to satisfy the system operators’ interests (SO) to minimize the total22
evacuation time. In a sense, this scenario could be seen as a real-world scenario where the system23
guides vehicles to their shelter (destination) as they do not have any information about shelter24
capacities and conditions. However, the DTA problem is formulated to address the Stochastic User25
Equilibrium (SUE), which also considers the bias in the decision-making process of evacuees in26
an emergency situation. In other words, evacuees selfishly choose their path toward their chosen27
shelters to reach the destination with a perceived minimum travel time.28

Let us define our DPE problem on a directed graph representing a traffic network G =29
(N,A), where N is the set of nodes, and A is the set of edges (links). We define O as the set of30
origin nodes that determines the hazardous zone to be evacuated and S as the set of destination31
nodes representing safe locations, i.e., shelter sites. Without loss of generality, we assume that32
O and S are disjoint subsets of N (O,S ⊂ N). We denote by w the amount of demand of each33
origin o, o ∈ O. This demand represents the number of users that should be evacuated. We note34
by xos the integer decision variable that determines the number of evacuees allocated to the pair35
having origin o and destination s. We define the binary variable y as the decision variable of the36
shelter selection s. The t∗os is the minimum travel time between origin o and destination s. In37
most cases in the literature, the travel time is calculated with a static formulation of the traffic38
assignment problem using an analytical travel time function (BPR function) (46). In our case, we39
use a dynamic simulator that provides the travel time of any edge in the network. Therefore, t∗os is a40
given parameter from the simulator’s time while solving this problem. We define cα

s as the shelter41
s capacity in time interval α , and P as the maximum allowable number of opened shelters. The42
full list of the important notations of this paper is presented in table 1.43

The SAP represents the system operator’s objective. The solution to this problem is the
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TABLE 1: Table of notations

M Set of all evacuees.
O Set of origin nodes, subset of set of nodes, O⊂ N.
S Set of destination nodes, subset of set of nodes, S⊂ N.
T Set of time intervals.
H Total duration considered.
i Index of evacuee, i ∈M.
o Index of origin node, o ∈ O.
s Index of destination node, s ∈ S.
α Time interval index, α ∈ T .
ys Binary variable; it is set to 1 if shelter s is selected; 0 otherwise.
xos Number of evacuees allocated to the origin-destination pair os.
wo Amount of demand evacuating from origin o.
cα

s Capacity of shelter s at time interval α .
P Maximum number of open shelters.
πos Set of all paths between origin o and destination s.
π Index of path, π ∈ πos.
Trα

π List of evacuees which travel for os on path π in departure time interval α .
tα
tr,π Experienced travel time of trip tr on path π in departure time α .

t∗os Global minimum experienced travel time for os; t∗os = min{tα
os
∗},∀α ∈ T .

t̂α
tr,π Perceived travel time of trip tr on path π in departure time α .
ξ α

tr,π Random error term for trip tr on path on π in departure time α; E
(
ξ α

tr,π
)
= 0.

prπ Path choice probability for path π in the C-logit model.
Ri Distance separating vehicle i to the center of the hazard.
Rmax Maximal distance separating vehicle i to the center of the hazard.
Ui Number of vehicles in the edge that evacuee i approach to.
Umax Maximum amount of vehicles in an edge i that evacuee i can approach to
wi Evacuee i indicator to be selected for replanning.
λ Threshold for rerouting vehicles.
n(A) Cardinality of set A.

allocation of evacuees to shelters for the minimum total evacuation time based on the current travel
time from risky nodes to shelters. Equation 1 presents the objective function of the SAP problem.
min ∑

o∈O
∑
s∈S

tα
os
∗xos (1)

We have employed the p-median model (47), which is a common approach to solve the shelter
location-allocation problem under a generic type of hazard (48). In the employed model, all the
demands have to be served (equation 2), meaning that all evacuees should quit the hazardous zone
and enter a shelter.
∑
s∈S

xos = wo; ∀o ∈ O. (2)

Also, our model does not suppose an infinite capacity of shelters. Thus, we have to assign
users to shelters respecting the limited capacity of shelters that change over time intervals with
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respect to the previous assignment (equation 3).
∑

o∈O
xos ≤ cα

s ys; ∀s ∈ S. (3)

Finally, we have a fixed limited number of opened shelters to P in the studied network:
∑
s∈S

ys ≤ P. (4)

Note that the presented model is categorized as an NP-hard problem (49). The SAP solution1
provides the demand from each origin o to each shelter s, i.e., OD matrix for the DTA model.2

In the DTA model, we calculate SUE to represent the network equilibrium. Note that the3
UE principle always supposes that all users have perfect knowledge of the network information4
and consistently choose paths to minimize travel costs (50). This assumption is so rigorous for5
users that it cannot be held in a realistic scenario. The principle of SUE can further relax the6
assumption and be stated that all travelers cannot improve their perceived travel cost by unilaterally7
changing paths (51). Note that the departure time of evacuees is given in this study, and we define8
the shortest path as the path with the minimum travel time. To have this initial plan, we use a9
trip-based simulator. Thus, The dynamic traffic network equilibrium conditions with given travel10
demand and departure time distribution include a probabilistic route choice process rather than the11
deterministic one used in UE (52). In SUE model, The route choice model is derived by assuming12
a random component associated with the travel cost (53):13
t̂α
tr,π = tα

tr,π +ξ
α
tr,π , ∀π ∈ πos,α ∈ T, tr ∈ Trα

π (5)
where t̂α

tr,π is the perceived travel cost on route π . ξ α
tr,π is a random term with E

(
ξ α

tr,π
)
= 0 that rep-14

resents the traveler’s perception error. Using the perceived travel cost concept, the SUE conditions15
can be characterized by the following equation (e.g. (18)):16
Trπ = xos prπ , ∀π ∈ πos (6)
where prπ is the probability that travelers choose route π of os. In this case, the equilibrium17
model is dependent on the congestion effect and the stochastic effect, which is associated with the18
distribution of the random terms. An equivalent unconstrained optimization formulation for the19
SUE problem was provided by (54) under a general distribution assumption of random terms.20

In the simulation-based DTA, we tend to attain the SUE state so that each vehicle cannot21
reduce its perceived travel time by changing the chosen route. To achieve this condition, we it-22
eratively run both phases of optimization and simulation. The optimization determines the route23
choice of vehicles. In the simulation part, we simulate vehicles on paths by running a dynamic24
simulation of vehicles taking specified routes (output of optimization). The model used to assign25
users to the route is the C-logit mechanism (55).26

All the models mentioned above are defined in the planning phase and used to create the27
initial plan for evacuees. The next model corresponds to online evacuation management, wherein28
we represent the evacuation process over time. The goal is to respond to unexpected events and29
dynamically modify the initial plan during the evacuation by considering vehicles’ communication30
capacity that permits evacuees to receive and send new information and update their routes.31

Our online evacuation guidance system is composed of three components, as depicted by32
Figure 1: The first component is a centralized traffic monitoring and rerouting service representing33
the cloud server (which can physically be distributed across several servers). The second one is34
the set of roadside units (RSU) that represent the network infrastructure that should be existent35
to ensure communication between the cloud server and vehicles. The third layer is represented36
by vehicles equipped with onboard units (OBU). OBU permits vehicles to communicate with each37
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other and with infrastructure (V2X). The vehicles are considered end communication nodes. These1
nodes send and receive data (e.g., current position, speed, and direction) periodically, as shown by2
yellow arrows in Figure 1. Based on these three principal components of our cloud architecture, we3
developed a method to reroute vehicles to avoid congestion and quit the hazardous zone as soon as4
possible. To do so, we estimate the congestion level of the vehicles’ routes by measuring vehicular5
road density. We also take into account the risk evolution by measuring the distance between the6
vehicle and the hazardous zone (equation 7).7

FIGURE 1: Vehicular cloud computing.

(Ui/Umax)∗Rmax/(1+Ri)≥ λ 0≤ Ri ≤ Rmax, ∀i ∈M (7)
Constraint 7 ensures that the density of vehicles on edge multiplied by the distance to

hazardous nodes ratio of vehicle i is more than a specified threshold λ . Also, we denote by ∆ if a
vehicle is rerouted or not as expressed by equation 8

∆
i
t =

{
1 if vehicle i is rerouted at time t
0 otherwise

(8)

In this section, we presented the formulation for both the initial planning and the online8
instructions to revise the solution to the DPE problem. However, as mentioned before, finding an9
optimal solution for the DPE problem is not trivial. Therefore, we need indicators to measure the10
distance between our solutions and the optimal solution. Besides, we need to analyze the evolution11
of the network during the evacuation to investigate the impact of online guidance on the entire12
network.13

Solution quality indicators14
In this section, we define the performance metrics used to evaluate our solution’s optimality and15
monitor the network performance. We have calculated the network clearance time to compare the16
quality of solutions obtained with different methods. The clearance time is defined as the arrival17
time of the last evacuee to its shelter. This time provides us with information about the speed of18
the evacuation operation. Note that the best solution method provides the least value of clearance19
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time.1
We have also used the mean evacuation time, defined as all evacuees’ average travel time.2

In addition, we measure the average network speed to evaluate the network usage rate (56).3
Besides, to evaluate the quality of the traffic assignment solution, we used the average4

travel delay used in the literature as the average gap (57, 58). This measure represents the mean5
amount of delay compared to the evacuee with the minimum evacuation time of each OD pair. We6
have calculated this measure to compare the effectiveness of the SUE assignment. The formula for7
ATD is as follows.8

AT D =

∑
α∈H

∑
o∈O

∑
s∈S

∑
π∈πos

tα
tr,π − tos

∗

∑
o∈O

wo
(9)

We have also used an indicator called the average evacuation delay, representing the mean9
amount of delay over the evacuee with the minimum evacuation time of each origin. This indicator10
is meaningful in our context because the final goal of each user is to reach the safe area as soon as11
possible.12

AED =

∑
α∈H

∑
o∈O

∑
s∈S

∑
π∈πos

tα
tr,π − to∗

∑
o∈O

wo
(10)

where to∗ denotes the minimum travel time of the evacuation trip from origin o. To successfully13
evaluate the DPE problem, we need to have indicators to measure the performance of the online14
management phase. In this study, we measure the packet delivery ratio (PDR) that represents the15
percentage of generated data packets that reach their destination. Some factors like disconnections16
of nodes or bad radio transmission conditions cause the decrease of the PDR by the increased17
amount of retransmissions. Note that a message being retransmitted multiple times can cause a18
high PDR; thus, other metrics, such as the delay, need to be investigated.19

Many papers rely first and foremost on the transmission delay as a key metric (59). This20
metric is relevant to safety-critical and latency-sensitive applications. The delay is usually mea-21
sured in seconds (s) or milliseconds (ms). Here we are interested in the end-to-end delay, i.e., the22
time from creating a message until the destination node finally receives it. This measure depends23
on how good radio conditions are (many retransmissions will increase the PDR and delay). The24
best value for PDR is the larger one and the smallest for the delay.25

METHODOLOGICAL FRAMEWORK26
Recall that solving the DPE problem with our model comprises two principal parts: building an27
evacuation plan by solving both problems SAP and DTA, and giving online guidance to reroute28
vehicles in congestion areas. Herein, we present the sequence of execution of each step of our29
formulation.30

For planning purposes and in the dynamic setting, we adopt the methodology used (60)31
to provide the initial plan. Here, we aim to modify the planning model to go for SUE instead of32
a pure UE solution. For the online evacuation management phase, we add a network layer for33
vehicular communication to capture the congestion of the network. Through this communication34
network, we can re-plan the evacuation route and shelter during the evacuation process and provide35
them with the instructions in real-time. To this end, we use a cloud computing scheme due to its36
low implementation cost. This is the main advantage of cloud computing compared to fog or37
edge architectures as they require a large amount of implementation budget (61). The proposed38
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methodology of this study is presented in Figure 2.1

FIGURE 2: flowchart of the solving the DPE problem

The steps of the framework are detailed as follows:2

Step 1. Initial evacuation plan:
This step corresponds to solving the multi-level DTA and SAP to generate an evacuation
plan. The SAP is going for SO, and the DTA is formulated under SUE.

Step 2. Simulation for the current time step and set t=t+1: This step corresponds to simulating
the evacuation process that could be the same as proposed by the plan, or new events could
occur due to several decisions made by evacuees in the previous time step. We have also
to increment the simulation time index. Note that any trip-based dynamic simulator can
be used in this step.

Step 3. Data collection: This is the first part of our cloud computing architecture wherein each
vehicle (node) broadcasts data messages, using their OBU, to RSUs that send it to the
cloud server.

Step 4. Risk update: In this step, we update the risk based on data from step 3. The considered
risk consists of two main components: the vehicle’s distance from a hazardous area and
congestion levels of the vehicle location.
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Step 5. Prediction of new travel times: In this step, the travel time of edges might change
according to the risk and congestion evolving by Step 4. In this step, we use a prediction
model to predict new travel time. Here we use the prediction model embedded in the used
simulator.

Step 6. Check for replanning: This step is for deciding whether a user i is concerned by the
rerouting process or not. For user i we estimate edge density, including the road speed
and traffic density based on the Greenshield model (2). The user i is considered to be in
congestion if his current edge density is above a certain threshold.

Step 7. Evacuees selection for replanning: This step corresponds to selecting vehicles that have
to be rerouted before getting inside a congested edge (road). In this step, we select all
users with the congested edge as the next planned edge of their initial journey. In addition,
we prioritize vehicles that are closer to the hazard zone. To this end, we have calculated
an indicator wi for each user having two main components: the congestion level of his
next edge and his distance from hazardous nodes.
Wi = (Ui/Umax)∗Rmax/(1+Ri) 0≤ Ri ≤ Rmax (11)

Step 8. Shelter reallocation and rerouting: In this step, we prepare a message to the targeted
users to ask them to reroute to the path with the current shortest travel time having their
planned shelter as a safe destination.

Step 9. Sending notification to evacuees: The step represents the second essential part of our
cloud computing scheme where the cloud server sends its decisions to RSUs that forward
the results to vehicles to react accordingly.

Step 10. Check stopping condition: This step checks if all the demand is evacuated or not. If that
is true, we had to end the process. Otherwise, we go to simulating the next step.

Step 11. End of the simulation/ In this step, we end the evacuation process, and we calculate
different performance measures to evaluate the performance of our online management
solution.

NUMERICAL EXPERIMENTS1
In the previous section, we presented our framework to solve the online DPE problem. Here, we2
tend to apply the methodology to a real network to validate the proposed solution. We present the3
considered test case and then the experiment design.4

Case study5
We implement our proposed solution in order to model the DPE problem on the realistic network of6
the LuST scenario (Figure 3a), which represents Luxembourg city (62). For the network and evac-7
uation scenario characteristics, please refer to (60). We have used a laptop with 1.7 GHz. and 168
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GB of RAM to generate all the results. We employed a solution method using the simulation-based1
DTA. For this, we performed all simulations by SUMO simulator, and we calculated the C-logit2
model and the prediction of travel time by SUMO (63). In addition, we used ILOG CPLEX version3
12.9 to implement the SAP model and solve it. To simulate the scenario taking into account ve-4
hicular communication, we used the Veins/Omnet++ simulator and a cloud computing architecture5
based on works done in (64).6

(a) Luxembourg mapping data ©Google 2022 (b) SUMO city network

(c) OMNET++ communication network (d) Communication between nodes in VANET

FIGURE 3: Evacuation network map of Luxembourg city

Figure 3 presents the evacuation network map of the city of Luxembourg. Figure 3a7
presents the real network of Luxembourg with the size of 155.95 km2 and the traffic network8
graph considered by Veins for dynamic simulation. We examine a hypothetical threat in the center9
zone affecting people of that region colored in red in Figure 3b. We do not assume any super source10
nodes (risky nodes) in this study. Four origin nodes are considered as evacuation sources in the11
risk zone (see Figure 2c in (29)). Vehicles carrying people should be evacuated to safe destinations12
(shelters), colored in green in Figure 3b, placed at the border of the network. We set the duration13
of each planning departure time interval (η) to 20 minutes for the simulation, considering the net-14
work’s size. The demand at each node is 200 vehicles at each period. We have selected four origin15
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nodes and four shelters, each with a capacity to hold 1500 evacuees. Therefore, the total demand1
is 600 vehicles per origin for the planning horizon (H). Figure 3c shows the vehicular communi-2
cation network in OMNET++ simulator. The process of message exchange between vehicles and3
the network infrastructure is illustrated by Figure 3d We have used 4 km for RSU coverage in our4
model. Also, we have fixed a small value for λ to be 0.2 because of the small penetration rate5
values, and we assume that our maximal radius of the risk scenario Rmax is 4km.6

Study optimization scenarios7
This study aims to examine the effects of planning and online orders on the DPE problem by8
creating four different scenarios. The following section provides a detailed description of each9
scenario.10

• Scenario P+C: Scenario with both planning and vehicular communication: This11
scenario follows the proposed framework (demonstrated in Figure 2).12

• Scenario P: Scenario with the initial plan only: This scenario illustrates the case of13
just planning for evacuation without any communication between vehicles or vehicles to14
RSUs. It means that we do not reroute evacuees during the evacuation process; they just15
follow the initial plan.16

• Scenario C: Scenario with vehicular communication only: This scenario is the same17
as Figure 2) except in step 1 where evacuees consider the nearest shelter and choose their18
routes following the SUE.19

• Scenario N: Naive scenario without any optimal plan and vehicular communication:20
This scenario represents the case where the system operators do not provide guidelines21
for evacuees. It means that the evacuees choose the nearest shelter and choose their routes22
following the SUE.23

RESULTS24
In this section, the results for the four mentioned scenarios were executed on the same evacuation25
demand profile. We use the evaluation metrics presented in Subsection 4.1 to measure the quality26
of the solution provided by our methodology. Table 2 presents the results for the four scenarios.27

In the scenarios considering VANET, the penetration rate is set at 100%, and each vehicle28
sends a message packet to the server every 1.66 minutes. The results show a significant improve-29
ment in the quality of the final solution obtained by scenario P+C wherein we used both planning30
and online guidance models. For instance, the reduction of more than 18 minutes (39%) in the net-31
work clearance time compared to the naive scenario. Also, there is an improvement of more than32
2 minutes (10%) between scenario P+C, and scenario P. Results show that scenario P represents33
the second best solution. The comparison between scenarios P+C and P proves that new orders34
handling new events not expected in planning create a more successful evacuation operation.35

Besides, scenario C provides a better solution compared to scenario N, meaning that using36
the telecommunication network can improve the evacuation solution, even without any planning37
phase. This observation could prove the effectiveness of online communication and highlights the38
importance of giving new orders to evacuees to revise their route choice during the evacuation pro-39
cess. Inspecting the result for scenario P and scenario C, we can observe that planning contributes40
more than telecommunication during the evacuation operation. One of the reasons behind this ob-41
servation is that in scenario C the shelter allocation was done without considering the congestion42
level. We have monitored scenario C to have a better view and understand more of the effect of43



Idoudi et al. 15

online evacuation guidance. We observe that allocating all users to the same nearest shelters in all1
evacuation operation generate congestion that could not be escaped even by using online vehicle2
rerouting. That is why different shelters like in scenario P in each state will ensure that we as-3
sign evacuees to the closest destinations in terms of time-dependent shortest path and not distance4
measure.5

TABLE 2: Performance metrics

Metrics / Scenario P+C P C N
Network clearance time(s) 1775.00 1980.00 2765.00 2835.0
Mean evacuation time(s) 1071.54 1093.70 1407.92 1447.61
Average travel delay (ATD) 205.47 220.62 341.63 349.78
Average evacuation delay (AED) 241.32 366.65 366.65 392.12

The decrease of mean evacuation time in table 2 shows that the online DPE improves the6
evacuation solution. The proposed model used in scenario P+C generates better ATD for evacuees7
with more than 6% of reduction compared to the second best. The improvement is remarkable for8
AED (34%). We mention that including telecommunication network provides us with some errors9
and delays in the sending and receiving messages. In both cases, P+C and C, we have around10
205.30 ms for end-to-end delay and PDR around 74%.11

Figure 4a presents the distribution accumulation over time for four scenarios. The accu-12
mulation at each time is the number of users traveling in the network. The figure shows that the13
scenarios having an initial evacuation plan outperforms the other two scenarios. The clearance14
time and network capacity usage in scenario P+C are better than in scenario P. There is a signif-15
icant difference between scenario P+C and scenarios C and N. Note that the gain of around 6016
seconds in clearance time between scenarios C and N is remarkable in our test case that includes17
only 2400 users. We expect a better result by increasing the number of evacuees and deploying18
larger networks. Figure 4b shows the evaluation of network mean speed during the evacuation19
process. This figure followed the results of the distribution of accumulation Scenario P+C outper-20
forms other scenarios meaning that the blue curve representing the scenario P+C stands upper than21
the other curves in most cases. We can observe a dramatic decrease in the speed before the end of22
evacuation because of queues formed in front of shelter sites.23

Assuming that 100% of the evacuees are using connected vehicles is not currently realistic,24
and it can be reachable in future. That is why we should consider multiple penetration rate values.25
In the case of x% of penetration rate, we select connected vehicles with a random distribution.26
Only this x% are sending positioning information and receiving online orders. Thus, the cloud27
server sees and guides only this x% of the vehicles. We execute our evacuation framework for five28
values of penetration rate, and the results are illustrated in table 3.29

There is no communication in the case of a 0% penetration rate, so we cannot calculate or30
measure the end-to-end packet delay or the packet delivery ratio, and "-" means that there is no31
possible value. The DPE problem is solved in our proposed framework for all penetration rates.32
The table 3 presents the different values of the performance measures used in the case of multiple33
penetration values. The table clearly shows that the case of a 100% of penetration rate is the best34
scenario in our study. The table 3 also illustrates acceptable values of PDR measure for 70%,35
50% and 30% scenarios. This PDR level means that around 75% generated packets are received36
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(a) Number of active users in the network variation

(b) Network mean speed variation

FIGURE 4: Performance measures variation over scenarios

correctly in the range of network infrastructure and without the need for retransmission. Also, the1
delay measure is crucial, especially in our case dealing with population evacuation. The average2
end-to-end delay of packets considering the vehicular cloud computing architecture employed is3
around 203 ms which is the same in the literature with this number of nodes (65). In addition, each4
scenario’s values of network clearance time show that communication positively impacts the evac-5
uation process by decreasing the clearance time. table 3 show fewer values for AT D when having a6
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bigger penetration rate. This demonstrates that increasing the number of connected vehicles could1
enhance the traffic assignment by ordering evacuees to choose the route that minimizes their travel2
time going more to the pure UE state. Figure 5a illustrates the change in the number of vehicles3
evacuating in the network for five different scenarios. The curves shown in this figure represent4
different penetration rate values.5

TABLE 3: Different penetration rate performance measures

Metrics PR 100% PR 70% PR 50% PR 30% PR 0%
Network clearance time(s) 1775.00 1833.00 1846.00 1873.00 1980.00
Mean evacuation time(s) 1071.54 1081.17 1084.90 1081.17 1093.70
Average travel delay (ATD) 205.47 220.24 219.68 228.88 220.62
Average evacuation delay (AED) 229.04 245.49 243.58 252.49 241.32
End-to-end delay (ms) 205.30 203.75 202.77 201.17 -
Packet Delivery Ratio 74.20% 75.80 76.24 75.50 -

(a) Number of active users in the network variation

(b) Network mean speed variation

FIGURE 5: Performance measures variation over different penetration rate

Figure 5b follows the results of the distribution of accumulation of users in the network.6
In addition, Figure 5b depicts the evolution of the mean speed in the evacuation operation. The7
maximum network speed limit is the free-flow speed (21 m/s) attained when the network does8
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not have any vehicle. The network speed illustrated by Figure 5b shows that having a 100%1
penetration rate is the fastest curve by arriving at the free-flow speed in the shortest time. Also, the2
figure presents the result of mean speed variation of other penetration rates showing that there is3
not a huge difference between 70% and 30% penetration rate on network clearance time (the arrival4
to the free-flow speed). Figure 5b shows that adding the communication layer even with different5
penetration rates positively affects the evacuation process. It means that the online solving of DPE6
uses the network’s capacity better than just planning.7
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CONCLUSION1
The population evacuation process during a disaster is vital, so the idea is to evacuate the population2
as soon as possible from hazardous zone towards safe areas to reduce the losses and the cost of3
the disaster. This paper is dedicated to solving the dynamic population evacuation (DPE) problem.4
Successfully modeling this problem and optimizing it faster and more efficiently saves more lives.5

In this paper, we perform a literature review and analyze multiple models used both in6
evacuation planning and VANET creation and execution in an evacuation context. Based on the7
literature, we decomposed the evacuation problem into two essential parts: firstly, creating an8
optimal evacuation plan considering dynamic shelter allocation and traffic assignment; secondly,9
considering new orders for the online guiding system. For the first part, known as evacuation10
planning, many models are employed in the literature: bi-level models. These different studies11
employ mainly static traffic assignment coupled with shelter allocation formulation for the network12
evacuation problem. Despite resolving both planning problems of SAP and traffic assignment in13
a static setting, few consider the DPE in a dynamic case for both shelter allocation and routing.14
For the second part, researchers made different proposals to improve evacuation operations by15
considering it from different sides of using architectures of a vehicular ad-hoc network (VANET),16
modifying the emergency message routing techniques, considering different types of messages,17
and transferring data between nodes. This study proposed a framework to solve the DPE problem,18
including creating an initial optimal plan and giving online orders considering unpredicted events19
not considered by the plan. In order to solve the DPE problem, we provide a framework to capture20
the dynamics of the evacuation process by using a traffic simulator. Building a planning process is21
achieved to determine shelters in the SO manner and routes in the SUE setting. Afterward, we try22
to perform an online management procedure during the evacuation. To this end, vehicles can send23
and receive data needed to update their route accordingly. To add this networking layer, we have24
considered a cloud computing architecture composed of vehicles representing final nodes, RSU25
representing the network infrastructure, and a distant, powerful computer representing our cloud26
server.27

For implementing our methodology, we have considered a trip-based dynamic simulator28
that provides us with travel information every time step coupled with a network simulator to add29
vehicular cloud computing communication. We apply our proposed methodology to the real-world30
network of the city of Luxembourg. The results show that the proposed model exceeds the model31
with only evacuation planning by more than a 10% decrease in network clearance time. This32
means that using vehicular communication for giving new orders improves the evacuation opera-33
tion because it considers new events and emerging congestion not initially determined by the plan.34
Moreover, we performed an analysis of the penetration rate of connected vehicles. The results35
show that solving the online DPE even with a low penetration rate could improve the quality of the36
proposed solution and use more of the network capacity in terms of network speed, for example.37
Besides, we have calculated end-to-end delay and packet delivery ratios to evaluate the perfor-38
mance of the cloud computing architecture for vehicular communication. Results show acceptable39
values in the case of delay-sensitive applications.40

This study considers only rerouting as a single strategy to manage the online evacuation41
process. We can also consider the departure time and shelter choice before and during the evacu-42
ation, respectively. For future works, we aim to use this framework with vehicles and buses, and43
other modes of transport. Second, we want to improve our framework by implementing a more ac-44
curate travel time predictor as we currently use the prediction model of the agent-based simulator.45
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Another interesting extension is to consider the behavioral reaction of users to evacuation orders.1
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