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A B S T R A C T

A Tradable Credit Scheme (TCS) is a demand management policy aiming for more sustainable
travel behavior. The regulator defines the total credit cap and the credit distribution; it also
determines the credit charges for each travel alternative at different times of the day, which
modifies the perceived users’ costs. The credit price is determined by trading of credits between
travelers. Defining the credit scheme at the urban level and estimating its impacts on user
travel decisions and the network congestion dynamics is challenging. We propose a framework
wherein travelers change their departure times and choose between solo car driving, Public
Transportation (PT), and carpooling to complete their trips under a dynamic TCS, meaning
the credit charge is time-dependent. A multimodal macroscopic traffic simulator based on a
generalized bathtub model captures the congestion dynamics for the different transport modes.
Additionally, we consider different values of time, trip lengths, and desired arrival times for
the demand profile.

The proposed TCS minimizes the total travel cost, (the sum of all travelers’ travel costs)
and the carbon emissions by solving an optimization problem through an iterative method,
including an inner loop that updates the users’ choices and credit price under the stochastic user
equilibrium principle; and an outer loop that updates the credit charge profile. The methodology
is implemented and applied to a realistic test case in Lyon (France). The dynamic TCS profiles
result in 36% fewer carbon emissions than static TCS for a total travel cost reduction of 19%.
Besides, 94% of the travelers benefit from the TCS as their user costs decrease in the case
study. The final results are compared with a more advanced simulation framework, which is
too computationally expensive to find the optimal TCS. The proposed TCS is effective with
refined traffic dynamics representation.

1. Introduction

Automotive congestion has been an issue for many cities worldwide for decades. The traffic engineering and transportation
economics communities have proposed different demand management approaches to foster shifting demand to off-peak periods and
sustainable transportation modes. A Tradable Credit Scheme (TCS) is a quantity-based framework that introduces a commodity for
traveling: credits. The regulator issues and distributes credits to travelers. Depending on the departure time and transportation mode,
a traveler must spend credits to access the transportation network. The credits can be traded between travelers through a dedicated
marketplace. The supply and demand for credits are linked to the travel times of the different travel alternatives. Thus, estimating
congestion over the scale of a city is essential. Also, the design of the TCS, especially the number of credits needed for the different
travel options, is linked to the goals the regulator wants to achieve. The objective function used most is related to the economic
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aspect of congestion: the total travel time or cost. It represents the time and money lost due to congestion. Other objectives linked
to the environmental footprint of the transportation network, like the emissions of pollutants, can also be considered. However,
reducing congestion or pollution might lead to different TCS, and trade-offs must be found. In this context, our contribution is to
address this trade-off by setting up an advanced multimodal congestion model and an optimization framework. We proceed with a
literature review on traffic congestion models and multimodality in TCS frameworks.

1.1. Congestion models

The problem of peak-hour congestion, i.e., when the travel demand exceeds the capacity for specific time periods, has been
nvestigated for more than half a century (Li et al., 2020). Different congestion models have been proposed and consequently
mproved. The most common model in the literature of macroscopic traffic models is Vickrey’s bottleneck. Vickrey (1969) represented

the congestion as a point queue with a fixed capacity. The queue disappears by implementing marginal cost pricing, and the
total travel cost is reduced by a factor of two. In 1991, Vickrey relaxed the fixed capacity assumption (Vickrey, 2020) (work
published posthumously) with a new model, named the classical bathtub model. The main idea is to define the network as an
undifferentiated movement area with a mean speed function. The mean speed is defined as a function of network density and
network characteristics (Fosgerau and Small, 2013; Arnott, 2013). Therefore, the network speed decreases as demand increases.
Fosgerau (2015) extended the framework to account for different desired arrival times. Arnott and Buli (2018) proposed a numerical
framework for determining the departure times distribution. Mariotte et al. (2017) and Leclercq et al. (2017) introduced the trip-
based Macroscopic Fundamental Diagram (MFD) to consider any trip length distribution. The mean speed is a function of vehicle
accumulation, which is the key state variable of the classical bathtub and MFD models. Lamotte and Geroliminis (2018) described
a numerical resolution method to compute the departure times distribution at equilibrium. Jin (2020) introduced an extension for
the classical bathtub model, named generalized bathtub. The author presented a numerical framework for computing travel times.
The key state variable is the distribution of the remaining trip lengths of the travelers, which was also introduced in Lamotte and
Geroliminis (2018). However, departure time optimization was not addressed. Recently, Ameli et al. (2022) applied the Mean Field
Game theory to compute the deterministic user equilibrium, and Lebacque et al. (2022) computed the Stochastic User Equilibrium
(SUE) for the generalized bathtub model. In this work, we deploy the latter modeling framework to capture the traffic dynamics
and calculate the SUE.

1.2. Multimodality

Considering different transportation modes requires integrating different vehicle types into the road network. Multimodal
macroscopic congestion models consider different travel times for the different vehicles and their interactions, especially between
personal cars and buses. We can distinguish different approaches to represent multimodality in the literature: (i) the speeds for
buses and cars are the same, and the bus dwell time is explicitly considered (Dakic et al., 2021); (ii) the bus speed is affine in
the car speed (Loder et al., 2017, 2019); (iii) modes other than the private car undergo an additional delay depending on the
congestion level (Loder et al., 2021); (iv) each mode has its speed function, which is affine in the accumulation of every mode in
the system (Paipuri and Leclercq, 2020). In this work, we use the second approach to capture the impact of car congestion on PT
without adding excessive complexity and calibration requirements.

Considering different vehicles may not be enough to account for the diversity of mobility supply, especially with the rise of ride-
hailing and -sharing services. A passenger car offers two different transportation alternatives if driven alone or used for carpooling.
Certain recent contributions in the literature (Xiao et al., 2016; Yu et al., 2019; Xiao et al., 2021b,a) have promoted carpooling to
foster more sustainable travel behavior by reducing the number of vehicles in circulation. In the general framework, two travelers
with similar trips would use only one car instead of two cars. On the one hand, users can drive on the High Occupancy Vehicle (HOV)
lane, with the travelers sharing the expenses: fuel, congestion pricing, or credit/permit purchase. On the other hand, carpooling
induces a penalty representing the detour, waiting time or the discomfort of not driving alone. The aim of this work is to integrate
time-dependent TCS, congestion dynamics and multimodality, including carpooling, into a single framework.

1.3. TCS models in urban areas

A substantial part of the literature on TCS is aimed at optimizing travelers’ route choices by charging the links of the networks,
e.g., Yang and Wang (2011). The implementation of these contributions in an urban area is complex in practice. The present work
focuses on mode and departure time choices at the network level. Most studies in the literature have used Vickrey’s bottleneck model
to address TCS at the network level to reduce congestion (Nie and Yin, 2013; Tian et al., 2013; Nie, 2015; Xiao et al., 2015; Jia
et al., 2016; Miralinaghi et al., 2019). Furthermore, Bao et al. (2019) considered Chu’s model (Chu, 1995), which is based on the BPR
function. In the studies mentioned, the credit charge is dynamic, meaning the number of credits required to pass the bottleneck is
time-dependent (i.e., based on the choice of departure time). The purpose is to encourage travelers to switch from on-peak to off-peak
hours. However, most considered only a single transportation mode with a homogeneous traveler profile. Tian et al. (2013), Xiao
et al. (2015) and Miralinaghi et al. (2019) accounted for different Values of Time (VoT) to represent the heterogeneity of monetary
valuation of travel time for the personal car with Vickrey’s bottleneck.

Balzer and Leclercq (2022) propose a TCS based on the trip-based MFD in order to capture trip heterogeneity (trip length) and
2

congestion dynamics at a large scale. We considered Public Transportation (PT) with a fixed cost based on a given departure time
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Table 1
Comparison of the different contributions on TCS.

Article Congestion model Travel choice Different
VoT

Dynamic
charging
scheme

Pollution

Vickrey Trip-based
MFD

Multimodal
generalized
bathtub

Departure
time

Car PT Carpool

Nie and Yin (2013) ✓ ✓ ✓

Tian et al. (2013) ✓ ✓ ✓ ✓ ✓ ✓

Nie (2015) ✓ ✓ ✓ ✓

Xiao et al. (2015) ✓ ✓ ✓ ✓ ✓

Jia et al. (2016) ✓ ✓ ✓ ✓

Miralinaghi et al. (2019) ✓ ✓ ✓ ✓ ✓

Bao et al. (2019) ✓ ✓ ✓ ✓

Liu et al. (2022) ✓ ✓ ✓ ✓ ✓

Balzer and Leclercq (2022) ✓ ✓ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

and origin–destination locations. The credit charge was static, i.e., the number of credits required does not depend on the departure
time, as the focus is the shift from personal cars to PT. Recently, Liu et al. (2022) also used trip-based MFD without PT, while
the dynamic credit charge is designed in proportion to the travel distance. In this work, the TCS is dynamic and depends on the
users’ departure time and mode (private car, PT, and carpooling) choices. In addition, we consider a multimodal extension of the
generalized bathtub model (Jin, 2020) to address the network equilibrium with a heterogeneous demand profile and investigate the
effect of a TCS on mode and departure time choices.

Moreover, we take into account environmental measures (CO2 emissions) not only to evaluate the performance of TCS but also
o optimize the dynamic charging profile. In the literature, few studies consider environmental goals with TCS at the link level (Gao
nd Sun, 2014). To highlight our contributions, we compare the most relevant studies on TCS at the network level, including the
eparture time choice problem in Table 1, along with previous works on MFD under TCS. This study addresses the gap between
ealistic congestion representation and dynamic TCS. It should be recalled that dynamic TCS means that the credit charge may
hange depending on the time. The time- and mode-dependent TCS is aimed at fostering shifts ofmode and departure times to
itigate congestion and reduce the carbon footprint of the transportation network. We consider three travel modes: personal car,
T, and carpooling.

The remainder of this paper is organized as follows. In Section 2, we present the multimodal generalized bathtub framework
ith the TCS: congestion dynamics, TCS, users’ decision, and equilibrium formulation. Section 3 formulates the computation of the
UE and the optimization of the credit charge profile. The case study and the associated results are presented in Section 4 for a
ealistic morning commute scenario in Lyon (France) with 384,200 trips in total. Section 5 concludes this paper.

. Problem formulation

This section describes the proposed methodological framework to address the TCS problem, including the SUE calculation based
n the multimodal generalized bathtub under TCS. Fig. 1 depicts an overview of the different components and interactions in our
ramework. In Fig. 1, the travelers get a fixed amount of credits daily from the regulator. Obviously, this amount is insufficient
o travel by car during peak hours. Otherwise, the TCS would not discourage solo car rides. Travelers can trade the credits on a
pecific market. They choose their transportation mode and departure time according to the credit charging profiles and scheduling
references. The regulator determines the credit charging profile to achieve its economic and environmental goals. The related
easures (e.g., total travel time and carbon emissions) depend on the travelers’ behaviors. The credit price results from the supply

nd demand in this market, so it depends on the travelers’ choices. Thus, there are complex interdependencies between travelers’
hoices, the market, and the traffic congestion level. While describing credit price evolution during the transitional phase is very
hallenging, it is possible to calculate the credit price at equilibrium when all interactions stabilize. The following subsection presents
he congestion model based on the generalized bathtub. Then the TCS is presented with a dynamic charging profile. Finally, we
resent the user choice model and the SUE formulation.

For convenience, the notations are summed up in Table 2.

.1. Multimodal generalized bathtub

Here we introduce the concepts, assumptions, and notations related to the congestion model.
In this framework (see Fig. 1), travelers have different characteristics: trip length 𝑙 ∈ , desired arrival time, 𝑡𝑎 ∈ 𝑎, and

scheduling preferences 𝛼𝑐 , 𝛽𝑐 , and 𝛾̃𝑐 associated to their socioeconomic class 𝑐 ∈ . The capital and curly letter represents the
domain of validity of the respective parameter or variable. They choose their departure times 𝑡𝑑 ∈ 𝑑 and travel modes 𝑚 ∈ 
according to the corresponding travel costs.  is the discrete set of all available transportation modes.
3



Transportation Research Part C 149 (2023) 104061L. Balzer et al.

d
2
a
T
a
P
f

i
t
d

𝑧
I

s

Fig. 1. Framework of the multimodal bathtub under TCS.

The demand scenario defines their VoT, trip length, and desired arrival time for all users. It is described by the distribution
𝑑 = 𝑑(𝑐, 𝑙, 𝑡𝑎). 𝐷 denotes the total number of travelers. Traffic assignment will allocate each user to a departure time and a mode.
We represent the user distribution by the distribution 𝑓 that encompasses all their characteristics (VoT, trip length, desired arrival
time, departure time, mode) 𝑓 = 𝑓 (𝑐, 𝑙, 𝑡𝑎, 𝑡𝑑 , 𝑚). In this paper, we consider three transportation modes: car solo (one traveler per
car), carpooling (two travelers per car), and public transportation (PT). 𝜁𝑚 is the waiting time linked to mode 𝑚. We set it to zero
for the solo car drivers and PT riders. We neglect the PT waiting time (typically half of the head time) as we focus on the morning
commute scenario when the PT frequency is high and the average waiting time is only a few minutes. It represents the extra time
related to carpooling (waiting and small detour time) in this paper. We assume no distinction between driver’s and passenger’s
travel time and credit charge when carpooling. It means the driver waits at its origin, and its waiting time in its car is equivalent
to the passenger walking time to the driver’s origin during 𝜁𝑚. Then both start their trips.

The user cost of mode 𝑚 is calculated based on the arrival time obtained by bathtub dynamics equations. This congestion model
assumes all trips take place in the same overall region, where the speed is spatially uniform. The mean speed for a given time is
a function of the number of vehicles (personal cars, buses, tramways) circulating in the network at this time. A vehicle enters the
network at the departure time 𝑡𝑑 and leaves it once it has driven its trip length 𝑙. The generalized bathtub model provides a set of
equations per transport mode. For each mode 𝑚, we define a virtual traveler 𝑡↦ 𝑧𝑚(𝑡) which keeps track of the cumulative traveled
istance since the origin of times, as introduced by Lamotte and Geroliminis (2018) (a.k.a. characteristic travel distance in Jin,
020). We also define 𝐻𝑚(𝑡) as the accumulation, i.e., the number of vehicles of type 𝑚 in the network at time 𝑡. The number of
ctive trips with a remaining distance higher than 𝑥 at 𝑡 is denoted 𝑘𝑚(𝑥, 𝑡). This state variable is specific to the generalized bathtub.
he accumulation is then computed by 𝐻𝑚(𝑡) = 𝑘𝑚(𝑥 = 0, 𝑡). Recall that the accumulation is a state variable common to both MFD
nd bathtub representations. The speed of mode 𝑚 𝑣𝑚 depends on the accumulations of all modes (Loder et al., 2017, 2019, 2021;
aipuri and Leclercq, 2020; Paipuri et al., 2021). The coupling between the modes in the bathtub model occurs through the speed
unctions.

The accumulation at time 𝑡 consists of the trips that started before 𝑡 and are long enough to be ongoing by 𝑡. Therefore, we
ntroduce the density, with respect to departure time 𝑡𝑑 , of the number of vehicles with trip length longer than 𝑙: 𝐹𝑚(𝑙, 𝑡𝑑 ). The
raffic dynamics are based on the formulation of Ameli et al. (2022) and extended here to account for different modes. The bathtub
ynamics of mode 𝑚 ∈  is given by Eq. (1).

⎧

⎪

⎨

⎪

⎩

𝑧𝑚(𝑡) = ∫ 𝑡0 𝑣𝑚({𝐻𝑚′ (𝑠)}𝑚′∈)d𝑠
𝐻𝑚(𝑡) = ∫ 𝑡0 𝐹𝑚(𝑧𝑚(𝑡) − 𝑧𝑚(𝑡𝑑 ), 𝑡𝑑 )d𝑡𝑑
𝐹𝑚(𝑙, 𝑡𝑑 ) = ∫𝑙′>𝑙,𝑙′∈ ∫𝑡𝑎∈𝑎

∑

𝑐∈ 𝑓 (𝑐, 𝑙′, 𝑡𝑎, 𝑡𝑑 , 𝑚)d𝑙′d𝑡𝑎

(1)

The first equation states that the mean speed depends on the accumulations and computes the trajectory of the virtual traveler
𝑚(𝑡). The second computes the accumulation 𝐻𝑚(𝑡): the sum of the trips that started earlier and are long enough to remain active.
t depends on the trajectory of the virtual traveler 𝑧𝑚(𝑡). The third equation is the computation of the density 𝐹𝑚(𝑙, 𝑡𝑑 ) based on the

traffic assignment 𝑓 . The natural setting for the solutions of Eq. (1) is the space of Lipschitz continuous functions of time. In this
4

pace, it can be shown that given a distribution 𝑓 , the solution (𝑧𝑚,𝐻𝑚) of Eq. (1) exists, is unique and depends continuously on
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Table 2
Summary of parameters and variables notations.

Notation Meaning

Parameters

𝛺 Ensemble of travelers’ characteristics and choices.
𝛺𝑊
𝑚 Subspace of 𝛺 restricted to mode 𝑚 and charging period 𝑊 .

𝛺𝑊
𝑚 {𝑙} 𝛺𝑊

𝑚 further restricted to trips of length l.
 Ensemble of travelers classes (VoT).
𝑐 Traveler’s class.
𝛼𝑐 VoT of class 𝑐.
𝛽𝑐 Normalized marginal early cost of class 𝑐.
𝛾̃𝑐 Normalized marginal late cost of class 𝑐.
 Ensemble of trip lengths.
𝑙 Trip length.
 Admissible modes.
𝑎 Ensemble of desired arrival times.
𝑡𝑎 Desired arrival time.
𝑑 Admissible departure times.
𝑑(𝑐, 𝑙, 𝑡𝑎) Travel demand distribution for class 𝑐, trip length 𝑙, and desired arrival time 𝑡𝑎.
𝐷 Total number of travelers.
𝜒opt Optimization parameter.
𝜅 Credit allocation.
𝜏(𝑡𝑑 , 𝑚) Credit charge for mode 𝑚 starting at 𝑡𝑑 .
𝑇charges Duration of a charging period.
𝜃𝑐 Logit parameter of traveler class 𝑐.
𝜁𝑚 Waiting time/penalty with mode 𝑚.
𝐸∗

CC Credit Cap error goal.
𝐸∗

MCC Market Clearing Condition error goal.
𝐸∗

SUE Stochastic User Equilibrium error goal.

Discretization parameters

𝛥𝑙 Trip length resolution.
𝛥𝑡 Departure time resolution.
𝛥𝑡𝑎 Desired arrival time resolution.
𝑖𝑙 Trip length index.
𝑖𝑡 Simulation time index.
𝑖𝑡𝑑 Departure time index.
𝑖𝑡𝑎 Desired arrival time index.
𝑙min Minimum trip length.
𝑡𝑎,min Minimum desired arrival time.

Variables

𝜓 Logit decision.
𝜇 Assignment update coefficient.
𝜔 Traveler’s characteristics and choices.
𝑓 (𝑐, 𝑙, 𝑡𝑎 , 𝑡𝑑 , 𝑚) User distribution for class 𝑐, trip length 𝑙, desired arrival time 𝑡𝑎, departure time 𝑡𝑑 , and mode 𝑚.
𝐹𝑚(𝑥, 𝑡) Number of active trips with remaining distance longer than 𝑥 at 𝑡.
𝐻𝑚(𝑡) Accumulation at time 𝑡 for mode 𝑚.
𝑚 Mode index.
𝑝 Credit price.
𝑡𝑎 Arrival time.
𝑡𝑑 Departure time.
𝑣𝑚 Instantaneous speed of mode 𝑚.
𝑧𝑚(𝑡) Virtual traveler traveled distance at time 𝑡 with mode 𝑚.
𝑇𝑇 Travel time.
𝑇𝐶 Travel cost.
𝑈𝐶 User cost.
𝑟 Search index for SUE.
𝑅 Normalized credit consumption excess.
𝐸CC CC error.
𝐸MCC MCC error.
𝐸SUE SUE error.
 Travel characteristics to be updated.
̄ Travel characteristics not to be updated.
𝑊 Charging period index.
𝑂𝑏𝑗𝑊 Objective function for charging period 𝑊 .
𝛥𝑂𝑏𝑗𝑊 Variation of the objective function for charging period 𝑊 .
𝛤 Travel cost gain.

𝑓 for the weak topology of bounded measures. This follows by adapting propositions 1 to 4, and their proofs (appendices B to E)
in Ameli et al. (2022).
5
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Fig. 2. Discretization of the accumulation computation.

The arrival time 𝑡𝑎 is computed by using the inverse of the virtual traveler 𝑥↦ 𝑧−1𝑚 (𝑥). The inverse is correctly defined as long as
he mode speeds are always non-zero. We assume the mean speeds are always strictly positive, meaning we exclude the possibility
f a complete gridlock. A user starting at 𝑡𝑑 with a trip of length 𝑙 and using mode 𝑚 will arrive at

𝑡𝑎 = 𝑡𝑑 + 𝑧−1𝑚 (𝑧𝑚(𝑡𝑑 ) + 𝑙) + 𝜁𝑚. (2)

f the mode speeds are bounded from below, it can be shown that 𝑡𝑎 depends continuously on (𝑙, 𝑡𝑑 ) and that the function (𝑙, 𝑡𝑑 ) ↦ 𝑡𝑎
epends continuously on 𝑓 for the weak topology of bounded measures. This result follows by adapting proposition 5 and its proof
appendix G) in Ameli et al. (2022). To address the realistic demand profile based on trip data, we use the discretization approach
o represent the formulation of the multimodal generalized bathtub to compute the arrival times via the trajectory of the virtual
raveler 𝑧𝑚 and the accumulation 𝐻𝑚, which are inter-dependent.

iscretization

The discretization approach aims to compute the arrival times of the multimodal generalized bathtub (Eq. (1)) in uniform
ntervals. Note that the discretization is not applied in our previous study, Balzer and Leclercq (2022), since we used a more
dvanced trip-based MFD simulation framework, wherein the arrival times are computed following an event-based simulation:
he state variables are updated each time a vehicle enters or leaves the network. The equilibrium computation was based on the
inearization of the travel times with respect to the mode choices. This former approach is not suited here for the following reasons:
i) the travel time linearization while accounting for departure time becomes too complex as it adds another dimension to the
roblem; (ii) for each trip length, departure time, and mode, we would need one agent to account for the effect of this specific
emand on the congestion. The computational cost of event-based resolution of the trip-based MFD increases quickly with the
umber of agents, as the state variables are updated each time an agent enters or leaves the network. The main difference between
he two approaches is that the trip-based MFD framework follows each traveler and tracks its remaining travel distance. On the
ontrary, the generalized bathtub focuses on the distribution of the remaining trip lengths with fixed time steps. It is advantageous
n terms of complexity and computation time to use the generalized bathtub framework, which is continuous. However, in a later
ection 4.3, we will simulate the optimal TCS solution with the more advanced trip-based MFD formulation to show that using the
implified approximation through the discretization of the generalized bathtub model in the optimization process makes perfect
ense.

Details of the discretization are presented in Appendix A.
The dynamics computation involves the resolution of Eq. (1) time step after step. The integration of the virtual traveler trajectory

s straightforward: on each time step 𝑖𝑡, the traveled length 𝑧𝑚 increased with the speed corresponding to the previous accumulation
𝑚(𝑖𝑡−1) plus the trips starting in this step. The accumulation computation is represented by the yellow area in Fig. 2.

The accumulation at the time 𝑡 = 𝛥𝑡𝑖𝑡 gathers all vehicles that have already started their trips and have a remaining travel
istance strictly positive. Each square contributes to the accumulation at 𝑖𝑡 with 𝑎𝑖𝑡𝑑 ,𝑖𝑙 ∈ [0, 1] the ratio of the square above the line
𝑑 ↦ 𝑧𝑚(𝑖𝑡) − 𝑧𝑚(𝑡𝑑 ) (i.e., the yellow part) multiplied by the number of trips starting at 𝑖𝑡𝑑 with trip length 𝑖𝑙,

∑

𝑐,𝑖𝑡𝑎
𝑓 (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚).

2.2. Dynamic tradable credit scheme

After presenting how traffic dynamics are affected by travelers’ choices, we introduce the proposed demand management policy
designed for the regulator to incite travelers to change their behaviors. Some mobility alternatives require credits depending on
6
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the transportation mode 𝑚 and departure time 𝑡𝑑 . The credit charge is significant for highly congestive modes like private cars
during peak hours and low for more sustainable choices like PT or carpooling outside peak hours. The regulator should set the
charging profile 𝜏(𝑡𝑑 , 𝑚) according to congestion and carbon emissions goals. In the following, the regulator only chooses the profile
for car drivers 𝜏(𝑡𝑑 , car). It is free for PT riders: 𝜏(𝑡𝑑 ,PT) = 0 and only the half for carpoolers as we assume two travelers per car:
𝜏(𝑡𝑑 ,pool) = 1

2 𝜏(𝑡𝑑 , car). Travelers receive a free initial allocation of 𝜅 credits from the regulator. They can trade the credits between
hemselves in a dedicated market. The credit price 𝑝 is not fixed by the regulator. This is the main difference with congestion pricing:

with TCS, the regulator defines the quantity and not the price, while for pricing, the regulator sets up the price but not the quantity.
When equilibrium is reached, TCS and pricing may lead to the same results, but TCS makes it easier to meet collective optimum as
the quantity is defined by design. It is determined by the law of supply and demand in the market. We do not consider the details
of the trade mechanism. We adopt the widely used Market Clearing Condition (MCC), as in Yang and Wang (2011), to represent
the market mechanism: the price is zero or all issued credits are spent.

2.3. Mode and departure time choice

Travelers’ choices depend on the travel times depending on the traffic dynamics, the different alternatives, and the additional
cost caused by the TCS, depending on the credit charge and the credit price. The travel time (𝑇𝑇 ) of a traveler leaving at 𝑡𝑑 and
rriving at 𝑡𝑎 is

𝑇𝑇 = 𝑡𝑎 − 𝑡𝑑 . (3)

he travel cost (𝑇𝐶) accounts for the early or late arrival on top of the 𝑇𝑇 . The 𝑇𝐶 of a traveler of the class 𝑐 with the desired
rrival time 𝑡𝑎 finishing its trip at 𝑡𝑎 is

𝑇𝐶 = 𝛼𝑐
(

(𝑡𝑎 − 𝑡𝑑 ) + 𝛽𝑐 max(0, 𝑡𝑎 − 𝑡𝑎) + 𝛾̃𝑐 max(0, 𝑡𝑎 − 𝑡𝑎)
)

. (4)

𝑐 , 𝛽𝑐 , and 𝛾̃𝑐 are respectively the VoT (money per time) and the normalized marginal cost (no unit) for early and late arrival.
The user cost (𝑈𝐶) is obtained by adding the TCS-related cost, i.e., the monetary value of the required credits:

𝑈𝐶 = 𝑇𝐶 + 𝑝 ⋅ 𝜏(𝑡𝑑 , 𝑚). (5)

oth 𝑇𝐶 and 𝑈𝐶 depend on trip length, departure time, mode, desired arrival time, and class. However, we do not make it explicit
n the equations to keep the notations light.

We assume the users’ decision processes follow the logit model to account for irrationality and uncertainty in their choices while
eeping the framework tractable. The discrete logit-based decision depends on the 𝑈𝐶 of all alternatives regarding departure time
nd mode choice and on the logit parameter 𝜃𝑐 :

𝜓(𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚) =
𝑒−𝜃𝑐𝑈𝐶(𝑐,𝑖𝑙 ,𝑖𝑡𝑎 ,𝑖𝑡𝑑 ,𝑚)

∑

𝑖𝑡′𝑑
,𝑚′ 𝑒

−𝜃𝑐𝑈𝐶(𝑐,𝑖𝑙 ,𝑖𝑡𝑎 ,𝑖𝑡′𝑑
,𝑚′)

. (6)

𝜓(𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚) is the ratio of travelers with characteristics 𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 wanting to travel at 𝑡𝑑 with mode 𝑚. It may be different from
the actual travel choices 𝑓 (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚)∕𝑑(𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 ). We assume all travelers have access to all modes. We especially consider all
travelers have access to a car: the one they own, if they own one, or a shared or rental car. Such an assumption can also be found
in Tian et al. (2013) and Xiao et al. (2021b).

2.4. Equilibrium formulation

The SUE formulation is based on Lebacque et al. (2022). It is extended to account for the mode choice and the TCS constraints.
The SUE is reached when the user distribution matches the logit distribution:

𝑑(𝜔)𝜓(𝜔) = 𝑓 (𝜔) ∀ 𝜔 ∈ 𝛺, (7)

with 𝛺 =  ×  × 𝑎 × 𝑑 × the space of all travelers’ characteristics and degrees of freedom. The demand conservation requires
the travel demand with specific characteristics to match the sum of the user distributions with the same characteristics:

∑

𝑖𝑡𝑑 ,𝑚
𝑓 (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚) = 𝑑(𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 ) ∀ 𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 . (8)

The TCS-specific constraints are, respectively, the credit cap (CC): the consumed credits cannot exceed the allocated amount, the
MCC, and the positivity of the price:

⎧

⎪

⎨

⎪

∑

𝜔∈𝛺 𝑓 (𝜔)𝜏(𝜔) ≤ 𝐷𝜅;
(
∑

𝜔∈𝛺 𝑓 (𝜔)𝜏(𝜔) −𝐷𝜅
)

𝑝 = 0; (9)
7

⎩

𝑝 ≥ 0.
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Fig. 3. Algorithm flowchart.

. Methodological framework

Our contribution consists in computing the SUE under TCS, i.e., finding the travelers’ choices (mode and departure time) and the
redit price; and optimizing the credit charge 𝜏 to fulfill societal goals in terms of total travel cost and carbon emissions. Previous
orks on the generalized bathtub (Ameli et al., 2022; Lebacque et al., 2022) focused on calculating departure time distribution,
xcluding mode choice and optimization of TCS variables, i.e., a part of the blue inner loop. The equilibration of the multimodal
eneralized bathtub model under TCS is decomposed into two imbricated loops. The outer loop increases (respectively decreases)
he price if too many (too few) credits are consumed until the MCC and CC hold: (i) price is zero and some credits are not used, or
ii) all credits are consumed. The inner loop changes the travelers’ departure times and travel modes until their logit-based decisions
atch their actual travel choices. The two loops form two imbricated fixed-part problems to be solved. Fig. 3 presents the two loops:

lue for the assignment and green for the credit price. The red one indicates the optimization of the charging profile. It is not part
f the fixed-point problem. The role of this third loop is presented in Section 3.3.

.1. Credit price

We define the credit consumption excess 𝑅 as

𝑅 = 1
𝐷

∑

𝜔∈𝛺
𝑓 (𝜔)

(

𝜏(𝜔)
𝜅

− 1
)

. (10)

It is the normalized number of credits used minus the initial allocation. The CC dictates it should be negative: we accept unused
credits but not the consumption of non-existing ones. The CC error is defined as the positive part of 𝑅:

𝐸CC = max(0, 𝑅). (11)

The MCC error is defined as

𝐸MCC = 𝑝𝜅|𝑅|. (12)

It is high when the price is non-zero, and all credits are not consumed. We use the absolute value of 𝑅 to ensure a positive metric
for the MCC error.

We change the credit price if one of the error measures 𝐸CC or 𝐸MCC is higher than the given respective thresholds 𝐸∗
CC and

𝐸∗
MCC. The price variation of the CC and MCC loop for the iteration 𝑖step,pri of the price loop is

𝛥𝑝 = 1
√

𝑖step,pri

1
𝜅
𝑅. (13)

The amplitude of the change decreases as the loop iterates to force convergence but not too fast to allow for space exploration. This
process is typical when solving a fixed-point problem, e.g., the Method of Successive Average (MSA) (Sheffi, 1985). We bound 𝛥𝑝
by ±𝜖𝑝, a fixed threshold, to prevent large oscillations. The price is then updated by ensuring it stays positive:

𝑝 = max(𝑝 + 𝛥𝑝, 0). (14)

The price loop iterates until the maximum number of iterations is reached or both CC and MCC errors fall below the given thresholds.
8
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𝛼

3.2. Assignment

The SUE error quantifies the difference between user distribution and logit-based decision:

𝐸SUE = 1
𝐷

∑

𝜔∈𝛺
|𝑓 (𝜔) − 𝑑(𝜔)𝜓(𝜔)|. (15)

The assignment loop starts with an initial solution based on free flow mean speed and then iterates until the maximum number of
iterations is reached or the SUE error falls below a threshold 𝐸∗

SUE. A heuristic reassignment algorithm is designed to correct the
worst decisions (assignment far from logit) with a procedure similar to the MSA. We first rank the assignment based on the SUE
error. Then, we choose the proportion of the assignments with larger errors and reassign their departure time and mode choice.
This procedure is inspired by Sbayti et al. (2007). The proportion corresponds to the step size of the algorithm. A search index is
defined and initialized with 𝑟 = 1. For each iteration of the SUE loop, the fraction 1∕𝑟 of the assignment characteristics 𝜔 ∈ 𝛺 where
the assignment error |𝑓 (𝜔)∕𝑑(𝜔) − 𝜓(𝜔)| is the largest, is updated. We name this part of the travel characteristics  . The rest of the
characteristics define the ensemble ̄ . Thus  ∪ ̄ = 𝛺 and  ∩ ̄ = ∅. The step size formulation is the same as the step size of the
MSA method; however, we use the smart step size approach (Ameli et al., 2020) to update the step size for the following iterations.
If the new user distribution leads to a smaller SUE error 𝐸SUE, then the search index stays the same. Otherwise, the search index
𝑟 increases by one, decreasing the search radius. The convergence of this approach is discussed in Ameli (2019). We stop once the
SUE error falls below a given threshold or the best solution (lowest SUE error) is returned if the maximum number of iterations is
reached. The implementation of the algorithm for SUE calculation is detailed in Appendix B.

3.3. Optimization of the charging profile

The charging profile is updated using an iterative heuristic method to decrease congestion and pollution. We estimate the
variation of the travel costs and the carbon emissions for a change in car share for each charging period 𝑊 of duration 𝑇charges
(typically half an hour). An alternative method for credit profile optimization could have been Bayesian optimization as in Liu et al.
(2022). As we could derive an analytical approximation for the gradient considering the system dynamics, we better stick to the
proposed heuristic that converges quickly with reasonable accuracy. Fig. 4 presents the updating process. We do not account for
the change of early and late penalties but only consider the travel time variation to have a robust measure. We do not consider
carpooling in this approximation, as the corresponding share is relatively small. Let us define 𝛺𝑊

𝑚 the subspace of 𝛺 restricted to
mode 𝑚 and departure time included in the charging period 𝑊 , i.e., 𝛺𝑊

𝑚 =  ×× 𝑎 × (𝑑 ∩𝑊 ) × {𝑚}. 𝛺𝑊
𝑚 {𝑙} is the subpart further

restricted to trips of length 𝑙, i.e., 𝛺𝑊
𝑚 {𝑙} =  × {𝑙} × 𝑎 × (𝑑 ∩𝑊 ) × {𝑚}. We define several aggregates over this period 𝑊 for each

mode 𝑚:

• the average speed 𝑣̄𝑚 =
∑

𝑡∈𝑊 𝐻𝑚(𝑡)𝑣𝑚(𝑡)
∑

𝑡∈𝑊 𝐻𝑚(𝑡)
;

• the average travel cost ̄𝑇𝐶𝑚 =
∑

𝜔∈𝛺𝑊𝑚
𝑓 (𝜔)𝑇𝐶(𝜔)

∑

𝜔∈𝛺𝑊𝑚
𝑓 (𝜔) ;

• the average travel time ̄𝑇 𝑇 𝑚 =
∑

𝜔∈𝛺𝑊𝑚
𝑓 (𝜔)𝑇𝑇 (𝜔)

∑

𝜔∈𝛺𝑊𝑚
𝑓 (𝜔) ;

• the average trip length 𝑙𝑚 =
∑

𝑙∈

∑

𝜔∈𝛺𝑊𝑚 {𝑙} 𝑓 (𝜔)𝑙
∑

𝜔∈𝛺𝑊𝑚 {𝑙} 𝑓 (𝜔)
.

The ratio between the average accumulation
∑

𝑡∈𝑊 𝐻𝑚(𝑡)𝛥𝑡
𝑇charges

and the number of travelers ∑

𝜔∈𝛺𝑊𝑚
𝑓 (𝜔) is named 𝐻̃𝑚. It is

approximated using the travel times: 𝐻̃𝑚 = ̄𝑇 𝑇 𝑚∕𝑇charges. We now compute the effect of a traveler switching from car to PT, i.e., when
∑

𝜔∈𝛺𝑊car
𝑓 (𝜔) decreases by one. It corresponds to a reduction of the mean car accumulation by 𝐻̃car. A decrease in car ridership affects

the average TC of all modes by increasing the mean speeds. This variation is approximated by

𝛿𝑣 ̄𝑇𝐶𝑚 = −
d𝛼̄ 𝑙𝑚𝑣̄𝑚

d∑

𝜔∈𝛺𝑊car{𝑙}
𝑓 (𝜔)

= 𝛼̄ d𝑣
d𝐻𝑚

𝐻̃𝑚
𝑙𝑚
𝑣̄2𝑚
. (16)

̄ is the average VoT. The variation of total travel cost is approximated by ∑

𝜔∈𝛺𝑊𝑚
𝑓 (𝜔)𝛿𝑣 ̄𝑇𝐶𝑚

The marginal total travel cost variation 𝛥𝑇𝐶tot due to a decrease in car ridership, i.e., because a user switches from car to PT,
is the change of travel cost for this user plus the effect on the rest of the travelers:

𝛥𝑇𝐶tot = ̄𝑇𝐶PT − ̄𝑇𝐶car +
∑

𝑚

∑

𝜔∈𝛺𝑊𝑚

𝑓 (𝜔)𝛿𝑣 ̄𝑇𝐶𝑚. (17)

The carbon emission per distance 𝑒 depends on the mean network speed. We use the COPERT IV (Ntziachristos et al., 2009) model
of Lejri et al. (2018). It allows for efficient estimation of the pollution while accounting for the effect of the congestion dynamics
through the variations of the mean car speed across time. We only consider private car carbon emissions, but the model can easily
be tuned to account for different fleet compositions. We do not account for the variation of PT carbon emissions due to occupancy
(more weight) or operational (more vehicles) changes. Indeed, a large part of the PT fleet uses low-carbon technologies: electric
propulsion for subways, tramways, and some buses; and natural gas for some other buses. The change in PT carbon emissions is thus
9

neglected. We approximate the carbon emissions by using the mean car speed over the charging window 𝑒(𝑣̄car). The total distance
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Fig. 4. Update of the credit charging profile from blue to red.

riven by car is 𝑙tot =
∑

𝑙∈ 𝑙
∑

𝜔∈𝛺𝑊car{𝑙}
𝑓 (𝜔). The marginal carbon emission decreases when a traveler switches to PT consists of the

mission of a car 𝑒(𝑣̄car)𝑙 and the effect of better traffic conditions 𝑙tot
d𝑒

d∑

𝜔∈𝛺𝑊car
𝑓 (𝜔) .

𝛥𝐸 = −𝑒(𝑣̄car)𝑙 − 𝑙tot
d𝑒

d∑

𝜔∈𝛺𝑊car
𝑓 (𝜔)

= −𝑒(𝑣̄car)𝑙 − 𝑙tot
d𝑒

d𝑣car
(𝑣̄car)

d𝑣car
d𝐻car

𝐻̃car (18)

The global objective function 𝑂𝑏𝑗𝑊 to minimize over the charging period 𝑊 is a combination of the total travel cost 𝑇𝐶tot and
arbon emissions 𝐸. It is defined by

𝑂𝑏𝑗𝑊 = 𝑇𝐶tot + 𝜒opt𝐸, (19)

with 𝜒opt the optimization parameter chosen to tune the relative importance of pollution compared to congestion. Its variations in
eaction to a credit charge increase, i.e., a decrease in car ridership, is

𝛥𝑂𝑏𝑗𝑊 = 𝛥𝑇𝐶tot + 𝜒opt𝛥𝐸. (20)

The variation of the objective function 𝛥𝑂𝑏𝑗𝑊 is computed for each charging period. The credit charge of the period with the
ighest absolute variation is updated: it increases if negative and decreases if positive. The other charging periods are changed only
f the difference between two consecutive periods is too high. In our case study, the credit charge of the concerned period is updated
y one allocation 𝜅. We allow a maximum difference of one allocation 𝜅 between consecutive periods. If needed, the other charging
eriods are updated to fulfill this requirement. This constraint limits the effect of travelers waiting for the change of period to start
heir trip and leading to a travel peak just at the period change. This process of ‘braking’ to avoid a high toll is presented in Lindsey
t al. (2012). We provide the pseudo-code in Appendix C along a small example in Fig. 4. Period 5 is chosen to be updated (highest
bsolute gradient) by increasing the charge by 𝜅. The charge in period 6 is increased to have no credit charge difference of more
han 𝜅.

The SUE is then computed with the new TCS profile, the estimation of the gradient of the objective function for the new
quilibrium is estimated, and the credit profile is updated again. The optimization ends if a loop is detected, meaning we reached
charging profile that has already been considered or if the maximum number of iterations is reached.

. Case study

The city of Lyon, France, serves as the framework for deriving travelers’ choices and credit prices at equilibrium, along with
ptimizing the dynamic credit charge to minimize total travel time and carbon emissions. In the following, we introduce the case
tudy. The effects of TCS, both at the global and individual scale, are then presented. Finally, the trip-based MFD cross-validates
he results by providing a finer resolution of the traffic dynamics.

.1. Simulation settings

The travel demand considered for the case study represents the typical morning commute of 384,200 travelers in Lyon (France)
etween 7:00 and 10:00. There are ten regions and five boundaries, creating 224 different OD-pairs with non-zero demand. The
ravel demand consists of trips in Lyon and through Lyon, i.e., we also account for travelers starting or/and ending their trip outside
he city. Fig. 5(a) represents the network studied. The synthetic desired arrival times are shown in Fig. 5(b). The distribution has a
ell shape: the demand is low at 7:00 and 10:00 and high between 8:00 and 9:00. The trip lengths range from 1.4 km to 16.3 km,
s shown in Fig. 5(c).

An MFD speed function represents the network capacity. All trips occur in the same region. The mean speed depends only on the
10

ar accumulation (solo drivers and carpoolers). We assume the number of operating buses is given and thus already accounted for
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Fig. 5. Supply and demand for the scenario: (a) the ten regions formed by the IRIS areas and the access points merged in five boundaries (circles), (b) the
istribution of the desired arrival times, and (c) the distribution of the trip lengths.

n the speed function. The speed function does not depend explicitly on the accumulation of buses. Instead of taking PT travel times
ndependently from the car accumulation, we calibrated the affine dependence formulation from Loder et al. (2017) with the travel
imes and distances retrieved from the city navigator (HERE Developer, 2020). The travel demand acts as the weighting factor. The
T speed is assumed affine in the car speed. As the PT trips may consist of different modes (subway, tramway, and bus), we obtain
macroscopic calibration of the PT speed, regardless of the PT vehicles. It is computed by (numerical values for speed in m/s):

𝑉PT = 0.12𝑉car

(

𝐻car +
1
2
𝐻pool

)

+ 3.17. (21)

ote that the constant factor is higher and the proportionality factor lower than in Loder et al. (2017). In the former study, the
uthors represented the speed of buses only, whereas we consider tramways and subways as well. These modes are not or very little
mpacted by congestion. A mean car speed of 50 km/h leads to a mean PT speed of 17.4 km/h. For comparison, a similar car speed
ith Loder’s models leads to a PT speed of 15.4 km/h for the center of Zurich and 20.6 km/h for the neighborhood of Wiedikon.

The trip length is discretized with 50 steps, and the departure time with 100 steps. We validate these choices in 4.3. We assume
even possible desired arrival times: every 30 min from 7:00 to 10:00. These numerical values are chosen as a trade-off between
omputation times, numerical rounding errors, and simulation precision. To account for the equity of the TCS concerning the
ravelers’ wealth, we consider travelers with a low VoT of 10.8 EUR/h for low revenue and a high VoT of 21.6 EUR/h to represent
igh revenue. We assume they are evenly distributed across the travel demand. These VoT correspond to the order of magnitude
f the VoT distribution of Lyon’s inhabitants, as used in Ameli et al. (2021). The normalized early factor is chosen as 1/2 and the
ate one as 2. This means that being late is worse than traveling a long time, which is worse than arriving early. It is a common
ssumption when computing the travel cost as a proxy for the perceived user cost. The normalized ratios are similar to Arnott et al.
1990). This choice of discretization leads to 210,000 different combinations of travelers’ characteristics and trip choices: 50 trip
engths, 100 departure times, seven desired arrival times, two VoT, and three modes.

The trip-based MFD provides the exact travel times by solving the implicit equation 𝑙𝑚 = ∫ 𝑡𝑎𝑡𝑑 𝑉𝑚(𝑠)d𝑠. It serves as our plant in
his case study. The two main differences between the trip-based model and the generalized bathtub are: (i) trip lengths and desired
rrival times which are individually assigned to each traveler in the trip-based model while being represented by distributions in the
eneralized bathtub; and (ii) the generalized bathtub uses discretization with arbitrarily fixed steps, whereas the trip-based MFD
11

s solved following an event-based discretization (starts and ends of trips). The trip-based MFD (event-based resolution) solution
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Table 3
The parameters used for the simulation.

Parameter Notation Value

VoT 𝛼𝑐 {10.8, 21.6} EUR/h
Scaled early factor 𝛽 1/2
Scaled late factor 𝛾̃ 2
Endowment 𝜅 1 credit
SUE goal 𝐸∗

SUE 10−2

CC goal 𝐸∗
CC 5 × 10−3

MCC goal 𝐸∗
MCC 5 × 10−3

Maximum price variation 𝜖𝑝 1 EUR
Logit parameter 𝜃𝑐 1 1/EUR
Optimization parameter 𝜒opt {0, 10−4, 10−3}
Carpooling penalty 𝜁pool 10 min
Charging period 𝑇charges 30 min

Fig. 6. Travel time distribution (without TCS). The charging period 𝑇charges (30 min) is represented by the green line.

is expensive to compute for such a large set of trips. The trip-based framework updates the state variable each time a trip begins
or ends, i.e., up to thirty thousand times (twice per agent and one agent per trip length, departure time, and mode). With the
generalized bathtub, we count less than 200 time steps for the generalized bathtub (the departure times plus additional time steps
to wait for the completion of the last trip). One simulation lasts about 470 s with the trip-based MFD and only 0.1 s with the
generalized bathtub. The trip-based framework is used only to confirm that the generalized bathtub approximation provides a close
approximation of the system states for the optimal solution.

We estimate the carpooling penalty 𝜁pool with an additional 10 min. The sensitivity of this parameter is discussed in Appendix D.
The main parameters used for the numerical computation are gathered in Table 3. Note that the endowment value 𝜅 is only
meaningful when compared to the charging profile 𝜏, as only the ratio matters.

The charging period is chosen based on the travel time distribution without TCS, in Fig. 6. The credit charge changes every
30 min, and most trips (about 90%) last less than this period. This means most of the trips finish at most in the period after which
they started. It is essential not to have too many trips impacting many periods, as these travelers would impact the traffic conditions
without paying the appropriate charge. This is in line with marginal cost pricing: the traveler pays for the externality they cause to
the rest of the travelers.

We assess the convergence quality as a verification. The SUE loop is run until the SUE error falls below the given threshold 𝐸∗
SUE,

i.e., when the user distribution is close enough to the logit decisions. The resulting assignment for an optimized TCS (referred to as
‘mid‘ later in the text) is shown in Fig. 7 versus the demand weighted by the logit-based decision. Most of the points in Fig. 7(a)
are on the diagonal, meaning the assignment matches the logit. Some points deviate, but as the error distribution shows (Fig. 7(b)),
their number is low, and the error is small (max 12% for one point), thus the impact is marginal.

4.2. TCS impact analysis

We first assess the global effects of optimized TCS on the network: total travel cost, carbon emissions, credit charge, assignment
changes. The aim of the algorithm proposed and presented in 3.3 is to minimize carbon emissions and the total travel cost. The
total travel cost is the sum of all travelers the travel costs, i.e., the proxy for the economic losses caused by congestion. Different
coefficients define the objective function to vary the importance of minimizing carbon emissions: 0, 10−4, and 10−3. We keep
the solutions forming the Pareto front, i.e., those with no other solution being better simultaneously for the total travel cost and
carbon emission reduction. As a benchmark, we also compute the equilibrium under static credit charging, with different charge
over allocation ratios 𝜏(car)∕𝜅 between 3 and 16. The Pareto front is shown in Fig. 8, with the static solutions and the no TCS
case for comparison. A static charge of 4 credits means that, on average, only one car can drive for every four travelers (one solo
driver or two carpoolers). It already enables a reduction of the the total travel cost of about 19% and a 59% reduction of pollution.
12

Dynamic charging profiles improve those metrics even further: 20% for congestion and 90% for pollution. It is possible to reach
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Fig. 7. Quality of the SUE: (a) user distribution vs. demand weighted by the logit, and (b) distribution of the relative error between the logit and user distribution
over demand.

Fig. 8. Total travel cost vs. carbon emissions for different static and dynamic TCS. The numbers are the charge over allocation ratios for the static cases. For
comparison, the no TCS case leads to a total travel cost of 2.63×106EUR and a carbon emission of 275 t.

similar pollution levels with static charging, as it decreases when the charge increases (fewer car drivers). However, it is achieved
at the expense of the total travel cost reduction. To achieve a low carbon footprint, the TCS significantly penalizes the car, and
many travelers switch to PT and carpooling. Since the mode shift is significant, the improvement of traffic does not offset the use
of slower modes, and the total travel cost increases due to increased travel times. The total travel cost reduction of 20% (dynamic
charging ‘cong’) cannot be reached with static charging. Although static charging enables a the total travel cost reduction of 19%,
the associated carbon emissions are 36% higher than the dynamic TCS ‘cong’. We keep the dynamic solutions with the lowest total
travel cost (‘cong’) and the lowest CO2 emission (‘emis’) for further comparison against static charging. An intermediate case of
dynamic charging (‘mid’) is compared versus the no TCS scenario. See Appendix E for comparing the TCS in terms of total travel
time and carbon emissions.

The static and dynamic credit charge and equivalent toll profiles are presented in Fig. 9. We plot the charge for solo car drivers.
It is half for carpoolers and zero for transit riders. The equivalent toll charge is defined as (𝜏(𝑡𝑑 , car) − 𝜅)𝑝. It corresponds to the
out-of-pocket money a traveler needs to pay to start a solo car trip at 𝑡𝑑 . As expected, it is more expensive to drive a car during
the high-demand period of the peak hour. Increasing the magnitude of carbon emissions increases the credit charge (Fig. 9(a)) as
pollution tends to increase with car usage: the ‘emis’ scheme leads to an equivalent toll (Fig. 9(b)) of about 8 EUR, while it stays
below 4 EUR in the ‘cong’ case.

We compare the modal shares for the different scenarios in Fig. 10. As expected, we see in Fig. 10(a) that the share of solo
drivers diminishes with TCS as the associated user costs increase. On closer inspection it can be seen that the car share decreases
with dynamic charging during the peak demand, while it increases with static charging. This can be explained by two effects: it
becomes expensive to take the car as the credit charge is high during the peak in the dynamic case. The credit charge is the same
in the static case, but the travel demand is higher. The TCS ‘cong’ strongly reduces the car share for a limited time (8:00 to 9:00),
while the TCS ‘emis’ creates a substantial reduction across the whole time frame to reach ambitious pollution targets. The PT share
(Fig. 10(b)) increases with the charging profile as it requires no credits. The share of carpoolers is captured in Fig. 10(c). The
carpooling mode is used more with TCS than without TCS. However, the carpooling share decreases with the charging profile when
the credit charge is high, as a carpooler still needs to spend credits. When looking at the shares with respect to the charging slots for
all modes in Fig. 10(d), the TCS seems to make travelers leave later. The traffic conditions are improved, the travel times decrease,
and thus travelers start their trip later to arrive around their desired arrival time. There is, however, very little difference between
the different TCS. The conclusion is that the TCS affects the mode choice more than the departure time distribution. This is partly
due to the limitation of the maximum difference of one allocation 𝜅 between two consecutive charging periods. The gain of shifting
one’s departure time for a charging period with a lower credit charge does not exceed the early/late arrival penalty.

In Fig. 11, the traffic conditions with and without TCS are compared through the mean speeds. Without TCS, the mean speeds of
PT and cars (represented in Fig. 11(a)) are similar during the peak demand. Although the equilibrium is not deterministic, the user
13
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Fig. 9. Comparison of the static and dynamic TCS for different parameters: (a) credit charge and (b) toll equivalent with respect to the departure time slots.

Fig. 10. Evolution of the mode shares and the departure times for (a) solo car, (b) PT, (c) carpool, and (d) total shares.

osts are similar, as both modes are used. As expected, the TCS improves traffic conditions by reducing the number of circulating
ars. The gain is considerable for cars, which circulate about 20 km/h faster during the peak period. The PT speed increases by
bout 4 km/h. The waves come from the discretization of the desired arrival times. This leads to several local demand peaks every
alf hour. The speed profile has a similar trend and is smoother with a more refined desired arrival time discretization (10 min
nstead of 30 min). However, the refined discretization is achieved at the cost of more computation time and data storage. Thus
he 30 min discretization is used. See Appendix F for more details. Fig. 11(b) compares car speed for different objectives. When
ocusing on the total travel cost reduction, i.e., reducing the total travel cost, the TCS still allows mean speed reductions of more
14
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c

Fig. 11. Effect of the different dynamic TCS of the mean traffic speed: (a) mean car and PT speeds with dynamic TCS (‘mid’) and without TCS, and (b) mean
ar speed for the TCS ‘cong’ and ‘emis’.

Fig. 12. Variations in departure time normalized by the trip length. A positive value means the traveler starts their trip later with TCS (scenario ‘mid’) than
without.

than 10 km/h. In particular, the credit charge is low before 8:00, and the demand is already high; thus, the mean car speed is lower
than after 8:00. The TCS designed for emission reduction keeps the mean speed around 40 km/h. This is expected as the emissions
decrease with the mean car speed for the range of urban speeds.

The change in departure time per trip length between equilibrium without TCS and with TCS is computed in Fig. 12. Most
travelers depart later with the TCS, about one minute per kilometer after their departures without TCS. Their travel times are
reduced thanks to the better traffic conditions; thus, they leave later to arrive around their desired arrival time at their destinations.
Some travelers depart earlier because they switch to modes with longer travel times (carpooling and PT).

We look at the effect of TCS on the different travelers. As we consider heterogeneous travelers in terms of desired arrival times,
OD pairs, and VoT, it is crucial to look at the equity of the TCS. By looking at the distributions of the gains provided by the TCS
(‘mid’), we can quantify the number of travelers who are better or worse off with the policy proposed.

The gains are defined as the difference between travel costs (normalized or not by the VoT) with and without TCS. For a given
set of traveler parameters (VoT, trip length, and desired arrival time), the TC gain 𝛤 is the difference between the TC associated
with the possible departure times and modes and weighted by the user distribution:

𝛤 = 1
𝑑(𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 )

⎛

⎜

⎜

⎝

∑

𝑖𝑡𝑑 ,𝑚
𝑓no TCS(𝜔)𝑇𝐶no TCS(𝜔) − 𝑓 (𝜔)𝑇𝐶(𝜔)

⎞

⎟

⎟

⎠

, 𝜔 = (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚), ∀ (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 ). (22)

A positive gain is favorable for the traveler as it means its average TC decreases with the TCS. The distributions of the TC gains
are shown in Fig. 13. Most travelers are better off with the TCS in terms of normalized travel cost (by the VoT) and absolute travel
costs. The majority see their TC equivalent decrease by 0 to 6 min (Fig. 13(a)) and 0 to 2 EUR (Fig. 13(b)). Wealthier travelers
(higher VoT) are even better off since they will more readily buy credits to drive a car when the traffic conditions improve. The
worst-off travelers lose the equivalent of several minutes with the TCS. Their TC increases by up to 1.6 EUR. The travelers who are
better off decrease their TC by up to 14.7 EUR.

Let us have a look at the impact of the credit market. The trade gains from the market and the user cost gains (sum of travel
cost and trade gains) are represented in Fig. 14. A positive trade gain means the traveler earns money by selling credits, while
a negative gain means they spend money to buy credits. Fig. 14(a) gives an overview of the market outcomes. Travelers with a
high VoT tend to buy credits from travelers with a smaller VoT; thus, they earn less money through the market. A traveler can earn
around 0.8 EUR by riding PT and spend around 5.4 EUR driving their car alone during the highest charging period. When weighting
the trade gains by the user distribution, some travelers spend up to 4 EUR. In contrast, others earn up to 0.7 EUR, depending on
15
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Fig. 13. Distribution of the travel cost gains: (a) normalized by the VoT and (b) absolute travel cost.

Fig. 14. Distribution of the benefits of the TCS: (a) trade gains (money earned or spent through the market) and (b) user cost gains.

Fig. 15. (a) Mode shift and (b) user cost gains with respect to the desired arrival times. The blue line is the average, and the red lines are the average plus/minus
he standard deviation.

heir characteristics (VoT, trip length, and desired arrival time). The effect of TCS on the user cost (travel cost plus credit trade)
s represented in Fig. 14(b). Most travelers are better off with the TCS, as they decrease their user costs by 0 to 2 EUR. About 6%
f the travelers see their user costs increase with this TCS, meaning 94% benefit from the TCS. The worst off lose 2.9 EUR, while
hose better off earn up to 10.8 EUR. Note that those estimations do not account for the benefits linked to lower pollution levels,
uch as better air quality.

The TCS has different impacts on different travelers. We investigate the relationship between desired arrival times, the mode
hift, i.e., the evolution of modal shares between before and after TCS (scenario ‘mid’), and the user cost gains in Fig. 15. The mode
hift (Fig. 15(a)) from car to PT is more pronounced for travelers wanting to arrive outside the demand peak (before 7:30 or after
:30), when up to 57% of the travelers leave their car to ride PT. Around 45% of the travelers with desired arrival times during
he peak hour (between 8:00 and 9:00) switch from their cars to PT. This seems counterintuitive as the credit charge is higher
uring peak hours. The traffic conditions are bad during peak hours without TCS, and the car share is already lower than during
eak hours. The user cost gain is positive for peak-hour users and negative for off-peak travelers (Fig. 15(b)). On-peak commuters
enefit from better traffic conditions, which outweighs the burden of the TCS (mode shift or credit buy). On the contrary, the traffic
onditions are already satisfying off-peak, and the slight improvement thanks to TCS does not outweigh additional TCS costs. We
16

rovide a similar analysis for the trip lengths in Fig. 16.
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Fig. 16. (a) Mode shift and (b) user cost gains per distance with respect to trip lengths. The blue line is the average, and the red lines are the average plus/minus
the standard deviation.

Fig. 17. Comparison of the mean car speeds with and without TCS for the bathtub and trip-based MFD resolutions.

Travelers with short and long trips change modes differently with the TCS (Fig. 16(a)). For trips shorter than 6 km, the modal
hift is almost exclusively from cars to PT, with 50% to 55% of the demand switching from cars to PT. On the contrary, for trips
onger than 10 km, more travelers stick to solo car driving and prefer carpooling to PT. The mode share of solo car drivers decreases
y only 32 to 33 points. The carpooling share increases by up to 39 points. Sharing a car ride is attractive for long trips. The extra
osts (waiting time and credit charge) do not depend on the trip length. The user cost gains per distance (Fig. 16(b)) are, on average,
ositive for the range of trip lengths in this case study. Short trips tend to benefit more from the TCS, as those travelers tend to
hift towards PT and earn money by selling credits.

.3. Comparison with the trip-based MFD

We compute the trip-based MFD simulation for the reference test case without TCS and the intermediate ‘mid’ TCS to assess the
iscretization effects. The trip-based MFD, via its event-based resolution, provides the exact computation of the arrival times. It can
e viewed as the plant model. It does not use any discretization. It is, however, significantly more time-consuming to compute the
rrival times for a given assignment than the discretization of the bathtub. Typically, the computation time is longer by three orders
f magnitude. The trip lengths are those from the continuous demand before the discretization. The departure times are smooth:
he trip linked to a departure time index 𝑖𝑡𝑑 in the bathtub corresponds to a departure time randomly drawn from the uniform

distribution [(𝑖𝑡𝑑 − 0.5)𝛥𝑡, (𝑖𝑡𝑑 + 0.5)𝛥𝑡]. We only consider trips with a user distribution more than one traveler. Less than 2% of the
travel demand is lost in the process. The mean car speeds are compared in Fig. 17. Some deviations, up to 4 km/h for car speed,
can be observed in the no TCS case between the network speed in the MFD and the bathtub. Due to the affine transformation of
Eq. (21), the PT speed error is below 0.5 km/h. The differences are barely noticeable with TCS. The generalized bathtub tends to
underestimate the congestion.

To quantify the error made in congestion and pollution estimation with the bathtub, we compare the TCS and the carbon
emissions both with and without TCS in Fig. 18. The errors stay below 3% for total travel cost (Fig. 18(a)) and 11% for carbon
emissions (Fig. 18(b)). The numerical approximations of the multimodal generalized bathtub are below the differences between the
scenarios with and without TCS. The numerical resolution of the bathtub still gives a reasonable quantification of the economic and
environmental benefits of the TCS at a lower computational cost than the trip-based MFD. The trip-based approach thus validates
17

the departure time and trip length discretization choices: the respective precisions of 145 s and 304 m.
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Fig. 18. Variations of the objectives measures between the bathtub and trip-based MFD: (a) total travel cost and (b) carbon emission.

. Conclusion

During the last two decades, the literature has provided improvements to the bottleneck model in order to better quantify the
conomic losses caused by congestion. It also allowed us to better understand the potential benefits of demand management policies
uch as congestion pricing and Tradable Credit Schemes (TCS). The main means of action was spreading departure times. Here, we
ormulated a multimodal generalized bathtub to account for different types of vehicles and transportation modes. Each traveler’s
hoices consist of mode and departure times. We add a TCS to foster mode shifts during the peak hour. Public Transportation (PT)
sers ride for free, solo car drivers pay the total charge, and carpoolers only half. We computed the Stochastic User Equilibrium
SUE) to account for the uncertainty of users’ choices. A realistic scenario based on the morning commute in Lyon illustrated the
ethodology proposed.

The framework proposed makes it possible to compare the advantage of a dynamic TCS over a static one. The dynamic TCS
ccounts for the different demand levels depending on the time of day. It permits a better reduction of the total travel cost, i.e., the
um of all travelers’ travel costs. The SUE is based on travel cost; thus, the shift of travelers’ departure time is relatively limited.
he biggest impact is the mode shift: PT and carpooling mode shares increase at the expense of the car share. We drew a Pareto
ront to present how TCS can lead to different total travel cost and carbon emission compromises. A TCS named ‘cong’ led to low
otal travel cost; another named ‘emis’ permitted significant carbon reduction, and ‘mid’ was a trade-off between both measures.

As TCS is a policy involving a marketplace and trading commodities (in this case credits), it raises the question of individual
ains when people have different VoTs (different economic classes). The results showed no significant disadvantage for one category
f VoT. With the ‘mid’ TCS, more than 94% of the population benefited from the TCS, as it reduced their user costs. However, it
id not account for environmental aspects like air quality or noise. The numerical resolution of the multimodal generalized bathtub
pproximated the travel times. A comparison with the exact solution via trip-based MFD showed that the numerical error was below
he order of benefits of the TCS. Moreover, the methodology proposed was shown to efficiently assess and optimize the benefits of
CS. The framework used the advantages of macroscopic simulation to reduce the need for computation power and data collection.

Further steps in the evaluation of dynamic TCS will include the validation of traffic simulation through micro-simulation,
he estimation of travelers’ behavior and acceptance through surveys, and the acquisition of experimental data through pilot
xperiments.
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ppendix A. Multimodal generalized bathtub discretization

Since the solution is Lipschitz continuous, we approximate the solution (𝑧𝑚(𝑡),𝐻𝑚(𝑡)) as piece-wise linear functions calculated
t nodal points. The numerical resolution of the bathtub requires the discretization of the trip length, departure time, and desired
rrival times. The values of those discretized parameters and variables are identified by the following indexes:

⎧

⎪

⎨

⎪

⎩

𝑖𝑙 = ⌊(𝑙 − 𝑙min)∕𝛥𝑙 + 0.5⌋;
𝑖𝑡𝑑 = ⌊𝑡𝑑∕𝛥𝑡 + 0.5⌋;
𝑖𝑡𝑎 = ⌊(𝑡𝑎 − 𝑡𝑎,min)∕𝛥𝑡𝑎 + 0.5⌋,

(A.1)

ith 𝑙min the minimum trip length and 𝑡𝑎,min the minimum desired departure time. ⌊𝑥⌋ is the integer part of 𝑥, i.e., the highest
nteger smaller than 𝑥. The first admissible departure time is taken as reference, i.e., is zero. The simulation time shares the same
iscretization as the departure times.

One can come back to the continuous value of the variables from the indexes:
⎧

⎪

⎨

⎪

⎩

𝑙 = 𝑙min + 𝑖𝑙𝛥𝑙;
𝑡 = 𝑖𝑡𝛥𝑡;
𝑡𝑎 = 𝑡𝑎,min + 𝑖𝑡𝑎𝛥𝑡𝑎 .

(A.2)

In the rest of the paper, we use both the discrete and continuous formulations for the arguments of the functions interchangeably.
The discrete versions of the demand and the assignment are defined by:

⎧

⎪

⎨

⎪

⎩

𝑑(𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 ) = ∫𝛩(𝑖𝑡𝑎 )
∫𝛩(𝑖𝑙) 𝑑(𝑐, 𝑙, 𝑡𝑎)d𝑡𝑎d𝑙;

𝑓 (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚) = ∫𝛩(𝑖𝑡𝑎 )
∫𝛩(𝑖𝑙) ∫𝛩(𝑖𝑡𝑑 )

𝑓 (𝑐, 𝑙, 𝑡𝑎, 𝑡𝑑 , 𝑚)d𝑡𝑎d𝑙d𝑡𝑑 ;
(A.3)

ith
⎧

⎪

⎨

⎪

⎩

𝛩(𝑖𝑡𝑎 ) = [𝑡𝑎,min + (𝑖𝑡𝑎 − 0.5)𝛥𝑡𝑎 , 𝑡𝑎,min + (𝑖𝑡𝑎 + 0.5)𝛥𝑡𝑎 ],
𝛩(𝑖𝑙) = [𝑙min + (𝑖𝑙 − 0.5)𝛥𝑙 , 𝑙min + (𝑖𝑙 + 0.5)𝛥𝑙],
𝛩(𝑖𝑡𝑑 ) = [(𝑖𝑡𝑑 − 0.5)𝛥𝑡, (𝑖𝑡𝑑 + 0.5)𝛥𝑡].

(A.4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑚(𝑖𝑡) = 𝑧𝑚(𝑖𝑡−1) + 𝛥𝑡𝑣𝑚
(

{𝐻𝑚′ (𝑖𝑡−1) +
∑

𝑐,𝑖𝑡𝑎 ,𝑖𝑙
𝑓 (𝑐, 𝑖𝑙 , 𝑖𝑡𝑎 , 𝑖𝑡, 𝑚

′)}𝑚′∈

)

𝐻𝑚(𝑖𝑡) =
∑

𝑖𝑡𝑑 ≤𝑖𝑡
𝐹𝑚

(

max(0, ⌊
(𝑧𝑚(𝑖𝑡)−𝑧𝑚(𝑖𝑡𝑑 )−𝑙min)

𝛥𝑙
⌋), 𝑖𝑡𝑑

)

𝐹𝑚(𝑖𝑙 , 𝑖𝑡𝑑 ) =
∑

𝑖𝑙′≥𝑖𝑙
∑

𝑐,𝑖𝑡𝑎
𝑎𝑖𝑡𝑑 ,𝑖𝑙′ 𝑓 (𝑐, 𝑖𝑙′ , 𝑖𝑡𝑎 , 𝑖𝑡𝑑 , 𝑚)

(A.5)

Recall that 𝐹𝑚 is a density with respect to 𝑡𝑑 . 𝐹𝑚(𝑖𝑙 , 𝑖𝑡𝑑 ) is defined as the integral of 𝐹𝑚(𝑙, 𝑡𝑑 ) over 𝛩(𝑖𝑡𝑑 ). 𝑧𝑚 and 𝐻𝑚 are initialized
with zero. The second part of the first equation allows us to account for the accumulation due to the trips starting during the
current time step 𝑖𝑡. It counterbalances the fact that the bathtub tends to underestimate the congestion compared to the exact
solution (computed via the trip-based MFD framework). Without this correction, the underestimation can be significant: with the
case study, the equilibrium without TCS based on the generalized bathtub corresponds to gridlock with the exact solution (trip-based
MFD). Adding the accumulation of trips starting during the current time step does not increase the computation time and memory
requirements. On the contrary, increasing the time discretization to reach a satisfying precision mobilizes more resources.

Appendix B. Travel demand conservation

As we modify the user distribution, we need to ensure the conservation of the travel demand (Eq. (8)). The total change of the
user distributions from  is spread among the configurations not selected to be changed (̄). We first need to ensure the sum of the
unchanged user distributions 𝐶̄ of ̄ (positive) is big enough to absorb the sum of the changes 𝐶 of  (positive or negative) if we
use the update coefficient 1∕𝑟:

{

𝐶 =
∑

𝜔∈
1
𝑟 (𝑑(𝜔)𝜓(𝜔) − 𝑓 (𝜔));

𝐶̄ =
∑

𝜔∈̄ 𝑓 (𝜔).
(B.1)

If 𝐶̄ is larger than 𝐶, then we can use the update factor 𝜇 = 1∕𝑟 as we can ensure the demand conservation by counterbalancing
the deviation from the demand 𝑑 using ̄ . If it is not the case, the update factor 𝜇 is scaled down:

{

𝜇 = 1
𝑟 if 𝐶̄ ≥ 𝐶;
𝐶̄ 1 ̄ (B.2)
19

𝜇 = 𝐶 𝑟 if 𝐶 < 𝐶.
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Table D.1
Sensitivity of the carpooling penalty.

Penalty (min) 5 10 (ref) 15

Car solo share (%) 5.4 11.2 11.9
PT share (%) 74.2 79.9 80.6
Carpool share (%) 20.4 8.9 7.5

Total travel cost change (%) −2.8 – +2.5
Carbon emissions change (%) −4.3 – +0.7
Price change (%) +9.4 – 0

The user distribution update follows:

⎧

⎪

⎨

⎪

⎩

𝑓new(𝜔) = (1 − 𝜇)𝑓 (𝜔) + 𝜇𝑑(𝜔)𝜓(𝜔), ∀𝜔 ∈  ;

𝑓new(𝜔) =
(

1 − 𝐶
𝐶̄

)

𝑓 (𝜔), ∀𝜔 ∈ ̄ .
(B.3)

It means we use 1∕𝑟 as an update factor, except if the change quantity 𝐶 is higher than the unchanged one 𝐶̄. In this case, we cannot
nsure the demand conservation without scaling down the update factor 𝜇.

ppendix C. Algorithm for credit charge optimization

/ Update the charging period with the largest absolute gradient.
or Each time period 𝑊 do

Compute the gradient of objective function according to Eq. (20);
end
Select the charging period 𝑊 ∗ with the highest absolute gradient |𝑂𝑏𝑗𝑊 ∗ |;
f 𝑂𝑏𝑗𝑊 ∗ < 0 then
𝜏(𝑊 ∗) ← 𝜏(𝑊 ∗) + 𝜅;

else
𝜏(𝑊 ∗) ← max(𝜏(𝑊 ∗) − 𝜅, 𝜅);

end
// Prevent large variations between two consecutive charging periods.
for All previous charging periods 𝑊 < 𝑊 ∗, in a decreasing order do

if 𝜏(𝑊 ) < 𝜏(𝑊 + 1) − 𝜅 then
𝜏(𝑊 ) ← 𝜏(𝑊 + 1) − 𝜅;

end
if 𝜏(𝑊 ) > 𝜏(𝑊 + 1) + 𝜅 then

𝜏(𝑊 ) ← 𝜏(𝑊 + 1) + 𝜅;
end

end
for All later charging periods 𝑊 > 𝑊 ∗, in an increasing order do

if 𝜏(𝑊 ) < 𝜏(𝑊 − 1) − 𝜅 then
𝜏(𝑊 ) ← 𝜏(𝑊 − 1) − 𝜅;

end
if 𝜏(𝑊 ) > 𝜏(𝑊 − 1) + 𝜅 then

𝜏(𝑊 ) ← 𝜏(𝑊 − 1) + 𝜅;
end

end
Algorithm 1: Update of the credit charging profile.

Appendix D. Sensitivity of the carpooling penalty

Our case study is based on the assumption of a 10 min-penalty for carpoolers. This value is uncertain, and some additional traffic
policies may decrease it, e.g., HOV lanes and carpooling parking places. We study the sensitivity of our case study with regard to
the carpooling penalty. We compute the SUE for the intermediate TCS ‘mid’ with different values for the carpooling penalty 𝜁pool:
5, 10 (reference case), and 15 min. The evolution of the carpooling shares is presented in Fig. D.1.

As expected, the carpool share increases as the penalty decreases. However, the difference between the 10 to 15 min penalty is
small compared to the change between 5 and 10 min. We highlight the effects on other measures: modes shares, total travel cost,
20

carbon emissions, and credit price (see Table D.1).
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Fig. D.1. Carpooling shares for the different carpooling penalties.

Fig. E.2. Total travel time vs. carbon emissions for different static and dynamic TCS. The reference case (no TCS) is also presented.

Fig. F.3. Comparison of the mean car speed for the 30-min (reference) and 10-min desired arrival time discretization.

The carpooling share decreases when the penalty increases, and both PT and car (solo) share increase. The effects on the system
re not easy to predict: on one side, fewer carpoolers mean fewer cars, but on the other side, part of the former carpoolers may
witch to solo car drivers. Compared to the reference case of a 10 min-penalty, the total travel cost and the carbon emissions increase
arginally with the penalty. The credit price decreases by about 10% with 5 min and stays the same between 10 and 15 min. In

onclusion, the effect of the carpooling penalty stays marginal, as even a variation of ± 5 min (50%) leads to small changes (2.5%
and less) in the leading indicators: total travel cost, carbon emissions, and credit price.

Appendix E. Total travel time and carbon emissions

The differences between no TCS, static, and dynamic TCS in terms of total travel time and carbon emissions are presented in
Fig. E.2. Both static and dynamic approaches reduce total travel time and carbon emissions. Static TCS allows for better compromises
between total travel time and carbon emissions than dynamic schemes. The reason is that the dynamic schemes are designed to
minimize the total travel costs. This objective function considers early/late arrival costs and travel time. Furthermore, the travelers
21

choose their departure time and travel mode based on their user costs: travel time plus early/late cost plus TCS-induced costs.
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Appendix F. Sensitivity of the desired arrival time discretization

The coarse desired arrival time discretization creates waves in the average car and PT speed profiles (Fig. 11). We compute
he SUE without TCS with a desired arrival time discretization of 10 min (against 30 min for the reference scenario) to assess the
odel’s sensitivity to the discretization. The mean car speeds for both discretizations are compared in Fig. F.3. The speed profile

s smoother with the 10 min. However, the global trend stays the same as the 30 min discretization. The speed in the congested
egime is about 15 km/h for both cases.
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