

WIM for Direct Enforcement in France (CSA surcharges)

David Bétaille, Directeur de recherche, Université Gustave Eiffel

Bernard Jacob, Vice-présidence recherche, Université Gustave Eiffel

Victor Dolcemascolo, Chargé de mission transports de marchandises et logistique – Agence de l'Innovation pour les Transports (AIT)

Technical Session 1 – Wednesday 6 July 2022

Motivations for Weigh Enforcement

- Fair competition between freight carriers and between road and other long distance freight transport modes
- Road safety, in particular for vans : trajectory control, instability, severity of accidents...
- Road structure durability : fatigue, rutting, risk of damage or, ultimately, collapse (Annone, Mirepoix !)
- Limitation of static controls : in France on marginal percentage of freight traffic is controlled (50000/an), mobilizing important means (engineering people, police, weighing areas), difficulties for interceptions in traffic flow and time lost in controlling non overweighed trucks

Stakeholders

- France : ecologie.gouv.fr/DGITM, « Home Office », justice...
- Research, development and expertise : Université Gustave Eiffel and Cerema
- Metrological authority and certification : Service de la métrologie légale (economie.gouv.fr/DGE) and Laboratoire National de Métrologie et d'Essais (LNE)
- Weighing systems vendors
- + international links : ISWIM, SPW (Wallonie), BAST (Allemagne)...

DavidB1

Specifications

- 1. Tolerances possibly similar as those of static weighing today (so that small overweights would not be possible)
- 2. Reliability and subsequent acceptability of enforcement : no false positive, which guarantees enforcement of only actual overweights
- 3. Efficacy : minimising non detections (of overweights) whilst no false positive.
- 2 & 3 \Rightarrow Algorithms for sorting outliers (invalid or doubtful)... \rightarrow Balance to optimize...

Diapositive 4

DavidB1 PNAN-14-021; 22/06/2022

Tests in Laboratory

• Tests of different weighing sensors (piezo-ceramic and quartz) in laboratory and on the fatigue test bench (UGE, Nantes)

• Qualification of piezo-quartz sensor from Kistler (repeatability, stability, durability)

Tests on Highway

- SANEF, A4, Saint-Avold, operated by Cerema (East, Metz), class 2
- Three vendors (*Fareco*, Kapsch and Sterela), among which the last two (qualified) use piezo-quartz sensors
- Tests from 2015 to 2019, 1 253 trucks and 332 vans from the traffic & reference static weighing of this sampling

2,40 m 2,40 m 1,86 m PQ9 PQ10 PQ11 + 0,60 m 2,73 m 3,0 m 2,73 m 1,5 m 35 2,40 m 2,40 m 2,40 m 2,40 m 1,80 m 0,70 m 2,00 m 1,5 m 1,80 m 1,5 m 1,80 m 1,80 m 1,5 m 1,80 m 1,80 m 1,5 m 1,80 m 1,5 m 1,80 m 1,5 m 1,80 m 1,80 m 1,5 m 1,80 m 1,80 m 1,5 m 1,80 m 1,5 m 1,80 m 1,80 m 1,5 m 1,80 m 1,5 m 1,80 m 1,80 m 1,5 m 1,80 m 1,5 m 1,80 m 1,80 m 1,80 m 1,80 m 1,5 m 1,80 m 1,80 m 1,80 m 1,90 m 1,80 m

Kapsch: 3 lines of sensors

- •19 days working
- •559 trucks validated over 561 (99,6%)
- •1098 axles validated over 1103 (99,5%)
- •553 axle groups validated over 555 (99,6%)
- •182 vans validated over 186 (97,8%)

- Sterela : 4 lines of sensors
- •36 days working
- •1042 trucks validated over 1253 (83,2%)
- •2035 axles validated over 2450 (83%)
- •1045 axle groups validated over 1260 (82,9%)
- •307 vans validated over 332 (92,5%)

Results vs COST323

KAPSCH	Nombre	Moy. (%)	Ec. type(%)	π	Classe	δ	δ_{min}	π
Poids total PL	559	1.68	1.96	91.7	A(5)	5	4.6	94.6
Groupes ess.	553	2.42	2.45	91.7	A(5)	7	6.0	96.7
Essieux	1098	0.83	2.87	92.1	A(5)	8	5.4	99.1
VUL	182	1.18	3.99	90.5	B(10)	10	7.6	97.5
STERELA	Nombre	Moy. (%)	Ec. type(%)	π_{\circ}	Classe	δ	δ_{min}	π
STERELA Poids total PL	Nombre 1042	Moy. (%) 1.42	Ec. type(%) 2.02	π _. 92.1	Classe A(5)	δ 5	δ _{min} 4.4	π 95.5
STERELA Poids total PL Groupes ess.	Nombre 1042 1045	Moy. (%) 1.42 2.35	Ec. type(%) 2.02 2.73	π _. 92.1 92.1	Classe A(5) A(5)	δ 5 7	δ _{min} 4.4 6.4	π 95.5 95.4
STERELA Poids total PL Groupes ess. Essieux	Nombre 1042 1045 2035	Moy. (%) 1.42 2.35 0.37	Ec. type(%) 2.02 2.73 3.51	π _o 92.1 92.1 92.4	Classe A(5) A(5) A(5)	δ 5 7 8	δ _{min} 4.4 6.4 6.4	π 95.5 95.4 97.4

Results vs OIML R-134

- 100% measurements under tolerances (max. error permitted)
- Target classes : trucks 5 10, vans 10 15 for gross weigh

	KAPSCH						STERELA									
	P	oids	Groupe		Essieu				Poids		Groupe		Essieu			
OIML	t	otal	d'o	essieux	i	solé		VUL	t	otal	d'e	ssieux	isolé V		VUL	
effectif		559		553	1	098		182	1	042	1	045	2035		307	
class 5	20	3,6%	5	0,9%	17	1,6%	42	23,1%	36	3,5%	27	2,6%	50	2,5%	74	24,1%
class 10		0		0	2	0,2%	1	0,6%		0	2	0,2%	4	0,2%	9	2,9%

- Trucks : class 10 100% gross weigh class 5 96,5%
- > VUL : class 10 99,4-97,1%
- classes 5-10 for resp. trucks & vans are possible on a class 1 site (here 2) and with regular calibration

Qualification of a Certification Testsite

- Closed testsite for type approval : Transpolis
- Security in any condition
- Possibility of passages with overweighs at different speeds
- Short loop \rightarrow reduced rotation, CO2 emission low
- Verification of the testsite quality : maximum variations of impact forces at each axle along the testsite / half-tolerance

Methodology

- Estimation of impact forces by accelerometers embedded in a truck (T2S3) and a van (Cerema Lyon Centre-East) and comparison to tolerances
- Comparison of measured accelerations in Transpolis and along the A4 highway in Saint-Avold

Results in Transpolis

- Urban boulevard in Transpolis and A4 right lane
- Passages at different speeds (trucks, vans) : 50 à 120 km/h
- Combination of masses (manufacturers) and measured accelerations → estimation of a dynamic impact factor (DIF) = instantaneous load / static load (%)

Facteur d'impact dynamique	T2S3	VUL
(sur poids total, tous essieux sommés)	(5 essieux)	(2 essieux)
Vitesse 50 km/h	/	1.3%
Vitesse 65 km/h	1.9%	3.9%
Vitesse 85 km/h	2.7%	5.1%
Vitesse 110 km/h	/	6.7%
Vitesse 120 km/h	/	8.2%

TRANSPOLIS

 \Rightarrow DIF admissibles for classes 5 (trucks) and 10 (vans) below 85 km/h and class 15 (vans) at 120 km/h

Comparison Transpolis/A4

- Measured accelerations at 90 km/h on board a T2S3 similar in Transpolis and Saint-Avold (A4)
- Transpolis is representative of a usual highway pavement

Conclusions and perspectives

- 5 axles trucks : class 10 OIML almost reached along the 3-4 years of experiment, very few measurements out of tolerances (< 0,2%). Less than 3,5% of trucks out of tolerances for class 5
- Vans : class 10 almost reached Kapsch (99,4%) and Sterela (97,1%)
- Expected improvements : testsites in class 1 (against class 2 for A4 highway in Saint-Avold), regular recalibration (< 6 months), and better sorting algorithms
- Certification procedure under development by UGE and currently under examination by DGITM/Cerema, for a final validation by legal authorities
- Preparation of the complete homologation of the enforcement procedure (between different ministries...)
- Certification of systems by their vendors
- SPW in Wallonia approuved Sterela system for direct enforcement under real traffic in 2022...

Thanks for your attention !

Contacts :

- David Bétaille, project manager, <u>david.betaille@univ-eiffel.fr</u>
- Bernard Jacob, scientific advisor, bernard.jacob@univ-eiffel.fr

Acknowledgements :

- DGITM/DST for R&D fundings
- Cerema East and Centre-East for measurement campaigns eric.klein@cerema.fr