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Abstract

This paper proposes, for particle-based materials, a higher-order nonlocal elasticity continuum
model that includes the Piola peridynamics and the Eringen nonlocal elasticity. When referring to
particle-based materials, we denote systems that can be modeled as assemblies of material points
(or particles). Note that this paper is not devoted to granular materials, then factors such as the
topology of contacts, granulometry, grain sizes, shapes, and geometric structure are not considered.
Additionally, when referring to Piola peridynamics, we specifically denote the particular peridynamic
model developed by Piola, which differs from the commonly adopted approach to peridynamics. The
proposed higher-order nonlocal elasticity continuum model offers several advantages. First, it can
describe interactions between material points over longer ranges than those considered by Eringen
nonlocal elasticity. Second, it exhibits similar characteristics to gradient-type theories and Piola
peridynamics, enabling the consideration of more complex external and contact actions, including
N -th order forces and stresses. Furthermore, the proposed deterministic model is developed to lay
the foundation for a stochastic formulation applicable to uncertain particle-based materials. We want
to emphasize that the aim of this paper is not to unify Eringen nonlocal elasticity with the various
existing peridynamic models.

1 Introduction
Nonlinear deformations of classical (or Cauchy) continua are described by means of the Green-Lagrange
tensor that gives the change in length of an infinitesimal material segment (also named fiber or material
line element) [1, 2, 3, 4, 5]. Two different approaches [6] can be listed: Hamilton-Piola continuum
mechanics and equilibrium-based continuum mechanics. On the one hand, Hamilton-Piola continuum
mechanics is based on the principle of virtual work (also known as principle of virtual displacements
or principle of virtual powers) from which the equilibrium equations are derived. In this context, the
principle of virtual work is acknowledged as an efficient tool, whose importance is further emphasized in
[7, 8, 9, 10, 11, 12]. The pioneering contributions of Piola are foundational to Hamilton-Piola continuum
mechanics, and further details can be found in [13, 14]. On the other hand, equilibrium-based continuum
mechanics relies on the definition of stress quantities and the application of balance laws, which encompass
the conservation laws of mass, linear momentum, and momentum of momentum [15, 16, 17]. In this
context, the principle of virtual work is obtained as the weak formulation of the boundary value problem
given by the equilibrium equations.

The differences between Hamilton-Piola continuum mechanics and equilibrium-based continuum me-
chanics become even more evident when it comes to the development of nonlocal continuum models for
particle-based materials. These materials consist of an assembly of numerous solid particles, varying in
sizes and shapes, and exhibit suitable properties for various applications. Specifically, Hamilton-Piola
continuum mechanics is associated with the development of Piola-like peridynamic theories, whereas
equilibrium-based continuum mechanics is linked with Eringen-like nonlocal elasticity theories. In gen-
eral, nonlocal continuum models describe materials where the state at a point is influenced by the state
of other points of the material. On the one hand, Piola-like peridynamic theories allow for the develop-
ment of nonlocal continuum models that consider pairwise particle interactions without the need for the
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concept of stress, making them extremely suitable for multiscale modeling, structural mechanics, biome-
chanics, particle-based materials, and problems involving discontinuities such as cracks and interfaces
[18, 19, 20, 21, 22, 23, 24]. They provide an alternative approach to formulate continuum mechanics,
with roots traced back to Piola [25]. On the other hand, Eringen-like nonlocal elasticity theories [26, 27]
are based on an additional principle known as the principle of contiguity [28]. This principle implies
that the stress at a material point is determined by integrating the stress over a neighborhood surround-
ing that point. These models, commonly referred to as integral nonlocal theories [29], are applicable to
continua where interaction forces rapidly decrease with distance, following the attenuating neighborhood
hypothesis [30]. Additionally, assuming a smooth neighborhood, they lead to gradient-type nonlocal theo-
ries[28]. Applications of the Eringen and Eringen-like nonlocal elasticity theories concern nanomaterials
and microstructured materials [31, 32, 33, 34]. The body of the literature on this topic is indeed extensive
[35, 36, 37, 38, 39, 40].

As explained above, there exist nonlocal elasticity theories based on integral formulations (Eringen-
like models) and peridynamic theories (Piola-like models). We aim to formulate a nonlocal continuum
model of order N higher than one that is suitable for particle-based materials and such that: for N = 1,
we recover the Eringen nonlocal elasticity, for N ≥ 1, we obtain the Piola peridynamics, which does not
allow Eringen nonlocal elasticity to be retrieved as a special case. The term Piola peridynamics refers
to the particular approach to peridynamics developed by Piola [25], which differs from the commonly
adopted approaches and is closely related to bond-based peridynamics [21]. Our aim is not to encompass
Eringen nonlocal elasticity and peridynamics (in a broader sense) within a more comprehensive theory.
Encompassing them might be challenging, given their representation of two different scales. Instead, our
aim is to introduce a novel perspective to formulate nonlocal continua for particle-based materials.

Given our focus on particle-based materials, i.e., materials modeled as assemblies of material points
(or particles), we exclude considerations specific to granular materials. Thus, factors such as the topology
of contacts, granulometry, grain sizes, shapes, and geometric structures are not taken into account.

There are two reasons for proposing this model. First, we aim to model particle interactions over a
longer range than currently considered in Eringen nonlocal elasticity. Second, the proposed model ac-
counts for more complex external and contact actions, such as N -th forces and stresses. Importantly, we
achieve the desired modeling enhancement without necessitating the introduction of additional principles
and without relying on the principle of contiguity used by Eringen. We introduce a second-order tensor
that quantifies the change in length of a finite (and not infinitesimal) material segment and that can de-
scribe pairwise nonlocal interactions. Moreover, the proposed deterministic model has been formulated to
prepare future stochastic developments devoted to particle-based materials with uncertainties concerning
the constitutive properties.

The paper is structured as follows. In Section 2, we introduce a second-order tensor to describe non-
local pairwise interactions. We then perform its polynomial decomposition to separate terms depending
on the first and higher-order derivatives of the placement (or configuration) field. Furthermore, we pro-
vide its geometric interpretation. In Section 3, we compare the deformation energy density, expressed
as a function of the proposed second-order tensor, with Piola and Eringen deformation energy densities,
which can be obtained as particular cases. Finally, we formulate the principle of virtual work to fully
characterize the proposed higher-order nonlocal continuum model for particle-based materials.

Notation
Any vector in R3 is identified to the column matrix of its components on the canonical basis of R3.
Any tensor of any order will be represented by its components on the canonical basis. In particular,
any second-order tensor will be represented with the matrix of its components.

A lowercase letter such as x or y or z is a real deterministic variable except when used as an integer
index as i, j, etc.

A boldface lowercase letter such as x or ξ is a real deterministic vector and such as c or λ is a
tensor.

A boldface lowercase letter between brackets, such as [x], [y], [z], is a real deterministic matrix.
The entries of [x] will be denoted by [x]ij .

The components of a fourth-order tensor x will be denoted by xijkh.

This article, devoted to a deterministic formulation, is the first of the second one that will be devoted
to the stochastic formulation. Consequently, the Lagrangian coordinates are denoted by boldface
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lowercase instead of boldface uppercase letters, which will be reserved for the random quantities in
the second part.

⟨x,y⟩: standard inner product in Euclidean space Rn.

∥x∥: Euclidean norm in Rn equal to ⟨x,x⟩1/2.

[x]
T : transpose of the matrix [x].

∧: vector product in Rn.

[ I ]: identity matrix.

M3: ensemble of 3× 3 real matrices.

MS
3 : subset of M3 of symmetric 3× 3 real matrices.

M+
3 : subset of MS

3 of positive definite symmetric 3× 3 real matrices.

CN (Ω): set of real functions defined on Ω, which are N times continuously differentiable.

2 Lagrangian Deformation Measures for Nonlocal Continua
We focus on nonlocal particle-based materials, specifically particle-based materials where nonlocal in-
terparticle interactions play a significant role. Our main objective is to characterize the deformation of
these materials in terms of the mutual changes in the relative positions of material points. To achieve this
goal, we introduce a second-order tensor for describing pairwise nonlocal interactions. Our methodology
follows the reasoning scheme of the Piola peridynamics, encompassing the following steps (see [25]): i)
defining a kinematic mathematical object capable of describing symmetric pairwise interactions between
material points, ii) formulating the deformation energy density as a function of this mathematical object,
and iii) finalizing the nonlocal continuum model using the principle of virtual work.

2.1 Introducing a Novel Second-Order Tensor for Describing Deformation in
Nonlocal Deformable Bodies

We consider a solid continuum body that occupies an open, bounded, and convex domain Ω of R3, with
a sufficiently smooth boundary ∂Ω, defining the reference (or Lagrangian) configuration. Due to some
external actions, Ω is transformed into the deformed (or Eulerian) configuration Ωt. Let {ξ1, ξ2, ξ3} be
the canonical basis of R3. Both reference and deformed configuration are referred to the same external
Cartesian reference system (O, ξ1, ξ2, ξ3), defined by the orthonormal basis {ξ1, ξ2, ξ3}, and whose generic
point is x = (x1, x2, x3). Any point x in Ω is transformed into a point r(x) = (r1(x), r2(x), r3(x)) in
Ωt = r(Ω), where x 7→ r(x) is usually said placement (or configuration) field. Placement field x 7→ r(x)
is defined from Ω into R3, is assumed to be a bijection from Ω into Ωt, to be in CN (Ω,R3), and to be
such that r and its N derivates are continuous on Ω. Consequently, any point x in Ω is transformed into
a unique point r(x) in Ωt. Let us consider two particles placed at x and x, with x and x in Ω. Looking
at [25], Piola recognizes

(x,x) 7→ ϱ2(x,x) = ∥r(x)− r(x)∥2 (1)

as an adequate function to model pairwise nonlocal interactions. With the aim of finding other suitable
algebraic operators able to account for some properties of nonlocal deformation, let us consider the
function (x,x) 7→ ρ (x,x) such that

ρ(x,x) = ∥r(x)− r(x)∥2 − ∥x− x∥2 , (2)

where ρ (x,x) defines the elongation of the finite material segment △x = x−x in the initial configuration,
which is transformed into the finite material segment △r = r(x) − r(x) in the deformed configuration.
Let us define the indices α1, . . . , αn such that αs ∈ {1, 2, 3} for s = {1, 2, . . . , n} and n ∈ N. The Taylor
expansion of r(x) centered at x of order N is equal to

r(x)− r(x) ≈
N∑

n=1

3∑
α1=1

3∑
α2=1

. . .

3∑
αn=1

1

n!

∂nr (x)

∂xα1
∂xα2

. . . ∂xαn

(xα1
− xα1

)(xα2
− xα2

) . . . (xαn
− xαn

) . (3)
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Since Eq. (3) is invariant for any permutation of indices, we can factor out any (xαs − xαs) difference.
Choosing to factor out (xα1

− xα1
)(to obtain classical elasticity for N = 1), we can write

r(x)−r(x) =

3∑
α1=1

(
N∑

n=1

3∑
α2=1

. . .

3∑
αn=1

1

n!

∂nr (x)

∂xα1
∂xα2

. . . ∂xαn

(xα2 − xα2) . . . (xαn − xαn)

)
(xα1−xα1) . (4)

We define the second-order tensor f(x,x) represented by [f(x,x)] in M3 such that

[f(x,x)]iα1 =

N∑
n=1

3∑
α2=1

. . .

3∑
αn=1

1

n!

∂nri (x)

∂xα1
∂xα2

. . . ∂xαn

(xα2 − xα2) . . . (xαn − xαn) , (5)

with i ∈ {1, 2, 3}, as the nonlocal deformation gradient. Replacing Eq. (5) into Eq. (4), it yields

r(x) ≈ r(x) + [f(x,x)] (x− x) . (6)

We assume orientation-preserving deformation (as in classical elasticity), i.e, for all x in Ω,

det[f(x,x)] > 0 . (7)

In addition, since Eq. (6) is an approximation, we complete the injection property of r by the following
hypothesis: for all x and x in Ω,

det[f(x,x)] ̸= 0 , (8)

which ensures that, within the framework of this approximation, for all x and x in Ω such that x ̸= x,
then r(x) ̸= r(x), and for x = x, then r(x) = r(x). Since Ω is a convex subset of R3, it is also connected.
Consequently, for all x and x in Ω, Eqs. (7) and (8) imply

det[f(x,x)] > 0 , (9)

by intermediate-value theorem for real continuous functions (see Theorem 4.38 in [41] pp. 87). Note
that [f(x,x)] is not symmetric and not objective, although completely describing the deformation. In the
following, we look for some quantities that are objective (that is necessary) and also symmetric (that is
the choice of the proposed theory). To this purpose, we permute x and x in Eq. (6), yielding

r(x) ≈ r(x) + [f(x,x)](x− x) . (10)

Multiplying the two members of this equation by −1 gives

r(x) ≈ r(x) + [f(x,x)](x− x) . (11)

Hence, let us define the second-order tensors c(x,x) and c(x,x) represented by [c(x,x)] and [c(x,x)] in
M+

3 such that
[c(x,x)] = [f(x,x)]T [f(x,x)] , (12)

[c(x,x)] =
1

2
([c(x,x)] + [c(x,x)]) . (13)

Note that, matrices [c(x,x)] and [c(x,x)] are positive definite due to Eq. (9). Let e(x,x) be the
second-order tensor represented by [e(x,x)] in MS

3 such that

[e(x,x)] =
1

2
([c(x,x)]− [ I ]) . (14)

Defining the second-order tensor e(x,x) whose representative matrix [e(x,x)] in MS
3 is given by

[e(x,x)] =
1

2
([c(x,x)]− [ I ]) , (15)

where [ I ] is the 3× 3 identity matrix, it can be seen that [e(x,x)] can be rewritten as

[e(x,x)] =
1

2
([e(x,x)] + [e(x,x)]) . (16)

Consequently, it is equivalent to define [e(x,x)] by means of the symmetrization of [e(x,x)] or to define
[e(x,x)] using [c(x,x)] that is the symmetrization of [c(x,x)]. Tensor c(x,x) and c(x,x) would corre-
spond to the the right Cauchy-Green tensor, and e(x,x) and e(x,x) to the Green-Lagrange tensor, in a
nonlocal framework. It should be noted that tensor e(x,x) might not be introduced, but we will need it
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to provide the geometrical interpretation of e(x,x). Note that (x,x) 7→ c(x,x) and (x,x) 7→ e(x,x) are
symmetric tensor fields on Ω×Ω, with values in ensemble M+

3 and MS
3 , respectively. Taking into account

Eq. (6), yields
ρ(x,x) ≈

〈
([f(x,x)]T [f(x,x)]− [ I ])(x− x), (x− x)

〉
, (17)

which can be rewritten, using Eq. (11), as

ρ(x,x) ≈
〈
([f(x,x)]T [f(x,x)]− [ I ])(x− x), (x− x)

〉
, (18)

Summing each member of Eqs. (17) and (18), and taking into account Eq. (13), we get

2ρ(x,x) =
〈
([f(x,x)]T [f(x,x)] + [f(x,x)]T [f(x,x)]− 2[ I ])(x− x), (x− x)

〉
(19)

and
ρ(x,x) ≈ ⟨ ([c(x,x)]− [ I ])(x− x), (x− x)⟩ . (20)

Hence, taking into account Eq. (15), we are led to

ρ(x,x) ≈ ⟨2 [e(x,x)](x− x), (x− x)⟩ . (21)

The above equations show that the property of objectivity is satisfied. Note that symbol “≈” is required
since we are truncating at the order N the Taylor expansion of r (see Eq. (3)). This representation allows
for demonstrating that different formulated theories (Piola, Cauchy, Eringen) can be viewed through the
proposed development. Specifically, it allows us to recognize [e(x,x)] as a suitable mathematical object
to describe pairwise interactions between material points at x and x and, in general, the deformation of
nonlocal particle-based materials. It also contains all the information regarding the deformations that
result in the elongation and shortening of finite material segment △x.

2.2 Polynomial approximation
As seen in Section 2.1, [e(x,x)] depends on the N -th order derivatives of r at points x and x. To facilitate
the subsequent comparison with the Eringen nonlocal model, we now separate the terms depending on
the first-order derivatives of r at point x from those depending on its higher-order derivatives. To achieve
this, we construct a polynomial approximation of [e(x,x)]. From Eq. (5), entries [f(x,x)]iα1

can be
rewritten as

[f(x,x)]iα1
=
∂ri (x)

∂xα1

+

N∑
n=2

3∑
α2=1

. . .

3∑
αn=1

1

n!

∂nri (x)

∂xα1
∂xα2

. . . ∂xαn

(xα2
− xα2

) . . . (xαn
− xαn

) , (22)

which, defining [∇r(x)] in M3 such that [∇r(x)]iα1
= ∂ri (x) /∂xα1

, gives

[f(x,x)]iα1 = [∇r(x)]iα1 +

N∑
n=2

3∑
α2=1

. . .

3∑
αn=1

1

n!

∂nri (x)

∂xα1
∂xα2

. . . ∂xαn

(xα2 − xα2) . . . (xαn − xαn) . (23)

Let us define [△f(x,x− x)] in M3 such that

[△f(x,x− x)]iα1
=

N∑
n=2

3∑
α2=1

. . .

3∑
αn=1

1

n!

∂nri (x)

∂xα1∂xα2 . . . ∂xαn

(xα2
− xα2

) . . . (xαn
− xαn

) (24)

to group terms depending on derivatives of r at point x of second-order and higher-order. Replacing Eq.
(24) into Eq. (23), we get

[f(x,x)] = [∇r(x)] + [△f(x,x− x)] . (25)

Now, let us derive Eq. (6) with respect to x to obtain

∂ri(x)

∂xj
=

3∑
α1=1

∂[f(x,x)]iα1

∂xj
(xα1

− xα1
) + [f(x,x)]ij , (26)

with i and j in {1, 2, 3}, and let us consider Eq. (25) to get

∂ri(x)

∂xj
=

3∑
α1=1

∂[f(x,x)]iα1

∂xj
(xα1

− xα1
) +

∂ri(x)

∂xj
+ [△f(x,x− x)]ij . (27)
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Defining [△h(x,x− x)] in M3 such that

[△h(x,x− x)]ij =

3∑
α1=1

∂[f(x,x)]iα1

∂xj
(xα1 − xα1) + [△f(x,x− x)]ij , (28)

yields
[∇r(x)] = [∇r(x)] + [△h(x,x− x)] , (29)

where [∇r(x)]iα1 = ∂ri (x) /∂xα1 . Taking into account Eqs. (12) and (25), Eq. (13) becomes

[c(x,x)] =
1

2
([∇r(x)]T + [△f(x,x− x)]T )([∇r(x)] + [△f(x,x− x)])

+
1

2
([∇r(x)]T + [△f(x,x− x)]T )([∇r(x)] + [△f(x,x− x)]) .

(30)

Hence, considering Eq. (29), Eq. (30) can be rewritten as

[c(x,x)] =
1

2
([∇r(x)]T + [△f(x,x− x)]T )([∇r(x)] + [△f(x,x− x)])

+
1

2
([∇r(x)]T + [△h(x,x− x)]T + [△f(x,x− x)]T )([∇r(x)] + [△h(x,x− x)] + [△f(x,x− x)]) .

(31)

Let [c(1)(x)] in M+
3 be the matrix representing the right Cauchy-Green tensor c(1)(x), defined by

[c(1)(x)] = [∇r(x)]T [∇r(x)] , (32)

and let [△c(x,x,x− x)] in MS
3 defined by

[△c(x,x,x− x)] = [c(x,x)]− [c(1)(x)] , (33)

in which [c(x,x)] is given by Eq. (31), which depends on x, x, and x − x. Finally, let us introduce
[e(1)(x)] in MS

3 representing the Lagrangian-Green tensor e(1)(x), defined by

[e(1)(x)] =
1

2
([c(1)(x)]− [ I ]) , (34)

and [△e(x,x,x− x)] in MS
3 such that

[△e(x,x,x− x)] = [e(x,x)]− [e(1)(x)] . (35)

It can be deduced that
[△e(x,x,x− x)] =

1

2
[△c(x,x,x− x)] . (36)

Note that [c(x, x)] = [c(1)(x)], and consequently [△e(x,x,0)] = 0. Using the properties introduced for
r and since Ω is a compact set in R3, it can easily be proven that, for all i, j, and for all x in Ω,

limx→x
|[△e(x,x,x− x)]ij |

∥x− x∥
= kij(x) ≤ k0 < +∞ (37)

in which the positive-valued function kij , which could be zero at given x, is bounded by k0 > 0 on Ω. Thus,
[△e(x,x,x−x)]ij is O(∥x− x∥) or o(∥x− x∥) for x → x. In short, we will write that [△e(x,x,x−x)]ij
is O(∥x− x∥) for x → x. In the following, Eq. (37) will be used to obtain the Eringen nonlocal elasticity
theory as a particular case of the proposed higher-order nonlocal continuum model for particle-based
materials.

2.3 Geometrical Interpretation of [e(x,x)]: Length, Angle, Volume, and Sur-
face Changes.

Matrix [e(x,x)] (see Eq. (15)) has a similar geometric interpretation as [e(1)(x)] (see Eq. (34)) when
considering finite (and not infinitesimal) segments. Let m be a unit vector in R3. Let us consider the
finite segment △xm such that △xm = |⟨△x,m⟩|m, with △x = x− x. Let us define the vector

△rm = [f(x,x)]△xm , (38)

which can be interpreted as the deformed configuration of △xm due to the movement of x with respect to
x described by [f(x,x)]. Note that △xm and △rm are not the projections of △x and △r on m, and will
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be not material segments if they do not belong to Ω and Ωt, respectively. Let ℓm be the finite relative
elongation defined by

ℓm =
∥△rm∥ − ∥△xm∥

∥△xm∥
, (39)

which depends on x and x. Taking into account Eqs. (12) and (14), we get

∥△rm∥2 − ∥△xm∥2

∥△xm∥2
= ⟨2[e(x,x)]m,m⟩ , (40)

where [e(x,x)] is defined in Eq. (14), and Eq. (40) can be rewritten as,

ℓm(ℓm + 2)− ⟨2[e(x,x)]m,m⟩ = 0 . (41)

Using Eqs. (14), (12), and (9) yield 1 + ⟨2[e(x,x)]m,m⟩ = ⟨[c(x,x)]m,m⟩ = ∥[f(x,x)]m∥2 > 0.
Consequently, the two solutions of Eq. (41) are real. Choosing the physically admissible solution of this
equation (eliminating the solution that is always negative), yields

ℓm = −1 +
√

1 + ⟨2[e(x,x)]m,m⟩ . (42)

Consequently, if m is chosen as ξi, with i ∈ {1, 2, 3}, we get

ℓξ
i

= −1 +
√
1 + 2[e(x,x)]ii . (43)

Now, let m̃ be another unit vector. Let us consider the finite segment △xm̃ such that △xm̃ = |⟨△x, m̃⟩|m̃
and the vector △rm̃ = [f(x,x)]△xm̃. Moreover, let us define ϑmm̃ in [0, π] such that

cosϑmm̃ =

〈
△rm

∥△rm∥
,

△rm̃

∥△rm̃∥

〉
. (44)

Taking into account Eqs. (12) and (14), Eq. (44) can be rewritten as

cosϑmm̃ =
⟨([ I ] + 2[e(x,x)])m, m̃⟩√

1 + 2 ⟨[e(x,x)]m,m⟩
√
1 + 2 ⟨[e(x,x)]m̃, m̃⟩

. (45)

For i ̸= j, if m = ξi and m̃ = ξj , then

cosϑξ
iξj

=
2 [e(x,x)]ij√

1 + 2 [e(x,x)]ii
√

1 + 2 [e(x,x)]jj
. (46)

We conclude that the entries of [e(x,x)] can describe the discrepancy between the finite parallelepiped
p defined by the three segments △xξi

= |⟨△x, ξi⟩|ξi = |△xi|ξi, with i ∈ {1, 2, 3}, and the finite paral-
lelepiped pt defined by the three segments △rξ

i

= [f(x,x)]△xξi

, with i ∈ {1, 2, 3}. This discrepancy is
caused by the deformation resulting from the displacements of x with respect to x, which is described
by [f(x,x)]. Consequently, in a more accurate way, [e(x,x)] describes the discrepancy between p and pt
caused by the deformation resulting not only from the displacements of x with respect to x, but also of
x with respect to x, which is described by both [f(x,x)] and [f(x,x)].

Eq. (9) implies that {△rξ
1

,△rξ
2

,△rξ
3} preserves the same orientation of the right-handed triplet of

finite segments {△xξ1

,△xξ2

,△xξ3}. The change in volume between p and pt is described by det([f(x,x)]).
Moreover, Eq. (9) implies that the polar decomposition of [f(x,x)] results in [f(x,x)] = [q(x,x)][v(x,x)],
where [v(x,x)] = [c(x,x)]1/2 (see Eq. (12)) and [q(x,x)] is a special orthogonal matrix that describes
the rigid rotation in the configuration change from p to pt induced by [f(x,x)].

Now, let us consider the planar surface element defined by △xξ1

and △xξ2

. Let △sξ1ξ2

be its area
and, thus, ξ3 is the unit normal to this plane. Similarly, if △sξ

1ξ2

t and ξ3t are the area and the unit
normal, respectively, to the planar surface defined by △rξ

1

= [f(x,x)]△xξ1

and △rξ
2

= [f(x,x)]△xξ2

,
then, usual algebraic calculations show that

△sξ
1ξ2

t ξ3t = △sξ
1ξ2

det([f(x,x)])[f(x,x)]−T ξ3 . (47)

Eq. (47) would correspond to the Piola formula (this formula is commonly attributed to Nanson in the
literature, a misattribution discussed in [42]) in a nonlocal framework.
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3 Nonlocal Deformation Energies and The Principle of Virtual
Work

Acknowledging the importance of the principle of virtual work, our focus lies in constructing a deformation
energy density within the framework of the proposed theory.

First, we introduce the deformation energy density implied by the Eringen and Piola nonlocal models.
Second, we present a deformation energy density that could encompass both the Piola and Eringen
deformation energy densities as particular cases. Finally, we formulate the principle of virtual work,
providing a comprehensive characterization of the proposed higher-order nonlocal continuum model for
particle-based materials.

3.1 Eringen Nonlocal Elasticity Deformation Energy Density
The deformation energy density w([ε(x)], [ε(x)],x,x) pertaining a body of nonlocal, linear, elastic, macro-
scopic homogeneous particle-based material is expressed by Eringen as (see [30], pp. 80, and [35])

w([ε(x)], [ε(x)],x,x) =
1

2

3∑
i,j,k,h=1

α(∥x− x∥)λijkh[ε(x)]kh[ε(x)]ij , (48)

where [ε(x)] approximates [e(1)(x)] under the hypothesis of small deformations, and λ is the fourth-order
elasticity tensor independent of x and x, which satisfies the usual properties of symmetry,

λijkh = λjikh = λijhk = λkhij . (49)

Function y 7→ α(y) is usually named influence function (or attenuation/kernel function), is such that
α(0) = 1, and it acknowledges the phenomenon of decreasing interaction forces with the distance (see
the attenuating neighborhood hypothesis in [30] pp. 34). In Eq. (48), the macroscopic homogeneity of
materials accounts for the fact that α(∥x− x∥)λijkh depends on the couple (x,x) only through ∥x− x∥
(rotation invariance (see [28, 39]). However, Eringen chose to keep the first-order approximation of α in
Eq. (48) (see [30], pp. 76), i.e., α must rapidly attenuate with distance and O(∥x− x∥2) are negligible.

3.2 Piola Peridynamics Deformation Energy Density
From [25], Piola defines the deformation energy density ψ(ϱ2(x,x),x,x) as a function of ϱ2(x,x) (see
Eq. (1)). Since ϱ2(x,x) is a function of ρ(x,x) (see Eq. (2)), it exists a function (ρ(x,x),x,x) 7→
w(ρ(x,x),x,x) such that w(ρ(x,x),x,x) = ψ(ϱ2(x,x),x,x). Among all possible alternatives, we focus
on the case for which w(ρ(x,x),x,x) is the following quadratic function in ρ(x,x),

w(ρ(x,x),x,x) =
1

8
k(x,x)ρ2(x,x) . (50)

Defining the fourth-order tensor b(x,x) such that

bijkh(x,x) = (xi − xi)(xj − xj)(xk − xk)(xh − xh) , (51)

and taking into account Eq. (21), we get

w(ρ(x,x),x,x) =
1

2

3∑
i,j,k,h=1

k(x,x)bijkh(x,x)[e(x,x)]kh[e(x,x)]ij . (52)

Although Eq. (52) does not explicitly appear in the work of Piola (see [13, 14]), we refer to it as Piola
peridynamics deformation energy density. Note that Eqs. (52) and (48) related to deformation energy
densities cannot be compared and are associated with different scales of modeling.

3.3 Proposed Nonlocal Elasticity Deformation Energy Density
We propose to directly define the deformation energy density φ([e(x,x)],x,x) as a function of [e(x,x)].
Note that under this hypothesis, the deformation energy density is not explicitly a function of the position
function r in x and x, as in Piola peridynamics, but is explicitly a function of the derivatives of r, as in
classical (or Cauchy) elasticity. It is crucial to emphasize that the novel model is developed within the
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framework of continuum and not discrete mechanics. Focusing on the case for which φ([e(x,x)],x,x) is
a quadratic function of [e(x,x)], yields

φ([e(x,x)],x,x) =
1

2

3∑
i,j,k,h=1

aijkh(x,x)[e(x,x)]kh[e(x,x)]ij , (53)

where a(x,x) is a fourth-order tensor that satisfies the usual properties of symmetry,

aijkh(x,x) = ajikh(x,x) = aijhk(x,x) = akhij(x,x) . (54)

In the following, we show that Piola and Eringen continuum models can be obtained from the proposed
formulation (see Section 3.3.1 and Section 3.3.2). It is evident that obtaining classical (or Cauchy)
elastic model as a particular case is also possible. Eq. (53) generalizes Eringen model for N ≥ 1. Eq.
(53) also generalizes Eringen model, which is formulated for N = 1, when influence functions do not
satisfy the attenuating neighborhood hypothesis as given in Section 3.1., i.e., for long-range interactions.
Hence, it allows us to model all the materials in which interaction forces decrease with distance inside
an interaction domain, usually named cohesive zone (see [30]), larger than the one allowed by Eringen
model. In addition, the proposed model allows the deterministic case to be extended to the stochastic
one in modeling a(x,x) by random fields using well-established techniques in [43, 44, 45, 46, 47, 48].

3.3.1 Piola Peridynamics Deformation Energy Density as a Particular Case

Let us consider Eqs. (52) and (53). If a(x,x) = k(x,x)b(x,x), Eq. (53) is reduced to the Piola
peridynamics deformation energy density as given in Eq. (52),

φ([e(x,x)],x,x) =
1

2

3∑
i,j,k,h=1

k(x,x)bijkh(x,x)[e(x,x)]kh[e(x,x)]ij . (55)

Note that tensor b(x,x), defined in Eq. (51), is a fourth-order tensor that not only satisfies the usual
properties of symmetry,

bijkh(x,x) = bjikh(x,x) = bijhk(x,x) = bkhij(x,x) , (56)

but also
bijkh(x,x) = bhjki(x,x) = bikjh(x,x) . (57)

Historically, the pioneering work of Piola laid the groundwork for peridynamics and nonlocal continuum
theories [49]. This work does not aim to discuss the superiority of one theory over another, but rather
to analyze the property of a novel nonlocal continuum model by comparing it to Piola peridynamics and
Eringen nonlocal elasticity.

3.3.2 Eringen Nonlocal Elasticity Deformation Energy Density as a Particular Case

Let us consider Eqs. (48) and (53). Assuming a(x,x) = α(∥x− x∥)λ and recalling that [e(x,x)] =
[e(x,x)], Eq. (53) becomes

φ([e(x,x)],x,x) =
1

2

3∑
i,j,k,h=1

α(∥x− x∥)λijkh[e(x,x)]kh[e(x,x)]ij . (58)

Let us highlight that α is an influence function rapidly decreasing with distance such that terms O(∥x− x∥2)
can be neglected (see Section 3.1). To show that Eq. (58) can be reduced to Eq. (48) under the hypoth-
esis of small deformations, we study two scenarios following the Eringen development by neglecting the
quadratic terms O(∥x− x∥2): i) x ̸= x and ii) x = x.

i) If x ̸= x, dividing and multiplying by ∥x− x∥2, then

φ([e(x,x)],x,x) =
1

2

3∑
i,j,k,h=1

1

∥x− x∥2
α(∥x− x∥)λijkh

(
∥x− x∥ [e(x,x)]kh

)(
∥x− x∥ [e(x,x)]ij

)
.

(59)
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Taking into account the polynomial decomposition of [e(x,x)] (see Eq. (35)), Eq. (59) can be rewritten
as

φ([e(x,x)],x,x) =
1

2

3∑
i,j,k,h=1

1

∥x− x∥2
α(∥x− x∥)λijkh

(
∥x− x∥ [e(1)(x)]kh + ∥x− x∥ [△e(x,x,x− x)]kh

)
×
(
∥x− x∥ [e(1)(x)]ij + ∥x− x∥ [△e(x,x,x− x)]ij

)
.

(60)

Thanks to property (37), Eq. (59) becomes

φ([e(x,x)],x,x) =
1

2

3∑
i,j,k,h=1

1

∥x− x∥2
α(∥x− x∥)λijkh

(
∥x− x∥ [e(1)(x)]kh +O(∥x− x∥2)

)
×
(
∥x− x∥ [e(1)(x)]ij +O(∥x− x∥2)

)
.

(61)

Neglecting O(∥x− x∥2), then

φ([e(x,x)],x,x) ≈ 1

2

3∑
i,j,k,h=1

α(∥x− x∥)λijkh[e(1)(x)]kh[e(1)(x)]ij . (62)

Under the hypothesis of small deformations, [ε(x)] approximates [e(1)(x)] and Eq. (62) is reduced to Eq.
(48).

ii) If x = x, then [△e(x,x,0)]ij = 0. Hence, taking into account the polynomial decomposition of
[e(x,x)] (see Eq. (35)), it can be seen that Eq. (58) is reduced to Eq. (48) under the hypothesis of small
deformations.

3.4 The Principle of Virtual Work in the Proposed Nonlocal Theory
Let x 7→ u (x) be the displacement field defined by u(x) = r(x) − x. Let Cu representing the set of
admissible displacement fields satisfying the Dirichlet conditions on ∂Ω0 ⊂ ∂Ω. Let Cδu be the space
of the test functions for which the Dirichlet conditions on ∂Ω0 are zero. To explicitly represent the
functional dependency of [e(x,x)] on u, we introduce the tensor e such that [e(u,x,x)] = [e(x,x)]. The
principle of virtual work, within the framework of the proposed theory, is written, for u ∈ Cu, as∫

Ω

∫
Ω

3∑
i,j=1

∂φ([e(u,x,x)],x,x)

∂[e(u,x,x)]ij
δ[e(u,x,x; δu)]ij dx dx = δπext(u; δu) , ∀δu ∈ Cδu , (63)

where φ is the deformation energy density defined by Eq. (53) and πext denotes the functional of external
work. Since [e(u,x,x)] is a functional of the N -th order derivatives of the displacement field u, externally
applicable loads are not just forces per unit volume and/or per unit area. The proposed model enables
us to consider external N -th order forces, which refer to external actions that arise as dual to the work
of the normal gradients of virtual displacements at the boundaries of the continuum, including its faces,
edges, and wedges (see [50, 51, 52] related to 3rd and N -th gradient continua). We defer the deterministic
and stochastic algebraic calculation of the equilibrium equations to future works.

4 Conclusions
In this paper, a higher-order nonlocal continuum model has been introduced for describing particle-based
materials within a deterministic framework. This paper, focusing on deterministic aspects, is the first
part of a broader work. The subsequent part will address stochastic aspects within the framework of
particle-based materials, considering uncertainties. Based on a novel pairwise deformation tensor that
would correspond to the Green-Lagrange tensor in a nonlocal framework, the proposed model offers two
key advantages. First, it covers interactions over a longer range in comparison to those accounted for in
the Eringen nonlocal elasticity. Second, it enables us to address complex external and contact actions,
such as N -th order forces and stresses. This capability is analogous to the Piola peridynamics and N -th
gradient continua. Possible applications concern colloidal gels and colloidal crystals, whose significance in
literature is growing thanks to their use in material science, biomedical engineering, optic, and 3D printing
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technology. Note that among the theoretical results presented in this paper, the orientation-preserving
condition and Piola formula have been formulated in a nonlocal framework. A work, in progress, is
devoted to the stochastic identification of the involved mechanical properties and interaction length for
the anisotropic case. Finally, since the computational problem just requires the minimization of an energy
functional, a weaker form could be introduced within the framework of Distribution Theory (also called
Theory of Generalized Functions) to consider discontinuities such as those induced by fracture modeling.
Furthermore, note that the proposed model can help in finding more general pairwise interactions resulting
in N -th gradient continua, which can be useful for designing novel architectured metamaterials.

Declarations
Ethical approval: not applicable. Consent for publication: the authors give their consent for
publication. Availability of data and materials: not applicable. Competing interests: the authors
declare that they have no interests of a financial or personal nature that might be perceived to influence the
results reported in this paper. Funding: not applicable. Authors’ contributions: G.L.V developed
the theory, wrote, and reviewed the manuscript, C.S. developed the theory, wrote, and reviewed the
manuscript. Acknowledgments: the first author of the paper, who is currently a scientific visitor,
would like to express gratitude to the Laboratoire Modélisation et Simulation Multi Echelle (MSME) at
Université Gustave Eiffel.

Appendix
In this appendix, we give some of the formulas presented in this paper for N = 2, i.e., for 2-nd gradient
continua. In the following, summation is implied for repeated indices. Let us assume that r at the point x
can be approximated using its Taylor expansion in the neighborhood of x truncated at the second order,

ri(x) = ri(x) +
∂ri(x)

∂xj
(xj − xj) +

1

2

∂2ri(x)

∂xj∂xk
(xj − xj)(xk − xk) . (64)

Let us define the tensor f (1)(x) represented by the matrix [f (1)(x)] such that

[f (1)(x)]ij =
∂ri(x)

∂xj
. (65)

The tensor f(x,x) represented by the matrix [f(x,x)] (see Eq. (5)) becomes

[f(x,x)]ij = [f (1)(x)]ij +
1

2

∂[f (1)(x)]ij
∂xk

(xk − xk) . (66)

Taking into account Eq. (65) and (66), Eq. (64) can be rewritten as

ri(x) = ri(x) + [f(x,x)]ij(xj − xj) , (67)

where det(f(x,x)) > 0 under the hypothesis of orientation-preserving deformations. By taking into ac-
count Eq. (66), tensor c(x,x) represented by the matrix [c(x,x)] (see Eq. (12)) can be written in terms
of components as

[c(x,x)]pq = [c(1)(x)]pq +
1

2
c
(12)
pqj (x)(xj − xj) +

1

4
c
(2)
pqjk(x)(xj − xj)(xk − xk) , (68)

where c(1)(x) is the right Cauchy-Green tensor (see Eq. (32)), c(12)(x) = ∇c(1)(x) is the third-order
tensor whose components are

c
(12)
pqj (x) = [f (1)(x)]ip

∂[f (1)(x)]iq
∂xj

+
∂[f (1)(x)]ip

∂xj
[f (1)(x)]iq , (69)

and c(2)(x) is the fourth-order tensor whose components are

c
(2)
pqjk(x) =

∂[f (1)(x)]ip
∂xj

∂[f (1)(x)]iq
∂xk

. (70)

Taking into account Eq. (68), tensor e(x,x) represented by the matrix [e(x,x)] (see (14) can be rewritten
in terms of components as

[e(x,x)]pq = [e(1)(x)]pq +
1

4
c
(12)
pqj (x)(xj − xj) +

1

8
c
(2)
pqjk(x)(xj − xj)(xk − xk) . (71)
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Deriving Eq. (64) with respect to x, it is not difficult to show that [e(x,x)] = [e(x,x)] and, consequently,
[e(x,x)] = [e(x,x)]. Thus, replacing Eq. (71) into Eq. (53), we obtain a novel deformation energy density
suitable for particle-based materials under the hypothesis of 2-nd gradient continua. Further details and
computational aspects will be addressed in the second part of the paper. It will be shown that tensor
[e(x,x)] allows us to formulate even more general models, exploring the possibility to encompass gradient-
type and integral nonlocal theories.
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