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Abstract— Road transport, after Location-Based Services, is 
the second application domain of GNSS. Measuring the end-to-
end performance of intelligent transportation systems (ITS) – 
and how this depends on the embedded GNSS chipset – makes 
the core of the on-going European standardization initiative at 
CEN-CENELEC TC5/WG1. This article first presents the 
methodology, called “Sensitivity analysis”, onto which the future 
norm will rely. Then the problem of modelling the GNSS 
positioning error is addressed, with some practical solutions, and 
the choice of one in particular, which is developed in an 
experimental context for validation purpose. The signal 
processing made from the full scale experiment in order to figure 
out the parameters of the model is presented. The use of this 
model in a simulation process is shown and analysed, so that first 
conclusions are drawn and research perspectives designed. 

Keywords—GNSS positioning; intelligent transportation 
systems; error modelling 

I.  INTRODUCTION 

Given the principle of GNSS positioning – whose 
performances are highly influenced by the conditions of the 
operational environment – and the need to ensure appropriate 
performances throughout the lifetime of the equipment, the 
development of standards and certification on positioning 
performance is fundamental for device vendors and service 
providers, especially when it concerns safety- and liability-
critical applications. 

In this context, European standardization organisations aim 
to produce standards for the use of geo-positioning services 
for navigation and localisation systems, especially in the road 
transport domain, which is the second application domain of 
GNSS, after Location-Based Services (LBS). 

The development of such standards will certainly have a 
positive impact on future road ITS industry developments, 
especially in regard to the need to provide industry with the 
highest practicable degree of uniformity in the provision and 
operation of GNSS services [1]. 

One of these standardization organisations, the CEN-
CENELEC TC5/WG1, proposed in its 1st European standard 
[2] a general methodology for assessing the conformity of a 
road transport application or a complete road ITS system, 
using a given GNSS-based positioning terminal. 

This methodology, called “Sensitivity analysis”, relies on 
the straightforward assumption that a road ITS system is 
composed of 2 main sub-systems, which are: the positioning 
terminal (using GNSS, but not always the only technology) 
and the application module that transforms the raw Position, 
Velocity and Time (PVT) data from the terminal into 
“Application quantities” necessary to provide the final ITS 
services to the users. For instance, the system “Personal 
Navigation Device” comprises a positioning terminal (the 
GNSS chipset) and an application that performs map-
matching, attributes retrieval and driver information through 
the man-machine interface. The final service is the guidance 
of the driver. 

 
Figure 1: Simplified architecture of a positioning-based road ITS system 

The Sensitivity analysis is based upon field tests in real 
conditions of the GNSS-based positioning terminal (GBPT) to 
identify a PVT error model that will be used to generate 
automatically a high number of synthetic degraded trajectories 
that will be processed by the application module. From the 
outputs of the application module, using the end-to-end 
performance metrics (also called KPIs for Key Performance 
Indicators), will be assessed the end-to-end performance of the 
system, depending on the performance of both the GBPT and 
the application itself. 

This method offers the advantage to duplicate field tests 
executed in real operational conditions, the only ones capable 
of capturing the reality of the physical phenomena, in order to 
run a high number of trials, necessary to assess performances 
that are generally expressed by low probabilities. 

The sensitivity of the system to the performance of the 
GBPT can be analysed by increasing artificially step by step 
the amplitude of the errors of the PVT error model until the 
moment when the target E2E performance is no longer 
fulfilled. Figure 2 represents the general principle of the 
Sensitivity analysis. 
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Figure 2: Sensitivity analysis general principle 

The present paper is about the position error modelling and 
more precisely about its application to a real set of 
experimental data that has not been used for the establishment 
of the model but for figuring out its specific parameters. 

II. STATE OF THE ART 

In the GNSS domain, the community has produced several 
degradation (or error) models applying to: 

• Radio signal-in-space, before signal tracking, 

• Pseudorange, phase and Doppler errors, also called 
raw data, where most literature references concentrate, 

• Position, Velocity and Time, after raw data have been 
processed for navigation purpose. 

In this article, and within SaPPART action, road transport 
applications are targeted. Therefore, degradation models that 
refer to GNSS receiver Position output (and Velocity and 
Time to a lesser extent), are of key interest. Very few literature 
references address the question of directly modelling the error 
in the position domain, contrary to the pseudorange domain in 
particular. 

Classically, the GNSS position errors are considered as 
white noise (e.g. in Extended Kalman Filters that perform 
loose coupling with odometry and/or inertial measurement 
unit integration). 

More advanced models consider that these errors are 
coloured: their autocorrelation has not a Dirac shape, but 
rather a triangular shape, indicating significant correlation 
times. These correlation times are due to correlation in the 
pseudorange errors from which the positions are computed, 
and from the computation itself (least-squares, but more often 
Kalman filtered processes are implemented in black-box-like 
receivers, for which no implementation and filter tuning 
details are given). 

For instance, in [3] the authors fuse odometry, GPS 
positions and camera vision of lane markings in a Kalman 
filter using such position error model. 

III.  SAPPART MODELS 

A. First modelling proposed within SaPPART 

Important research efforts in GPS PVT error models have 
been carried out recently within the COST action SaPPART 
by Ifsttar and GMV researchers [4]. 

Several models have been proposed and assessed based on 
an experimental dynamic data set (uBlox LEA6-T receiver). 
The models use the local Frenet frame (see Figure 3), tangent 
to the trajectory of the vehicle. The error is decomposed either 
into its along-track and cross-track components or into its 
local polar components, radius and angle. The local frame, 
whose orientation is that of the trajectory, has interesting 
properties concerning the error. Its orientation is actually also 
that of the travelled street, where buildings create multipath, 
and across which the positioning error is known to be larger 
than along [5]. 

 
Figure 3: The local Frenet frame 

Among these models, let us focus on the two followings: 

- CDF-based: along and cross track errors are randomly 
drawn (and weighted the one with respect to the other) from 
part of the data set used for learning, and correlated with time 
using a filter parameterized with the speed of the vehicle. 



- Laplace-Cauchy-based: errors are considered in a local 
polar frame, the radius being modelled by piecewise constant 
values Laplace distributed, changing with a probability p, on 
top of which is added a random walk from a Cauchy 
distributed noise. The angle is a random walk from a Cauchy 
distributed noise too. Truncatures are also applied on the 
distributions. 

The probability p and the parameters of the statistical 
distributions have to be learnt from experimental data. 

Last, low-pass filters and normalization constants have to 
be designed. 

Details can be found in [6]. 

The CDF-based method needs only two parameters to be 
adjusted: the correlation parameter between along-track and 
cross-track, and the parameter for the time filtering. For the 
Laplace-Cauchy based method, the set of parameters to adjust 
is larger: parameters for the probability density functions of 
the radius and the angle, for the filters and for the 
normalization constants. 

From the results presented in [6], the autocorrelation of the 
error signal cannot be reproduced using the CDF-based 
method. The Laplace-Cauchy-based method seems to have 
better results: both the autocorrelations and CDFs are close to 
the true ones and the signals look similar to the actual signals 
from the uBlox LEA6-T receiver. 

IV.  FIRST EXPERIMENTAL VALIDATION OF THE LAPLACE-
CAUCHY-BASED METHOD 

A first experimental validation on a data set in Frankfurt, 
Germany, with uBlox LEA5-T receiver, was conducted during 
summer 2015 by Q-Free and Ifsttar  [8]. It included the 
identification of the parameters, the simulation of error series, 
and their comparison to the true error. This data set was 
provided by Q-Free. 

Generating the error signal in the radius consists of several 
steps. First a piecewise constant basis made of steps that are 
generated using a truncated Laplace distribution: 

 
A’[n+1] = {  (1)

 

where A’[n+1]  is the radius signal with no noise, Lr[n] is a 
realization of a truncated Laplace distribution giving the 
height of the new step, and p is the probability of a new step. 
Then, an additive noise, which is accumulated over each step, 
is added: 

 A’[n+1] = A[n+1]+C r[n]  (2) 

where Cr[n]  is a realization of a truncated Cauchy 
distribution. To clarify, the accumulation of the Cauchy noise 
does not operate over the whole signal, but it is accumulated 
only during one step. It is reset when there is a new draw from 
the Laplace distribution. The values of the parameters to 
generate Lr[n]  and Cr[n]  samples are estimated by means of 
Bayesian identification methods [7] assuming Gaussian 

distributions, with refinements made by trials and errors. 
Finally, the signal is filtered using an auto-regressive filter that 
relates the expected error signal with the simulated signal. 

The angle is generated using a random walk given by: 

 φ[n+1] = φ[n]+Sφ[n]  (3) 

where Sφ[n] is a realization of a Cauchy distribution, 
before the signal is low-pass filtered. The values of the 
parameters to generate Sφ[n] samples properly are determined 
experimentally. 

The data set is composed of 28 trajectories from Frankfurt, 
Germany, see Figure 4. The drive route goes through deep 
urban canyons with dense traffic, comprising 4.9 km, with 
average driving speed of 15 km/h. It is without tunnels and 
covered sections. 

 
Figure 4: Drive route in Frankfurt recorder by the refernce receiver 

The reference track is provided by a Novatel CPOS 
combined with an IMU by applying kinematic Precise Point 
Positioning (PPP) post processing using Terrapos software. 
The vehicle is equipped with 8 low-cost GNSS receivers of 
various models from uBlox, ST, and SiRF in addition to a 
camera providing photographic evidence of the driving 
environment. The equipment is shown on Figure 5. On the 
roof one can see the antenna for the reference NovAtel 
receiver. In the front window one can see the test devices. In 
this article, only the low cost receiver uBlox LEA5-T is 
considered, but a similar study could be made on the other 
GNSS receivers. 

 
Figure 5: test vehicle from Q-Free 

A[n] with probability (1-p) 
Lr[n] with probability p 



Manual inspection of the recorded trajectories reveals that 
22 trajectories show good GNSS performance from the uBlox 
receiver, 4 trajectories show significantly larger errors, while 2 
trajectories contain large error peaks of 400 meters for a 
duration of up to 30 seconds (see Figure 6). 
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Figure 6: Position error of best (25) and worst (21) trajectories 

The parameters were estimated for all trajectories using the 
Hutter method [7] implemented by Monsifrot. 

The Hutter method is a Bayesian exact regression of 
piecewise constant functions. It operates for Gaussian distri-
butions of both the identified steps (their mean µ and standard 
deviation σ are identified) and the noise applying above them 
(this noise is centred and its standard deviation σnoise is 
identified as well). A similar optimization algorithm does not 
exist for Laplace distributed steps and, a fortiori, with the 
accumulated Cauchy noise. This is the reason why, after 
running the Hutter algorithm and getting initial values for 
simulating a Laplace-Cauchy-based model, there is an 
adjustment of the set of parameters to achieve manually, by 
trials and errors. 

The Gauss, Laplace and Cauchy distributions are defined 
by their respective probability density function: 
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By analogy, the mean value µ from Hutter is kept the same 
as the initial mean value for the Laplace simulated signal. 
Similarly, the parameter b is fixed initially at σ. Since the 
Cauchy noise is accumulated in the simulation, its parameter γ 
must be much lower than the standard deviation σnoise of the 
additive noise of the Hutter identification (otherwise the error 
would grow much too much within the duration of a step), and 
this is typically to be fixed in simulation by trials and errors. 
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Figure 7: The standard Gauss, Laplace and Cauchy distributions (µ = x0 = 0 
and σ = b = γ = 1) 

When simulating, the analysis of the signal produced is 
visually inspected with regard to the original signal time 
series. In addition, the CDFs are compared, as well as the 
autocorrelations. 

Despite the Hutter method is exact, the complete process 
leading to the final parameters is an approximation, with 
empirical results. Trajectory 25 was, after thorough analysis, 
chosen as the best data set to estimate an outline of the 
complete set of parameters. Figure 8 shows the result of a 
Hutter derived estimation of step probability where the 
stepwise red line is the approximation. 
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Figure 8: Hutter estimation of stepwise approximation and step probability 

The filter applied to the radius has been modelled by an 
autoregressive moving average with exogenous inputs 
(ARMAX), and identified with the stepwise approximation as 
signal input, and the original error as signal output. The 
number of poles (here: 2) and zeroes (and: 0) must be 
determined by trial and error. Moreover, a dead time of 1 
sample (1 second) was applied and the noise disturbance was 
pink (it used 1 previous value). To summarize, the Matlab 
armax function was called with [na=2, nb=1, nc=1, nk=1] 
parameters. The trial and error approach is judged successful 
when the residuals of the ARMAX identification are 
uncorrelated. This can be checked with the resid Matlab 
function. 



The filter applied to the angle is here empirically a moving 
average of the 10 previous input values. 

Table I shows the obtained parameters. 

 

TABLE I.  SIMULATION PARAMETERS 

 Parameter Selected parameter 
 Laplace 

(radius) 
 

 µ  11 m 
 b  36 m 
 min 0.1 m 
 max 22 m 
 Cauchy 

(radius) 
 

 x0 0 
 γ 0.5 m 
 min  -1.0 m 
 max  1.0 m 
 Filter coef 

(radius) a  
{ 1, -1.728, 0.7544 } 

 Filter coef 
(radius) b  

0.02518 

 Step 
probability p 

(radius) 

0.032 

   
 Cauchy 

(angle) 
 

 x0 0 
 γ 0.0161 rad 
 min  -pi 
 max  pi 
 Filter coef 

(angle) a 
1 

 Filter coef 
(angle) b 

{ 0.1, 0.1, 0.1, 0.1, 
0.1, 0.1, 0.1, 0.1, 0.1, 

0.1 } 
 

 

Radius errors were simulated using the selected parameters 
within the model. One simulation result is shown in Figure 9 
along with trajectory 25. The autocorrelation can be seen in 
Figure 10. It is somewhat lacking at the second lobes, but the 
simulation is quite good as can be seen in Figure 11 where the 
CDFs of the simulated signal and the targeted signal are close. 

Figure 12 shows a tentative to reproduce trajectory 21. For 
this purpose, the upper bound of the truncated Laplace 
distribution has been moved from 22 m to 400 m, all other 
parameters being unchanged. 

A peak is a sudden very big error that has a relative short 
duration. The big error around t = 100 s is very sudden, but it 
lasts for some epochs, this lasting effect of the error is 
probably due to filtering in the GNSS receiver. In the 
simulated error signal, this lasting effect is not completely 
satisfying. The correlation is not matching well and neither is 
the CDF (not shown). There is obviously a model mismatch: 
large transient peaks are still not properly reproduced. 
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Figure 9: Time evolution of simulated and target signals (trajectory 25) 
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Figure 10: Autocorrelation function of signals (trajectory 25) 
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Figure 11: Cumulative distributions of signals (trajectory 25) 
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Figure 12: Time evolution of simulated and target signals (trajectory 21) 

V. ANALYSIS OF THE RESULTS OBTAINED 

A. Parameter estimation 

The model has a number of parameters for the error radius 
simulation. These relate to the error magnitude step 
probability (p), to the Laplace distribution parameters (µ, b, 
min and max), to Cauchy distribution parameters (x0, γ, min 
and max), and to the filter coefficients (a and b). The Hutter 
derived method, currently implemented in a Matlab script, 
estimates the parameters for the Laplace distribution and step 
probability quite well. However, because of a model mismatch 
between the Cauchy noise-based simulation and the Hutter 
implementation, the parameter γ is currently not properly 
estimated. The simulation accumulates the Cauchy random 
samples during one step, whereas the parameter estimation 
model assumes that the error is not accumulated. To the best 
of the authors’ knowledge in signal processing and 
identification, γ must be fitted manually. 

B. Effect of stops and slow traffic flow 

As the trajectories are from downtown Frankfurt, stops are 
frequent, caused by red lights and traffic jams. This requires 
further attention, in particular when reconstructing the along- 
and cross-track errors. Actually, in case of a large radius error, 
this error should not rotate if stopped. The angle of the error 
vector must be limited taking into account the vehicle speed. 

C. Exceptional large position errors 

A challenging issue is with the peaks, i.e. gross outlying 
errors. The poor fit of the simulation results is due to the fact 
that the error model does not have, at this moment, the ability 
to model peaks. The simplest modification to the model would 
be to add a small chance of having a very big error at every 
point. The occurrence of such peaks and their magnitude, 
frequency and duration should be tuned. In the Frankfurt data 
set, the peaks occurred twice (at the same geographical 
location), and have a duration of 20-25 seconds, this accounts 
for approximately 0.4% of the total driving time (total over all 
28 trajectories). 

D. Conclusions 

Suggesting for GNSS position error modelling – and 
applying to real data – a Laplace-Cauchy-based model has 
improved the understanding of the simulation method, its 
performances and limitations. Several parameters cannot be 
estimated by the existing identification tools, and need to be 
manually adjusted. The algorithm should be refined to the 
extent that it becomes more automatic, but the distributions 
handled being non-Gaussian, it seems that identification tools 
well suited still do not exist in the signal processing 
community. 

Although the method needs more development, it has been 
found that the model, with parameters estimated from one 
trajectory, is representative for most trajectories, tuning only 
the upper truncature bound of the Laplace distribution, except 
for those with peaks. The modelling was easier due to the shift 
from cross- and along-track errors to radius and angle. The 
study has shown that the model is able to work well in 
challenging urban GNSS environment with typically urban 
driving patterns with frequent start/stop. Future work is 
needed to refine the error model for peaks which occur on 
start-up and after exiting tunnels for example. 
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