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Abstract— Road transport, after Location-Based Services, is
the second application domain of GNSS. Measuring ¢hend-to-
end performance of intelligent transportation systens (ITS) —
and how this depends on the embedded GNSS chipsemakes
the core of the on-going European standardization itiative at
CEN-CENELEC TC5/WG1. This article first presents the
methodology, called “Sensitivity analysis”, onto with the future
norm will rely. Then the problem of modelling the GNSS
positioning error is addressed, with some practicasolutions, and
the choice of one in particular, which is developedin an
experimental context for validation purpose. The gnal
processing made from the full scale experiment inrder to figure
out the parameters of the model is presented. The @sof this
model in a simulation process is shown and analysesb that first
conclusions are drawn and research perspectives dgsed.

Ola Martin Lykkja, Svend-Peder Oseth

R&D, Q-Free ASA
Oslo, Norway

This methodology, called “Sensitivity analysis”jies on
the straightforward assumption that a road ITS esysts
composed of 2 main sub-systems, which are: thetipoisig
terminal (using GNSS, but not always the only tetbgy)
and the application module that transforms the Pasition,
Velocity and Time (PVT) data from the terminal into
“Application quantities” necessary to provide theaf ITS
services to the users. For instance, the systemsdRal
Navigation Device” comprises a positioning termir(@he
GNSS chipset) and an application that performs map-
matching, attributes retrieval and driver inforroatithrough
the man-machine interface. The final service isdh&lance
of the driver.

Positioning-based mobility or road ITS system

Keywords—GNSS positioning; intelligent transportation positioning Application - ITS
systems; error modelling terminal  position mocile | = | services
Velocity Application
. INTRODUCTION Time guaniities
Given the principle of GNSS positioning — whose Figure 1. Simplified architecture of a positionibgsed road ITS system

performances are highly influenced by the condgiafh the
operational environment — and the need to ensyseoppate
performances throughout the lifetime of the equiptmé¢he
development of standards and certification on posiig
performance is fundamental for device vendors asmice
providers, especially when it concerns safety- &ablility-
critical applications.

In this context, European standardization orgaioisataim
to produce standards for the use of geo-positiosiEyices
for navigation and localisation systems, especialthe road
transport domain, which is the second applicatiomain of
GNSS, after Location-Based Services (LBS).

The development of such standards will certainlyeha
positive impact on future road ITS industry devetgmts,
especially in regard to the need to provide industith the
highest practicable degree of uniformity in the yismn and
operation of GNSS services [1].

The Sensitivity analysis is based upon field teéstseal
conditions of the GNSS-based positioning termi&BPT) to
identify a PVT error model that will be used to geate
automatically a high number of synthetic degradejettories
that will be processed by the application modulent the
outputs of the application module, using the endsd
performance metrics (also called KPIs for Key Perfance
Indicators), will be assessed the end-to-end padoce of the
system, depending on the performance of both thBTGand
the application itself.

This method offers the advantage to duplicate fitekts
executed in real operational conditions, the onlgscapable
of capturing the reality of the physical phenomeanayrder to
run a high number of trials, necessary to assedsrpgnces
that are generally expressed by low probabilities.

The sensitivity of the system to the performancethef
GBPT can be analysed by increasing artificiallypsby step

One of these standardization organisations, the -CENhe amplitude of the errors of the PVT error modieiil the
CENELEC TC5/WG1, proposed in itS' European standard moment when the target E2E performance is no longer

[2] a general methodology for assessing the corifgrof a
road transport application or a complete road ITyStesn,
using a given GNSS-based positioning terminal.

fulfilled. Figure 2 represents the general pringipf the
Sensitivity analysis.
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Figure 2: Sensitivity analysis general principle

The present paper is about the position error niadednd
more precisely about its application to a real st
experimental data that has not been used for tlableshment
of the model but for figuring out its specific pareters.

Il.  STATE OF THE ART

In the GNSS domain, the community has producedrakve

degradation (or error) models applying to:

. Radio signal-in-space, before signal tracking,

. Pseudorange, phase and Doppler errors, alsodcalle

raw data, where most literature references conatntr

. Position, Velocity and Time, after raw data haeen
processed for navigation purpose.

In this article, and within SaPPART action, roaahsport
applications are targeted. Therefore, degradatiodets that
refer to GNSS receiver Position output (and Velpanhd
Time to a lesser extent), are of key interest. \fewy literature
references address the question of directly madgthe error
in the position domain, contrary to the pseudorashgmain in
particular.

Classically, the GNSS position errors are consitieas
white noise (e.g. in Extended Kalman Filters thatfgrm
loose coupling with odometry and/or inertial measoent
unit integration).

More advanced models consider that these errors are
coloured: their autocorrelation has not a Diracpshabut
rather a triangular shape, indicating significawirelation
times. These correlation times are due to cormain the
pseudorange errors from which the positions arepcoed,
and from the computation itself (least-squares,rhote often
Kalman filtered processes are implemented in blamkdlike
receivers, for which no implementation and filtarming
details are given).

For instance, in [3] the authors fuse odometry, GPS
positions and camera vision of lane markings in ant@n
filter using such position error model.

I1. SAPPARTMODELS

A. First modelling proposed within SaPPART

Important research efforts in GPS PVT error modiaiee
been carried out recently within the COST actioPBSaRT
by Ifsttar and GMV researchers [4].

Several models have been proposed and assesseldobase
an experimental dynamic data set (uBlox LEAG-T he=g.
The models use the local Frenet frame (see Figureudgent
to the trajectory of the vehicle. The error is daposed either
into its along-track and cross-track componentsinbo its
local polar components, radius and angle. The Ifahe,
whose orientation is that of the trajectory, hatenesting
properties concerning the error. Its orientatioadtually also
that of the travelled street, where buildings aeaultipath,
and across which the positioning error is knowrbéolarger
than along [5].

Estimated
position

-

v N

True
position

Figure 3: The local Frenet frame

Among these models, let us focus on the two foltmsi

- CDF-based: along and cross track errors are ralydo
drawn (and weighted the one with respect to therptirom
part of the data set used for learning, and caeélaith time
using a filter parameterized with the speed ofvilaicle.



- Laplace-Cauchy-based: errors are consideredlota  distributions, with refinements made by trials aadors.
polar frame, the radius being modelled by piecewsestant Finally, the signal is filtered using an auto-resgige filter that
values Laplace distributed, changing with a prolitglgp, on  relates the expected error signal with the simdlatgnal.
top of which is added a random walk from a Cauchy
distributed noise. The angle is a random walk fipi@auchy
distributed noise too. Truncatures are also appbedthe

The angle is generated using a random walk given by

distributions. @dn+1] = ¢n]+S Jn] ©)
_ The probability p and the parameters of the stedibst where SJn] is a realization of a Cauchy distribution,
distributions have to be learnt from experimenthd before the signal is low-pass filtered. The valussthe
Last, low-pass filters and normalization constamise to ~Parameters to generafn] samples properly are determined
be designed. experimentally.
Details can be found in [6]. The data set is composed of 28 trajectories froamlfurt,

Germany, see Figure 4. The drive route goes thralegp
The CDF-based method needs only two parametere to jirhan canyons with dense traffic, comprising 4.9, kmith

adjusted: the correlation parameter between almmktand average driving speed of 15 km/h. It is withoutrtels and
cross-track, and the parameter for the time fitigriFor the  gvered sections.

Laplace-Cauchy based method, the set of parametadjust
is larger: parameters for the probability densipdtions of
the radius and the angle, for the filters and fbe t
normalization constants.

From the results presented in [6], the autocolimiadf the R
error signal cannot be reproduced using the CDIedas
method. The Laplace-Cauchy-based method seemsu® ha
better results: both the autocorrelations and C&€sclose to
the true ones and the signals look similar to tttea signals e
from the uBlox LEAG-T receiver. i

IV.  FIRST EXPERIMENTAL VALIDATION OF THELAPLACE- A % ¢

CAUCHY-BASED METHOD o2
. . . . . % .‘\ !tA A S = > =
A first experimental validation on a data set imrfurt,

Germany, with uBlox LEA5-T receiver, was conductidting Figure 4: Drive route in Frankfurt recorder by teéernce receiver

summer 2015 by Q-Free and Ifsttar [8]. It includdu

identification of the parameters, the simulatioreafor series,

and their comparison to the true error. This datt sas

provided by Q-Free.

The reference track is provided by a Novatel CPOS
combined with an IMU by applying kinematic PrecBeint
Positioning (PPP) post processing using Terrapdsvaie.
The vehicle is equipped with 8 low-cost GNSS reegsvof

Generating the error signal in the radius consisteveral  various models from uBlox, ST, and SiRF in additimna
steps. First a piecewise constant basis made p$ skat are camera providing photographic evidence of the dgvi

generated using a truncated Laplace distribution: environment. The equipment is shown on Figure 5.tn
roof one can see the antenna for the reference MNOVA

, _ Alnl with probability (1- receiver. In the front window one can see the desfices. In

A'[n+1] = L,[[n]] with F;)robabili%//(p P) (1) this article, only the low cost receiver uBlox LEASis

considered, but a similar study could be made enather

. . . , i . GNSS receivers.
whereA’[n+1] is the radius signal with no noidg[n] is a

realization of a truncated Laplace distribution iggv the
height of the new step, amdis the probability of a new step.
Then, an additive noise, which is accumulated @a=h step,
is added:

A'[n+1] = A[n+1]+C ([n] )

where C,[n] is a realization of a truncated Cauchy
distribution. To clarify, the accumulation of the@hy noise
does not operate over the whole signal, but itcumulated
only during one step. It is reset when there iewa draw from
the Laplace distribution. The values of the paramsetto
generatel[n] andC,[n] samples are estimated by means of
Bayesian identification methods [7] assuming Gaurssi

Figure 5: test vehicle from Q-Free



Manual inspection of the recorded trajectories aés/¢hat
22 trajectories show good GNSS performance fronuilex
receiver, 4 trajectories show significantly largerors, while 2
trajectories contain large error peaks of 400 nsefer a
duration of up to 30 seconds (see Figure 6).

450

i I I | -
” ‘ ‘ ‘ ‘ traj 21
400 — |- —1-— =~ +t---—-- - -- traj 25
| | | | | T
LL | | | | |
S e i it M I
| | | | |
300 — —|4 - 1o - - 1o e Lo
| | | | |
n | | | | |
ézso———j——\ ————— T i At ===
| | | | |
;200 | | | | |
£ [~ /1~ -~~~ 1- """~ I
w ‘ | | | | |
150 — |- 2 - - — _ 1o e Lo
| | | | |
K | | | | |
1007777\‘77\ ***** t-—-—-- [ o= =
| | | | |
k | | | i ! A
50 : ¥
. ) mﬁ\w

600
Time (seconds)

Figure 6: Position error of best (25) and worsf) (24jectories

The parameters were estimated for all trajectariisg the
Hutter method [7] implemented by Monsifrot.

The Hutter method is a Bayesian exact regression (§

piecewise constant functions. It operates for Gansdistri-
butions of both the identified steps (their mg¢aand standard

Gauss
Laplace [

,,,,,,,

)

Figure 7: The standard Gauss, Laplace and Caudtybditions (n = x= 0
ando=b=y=1)

When simulating, the analysis of the signal produce
visually inspected with regard to the original sfrtime
series. In addition, the CDFs are compared, as althe
autocorrelations.

Despite the Hutter method is exact, the completegss
leading to the final parameters is an approximatiatth
mpirical results. Trajectory 25 was, after thotowmnalysis,
hosen as the best data set to estimate an oufinde
complete set of parameters. Figure 8 shows thdtresua
Hutter derived estimation of step probability whetige

deviationo are identified) and the noise applying above themyepwise red line is the approximation.

(this noise is centred and its standard deviatmpse IS
identified as well). A similar optimization algdmin does not
exist for Laplace distributed steps and, a fortiovith the
accumulated Cauchy noise. This is the reason wfter a
running the Hutter algorithm and getting initiallves for
simulating a Laplace-Cauchy-based model,
adjustment of the set of parameters to achieve atniby
trials and errors.

The Gauss, Laplace and Cauchy distributions armetbf
by their respective probability density function:

Y xeu’
o) = _L_g2 ') @
o~ 21T
1 A
fLaplac&x) = __e ® 5)
2b
fCauch>(X) = i 1 (6)
o)
Y (=t

By analogy, the mean valyefrom Hutter is kept the same
as the initial mean value for the Laplace simulaséghal.
Similarly, the parameteb is fixed initially at . Since the
Cauchy noise is accumulated in the simulationpaiametery
must be much lower than the standard deviatipp. of the
additive noise of the Hutter identification (othéses the error
would grow much too much within the duration oftepy, and
this is typically to be fixed in simulation by tisaand errors.
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Figure 8: Hutter estimation of stepwise approximatnd step probability

The filter applied to the radius has been modeligdan
autoregressive moving average with exogenous inputs
(ARMAX), and identified with the stepwise approxitizen as
signal input, and the original error as signal attpThe
number of poles (here: 2) and zeroes (and: 0) nimest
determined by trial and error. Moreover, a deadetiof 1
sample (1 second) was applied and the noise distaebwas
pink (it used 1 previous value). To summarize, khatlab
armax function was called withrna=2, nb=1, nc=1, nk=]1
parameters. The trial and error approach is judgedessful
when the residuals of the ARMAX identification are
uncorrelated. This can be checked with tlesid Matlab
function.



The filter applied to the angle is here empiricalynoving
average of the 10 previous input values.

Table | shows the obtained parameters.
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Figure 9: Time evolution of simulated and targghsis (trajectory 25)
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TABLE I. SIMULATION PARAMETERS
Parameter Selected parameter
Laplace
(radius)
1} 11m
b 36m
min 0.1m
max 22m
Cauchy
(radius)
Xo 0
y 0.5m
min -1.0m
max 1.0m
Filter coef {1,-1.728,0.7544 }
(radius) a
Filter coef 0.02518
(radius) b
Step 0.032
probability p
(radius)
Cauchy
(angle)
Xo 0
y 0.0161 rad
min -pi
max pi
Filter coef 1
(angle) a
Filter coef {0.1,0.1,0.1, 0.1,
(angle) b 0.1,0.1,0.1,0.1, 0.1,
0.1}

Radius errors were simulated using the selecteahpeters
within the model. One simulation result is shownFigure 9
along with trajectory 25. The autocorrelation candeen in
Figure 10. It is somewhat lacking at the seconeédolbut the
simulation is quite good as can be seen in Figlreslere the
CDFs of the simulated signal and the targeted &ineaclose.

Figure 12 shows a tentative to reproduce trajec@dryFor
this purpose, the upper bound of the truncated dcpl
distribution has been moved from 22 m to 400 m,o#tler
parameters being unchanged.

A peak is a sudden very big error that has a wathort
duration. The big error around t = 100 s is vergdan, but it
lasts for some epochs, this lasting effect of thmeoreis
probably due to filtering in the GNSS receiver. the
simulated error signal, this lasting effect is mampletely
satisfying. The correlation is not matching weltameither is
the CDF (not shown). There is obviously a modelmaitch:
large transient peaks are still not properly repoedi.

Time (s)

Figure 10: Autocorrelation function of signals jg@tory 25)
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V. ANALYSIS OFTHERESULTSOBTAINED

A. Parameter estimation

The model has a number of parameters for the eabus
simulation. These relate to the error
probability (), to the Laplace distribution parameters 1,
min and max), to Cauchy distribution parametegs ¥ min
and max), and to the filter coefficients (a and e Hutter
derived method, currently implemented in a Matladoips,
estimates the parameters for the Laplace distohuiind step
probability quite well. However, because of a madédmatch
between the Cauchy noise-based simulation and thiteH
implementation, the parameter is currently not properly
estimated. The simulation accumulates the Cauchgdom
samples during one step, whereas the parametenatisin
model assumes that the error is not accumulatedhd@ dest
of the authors’ knowledge in signal
identification, ymust be fitted manually.

B. Effect of stops and slow traffic flow

As the trajectories are from downtown Frankfurbpstare
frequent, caused by red lights and traffic jamsisTequires
further attention, in particular when reconstrugtihe along-
and cross-track errors. Actually, in case of adamaius error,
this error should not rotate if stopped. The arafl¢he error
vector must be limited taking into account the e&hspeed.

C. Exceptional large position errors

A challenging issue is with the peaks, i.e. grosdymng
errors. The poor fit of the simulation results isedo the fact
that the error model does not have, at this monteatability
to model peaks. The simplest modification to theledavould
be to add a small chance of having a very big eatagvery
point. The occurrence of such peaks and their niadgmi
frequency and duration should be tuned. In the l§mahdata
set, the peaks occurred twice (at the same geagedph
location), and have a duration of 20-25 seconds,abcounts
for approximately 0.4% of the total driving timetal over all
28 trajectories).

magnitudep ste

D. Conclusions

Suggesting for GNSS position error modelling — and
applying to real data — a Laplace-Cauchy-based mbdg
improved the understanding of the simulation methitsl
performances and limitations. Several parametemnatabe
estimated by the existing identification tools, amekd to be
manually adjusted. The algorithm should be refitedthe
extent that it becomes more automatic, but theribligtons
handled being non-Gaussian, it seems that ideatiific tools
well suited still do not exist in the signal prosieg
community.

Although the method needs more development, ibleas
found that the model, with parameters estimatedn fiane
trajectory, is representative for most trajectqriesing only
the upper truncature bound of the Laplace distidioiitexcept
for those with peaks. The modelling was easiertdufe shift
from cross- and along-track errors to radius angleanThe
study has shown that the model is able to work virell
challenging urban GNSS environment with typicallgban
driving patterns with frequent start/stop. Futurerkv is
needed to refine the error model for peaks whicbuo®n
start-up and after exiting tunnels for example.
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