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Assessment of End-To-End performances of a GNS:
based Road User Charging System

Based on Ifsttar-GEOLOC and Q-Free cooperation

Miguel Ortiz , David Bétaille, Francgois Peyret

IFSTTAR/COSYS/GEOLOC
Nantes, France
david.betaille@ifsttar.fr

Abstract— The paper deals with the issues that have to be
faced when designing a national Road User CharginRUC) in
Norway based upon GNSS and with an innovative metlimlogy
especially developed to address these issues prambdy CEN-
CENELEC TC5/WG1 and supported by the SaPPART COST
Action. The paper presents a case study applying ¢h
methodology to a specific RUC algorithm developed yb the
Norwegian company Q-Free. A dedicated GNSS positioarror
model has been produced by Ifsttar GEOLOC for this prrpose.
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systems; road user charging; error modelling
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. INTRODUCTION

A. Context

Global Navigation Satellite Systems (GNSS) havesgy v
high potential in the development of Intelligentamsport
Systems (ITS), Personal Mobility and associated/ices.
This has been widely demonstrated through the L&P& in
supporting the provision of ITS services such assqeal
navigation, fleet management, cooperative traffignitoring
and more recently: Road User Charging (RUC), Pay¥¢8s-
Drive insurance, emergency call (eCall), trackimgl &racing
of dangerous good, Advanced Driver Assistance $fyste
(ADAS), etc. [1].

Given the principle of GNSS positioning, performaris
highly influenced by the conditions of the operatib
environment. Therefore, GNSS integrators and usees
facing two major challenges: the difficult problerof
estimating the expected performance of the serviten
using GNSS, and the lack of standards and cetiifica
references on positioning performance, which aces&ary to
guide their choices [2] [3].

B. Road User Charging with GNSS
As alternative to conventional physical-gantriesdzh

Ola Martin Lykkja, Svend-Peder Oseth

R&D, Q-Free ASA
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Netherlands and Lithuania have all declared th#ierest in
GNSS-based schemes [1].

But, RUC is very demanding in terms of false detest
which are prohibited to avoid the risk of rejectiofi the
system by the end-user. For instance, for the Freystem,
the acceptable false detection rate of the systath een
fixed at 10-6 with a confidence level of 5%, whicbuld be
reached for example if there were no missed deiedcit all
during 3.106 consecutive charging events all oemetwork.
To be capable of such performance level, the detecf the
charging event (the vehicle crossing the chargigtp has to
be extremely reliable, which can be quite trickydifficult
environments.

The detection performance of the system at thegaoigr
point depends on the performance of both the GN&®d
positioning terminal (GBPT) and the RUC detectitgoathm
in the given charging points environment. In chaieg
environments, such as urban locations, where pod6%
performances are usual, a very smart detectiorritigo can
overcome these poor GNSS performances and enshigha
performance for the whole system. This means that,
performance assessment of such system needs pediedao
the whole system, with a perfect respect of tharenmental
conditions [3].

Figure 1 illustrates the 2 main components whicpdot
the end-to-end (E2E) service of the system.

GNSS-based Road User Charging System |
Application

APPLICATION MODULE : quantities
Detection algorithm . RUC service
| Charging
| events

Figure 1: The 2 main components of a RUC systenadtipg the E2E service
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POSITIONING
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RUC systems, GNSS-based RUC systems offer numerous

advantages, the most important one being theiibiléy. In
Europe, these systems are being adopted by morenanel
countries. Slovakia, Germany, Switzerland and Hongave
successfully implemented GNSS-based tolling, Betgiand
Russia have launched similar projects implemen®iSS-
based schemes and France, Finland, Bulgaria, Dénrbe



C. Assessment of Road User Charging system performances

The execution of realistic test campaigns for asegs
such performance as a false detection rate of 1fkés a
difficult issue: how to carry out millions of tesis real or
realistic environments ? Obviously, this is not gibke to be
done in real full-scale conditions, and laboratonyy
conditions would not allow the respect of the =i
environment, so, a combined approach has to bafetl.

CEN-CENELEC TC5 WG1, which has addressed this

issue in his 1st standard [4], proposes a genekthad,

applicable to any ITS system based on GNSS, calle

“Sensitivity analysis”. This method is based upimhdf tests in
real conditions of the GBPT to identify a PVT ernsodel that
will be used to generate automatically a high numobk
synthetic degraded trajectories that will be preedsby the
application module. From the outputs of the apfilica
module, using the E2E performance metrics, willabsessed

the E2E performances of the system, depending fror

performances of both the GBPT and the applicat&edfi

This method offers the advantage to multiply fiedsts
executed in real operational conditions, the omlgscapable
of capturing the reality of the physical phenomenayrder to
run a high number of trials, necessary to assederpences
which are generally expressed by very low probtili

The sensitivity of the system to the performancethaf
GBPT can be analysed by increasing artificiallypsibg step
the amplitude of the errors of the PVT error modetil the

II.  ERROR MODELLING AND SIMULATION OF DEGRADED
TRAJECTORIES

The error model is based upon the decompositiothef
horizontal position error vector into its two localolar
components: radius (or moduluR)and angleprelative to the
local Frenet frame, tangent to trajectory of thhisie. Figure
2 shows these two local polar components.

Estimated
position

s
v N

.\-\.

True
position

Figure 2: The local Frenet frame and the two potanponents of the position

moment when the target E2E performance is no longeor vector

fulfilled. To summarize it, the Sensitivity analgsionsists in 6
main steps:

1. Definition of the operational scenario and of tlst
protocol

2. GNSS-based positioning terminal (GBPT) fieldges
execution

3.  PVT error model identification
4.

5. EZ2E performances assessment

Generation of degraded simulated trajectories

6. Safety margin analysis
More details can be found in the draft standalfi{g].

This methodology was already followed, under arlyear
form, by the test laboratory which was in chargeasgessing
the false detection rate performance of the FreRtHC
system [5]. The following sections will be devotéa the
application of this methodology to the RUC algarith
proposed by Q-Free Company.

The 2 components of the error data acquired frasfd fi
tests that have been chosen as seeds of the sgribgtaded
trajectories are respectively modelled by:

- For the radius, a filtered piecewise constanhaiig
where a new step appears with the probabgi(a Bernoulli
trial at every sample); in case of a step, a neplitude R for
the radius is drawn from a Laplace distribution @an@auchy
additive noise, which is accumulated over each, ss&epdded
to it:

R[ n] with probability (1-p)

Rn+1] = L,[n] with probability p

+Gn] (1)

where L,[n] is a realization of a truncated Laplace
distribution (positive values only) giving the heigf the new
step, andCJ[n] is a realization of a truncated Cauchy
distribution.

The accumulation of the Cauchy noise does not tpera
over the whole signal, but it is accumulated onlyimy one

The three first steps have already been achievet arstep. It is reset when there is a new draw fromlthplace

already reported in previous papers [6]. The nextisn will

recall the main principles used for the developmeithe

error models and the following ones will descrilme more
details how the degraded trajectories have beearged and
used for assessing the performances of the RUCitdgo

distribution.

In a final step, the radius signal is filtered gsen auto-
regressive filter which relates the expected esignal with
the simulated signal.

- For the angle, a random walk in which the add#io
noise is a realisation of a Cauchy distribution:



dAn+1] = gdn]+S]n| 2
where SJn] is a realization of a truncated Cauchy

distribution. The dispersion of the angle distribnt

(parameter) will be modulated with the speed of the vehicle,

so that when stopping, the error may vary in amgétbut not

in direction (avoiding that way a possible larggatimg error).

The final angle error signal is also low-passetfdd.

The identification of the parameters of the Laplace

distribution of the radius is realized with [7]. i§hmethod
gives us the parameters of the distribution for #tep

amplitudes and also the instants when these staps,drom

which we can estimatg An ARMAX identification is used to
identify the linear filter for the radius [8]. Thaentification of

the parameters of the Cauchy distribution of theglars

realized by fitting the experimental PDF [9].

Once the models of the radius and the angle conmemé
the error have been correctly identified and tunéue
generation of the along-track and cross-track carapts of
the error is straightforward:

Xa=Wa R[N] cos(¢)

X. = w, R[n] sin () 3

wherew, andw, are normalisation constants used for the

situations where the error vector does not disteitagually in
both directions [10].

<<< until here, in GREEN, is what | added to thafdr
>>> from here, in YELLOW, is what | took from theadit

Ill.  APPLICATION OF THE DEGRADED TRAJECTORIES TO

ROAD USERCHARGING

A. GNSS data collection

The GNSS position error modelling, as mentionedam

3 of the Sensitivity analysis, shall rely on vasofull scale
experiments reproducing operational scenarii. b flame of
this study, a test vehicle is equipped with sevéwval-cost
GNSS receivers from uBlox, ST, and SiRF, among Wwhic
low cost receiver uBlox LEA6-T is considered. Tlpipped
vehicle is shown on Figure 3. The test devices wedaeed
behind the windshield.

A reference trajectory is needed, not only for dreor
modelling step of the work, but also later on abaais for
cloning. The reference trajectory, supposed to ferless,
will actually be degraded N times, applying N diffiet radius
and angle errors, so that N clones of the initifllox
trajectory will be able to be built in order to Bed into the
RUC process. The synthetic errors are built by drigw
random values in each of the probabilistic laws #re used in
the radius and angle models.

On the roof one can see the antenna of the referenc

NovAtel CPOS receiver. This receiver is hybridizagdh an
IMU and post-processed by the kinematic PrecisentPoi
Positioning (PPP) Terrapos software.

Figure 3: test vehicle from Q-Free

The data set is composed of 28 trajectories froamiurt,
Germany, each of them being approximately 5 km I(sep
Figure 4). They were performed at the average spéetb
km/h. Despite it is without tunnels and coveredtises, the
driven route goes through deep urban canyons, siBleviin
Figure 5.

Figure 5: Same route in Frankfurt in a 3D buildmgdel

Figure 6 displays the extreme performances of Blexu
receiver observed throughout these 28 revolutiangntown
Frankfurt. Most trajectories typically show positiog error

time series close to the best one, but 2 trajextociontain



large error peaks of 400 meters for
seconds (see Figure 6).
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Figure 6: Position error of best (25) and wors) {24jectories

B. RUC virtual gantries and performance metrics

The RUC application is based on virtual gantrieG)V
defined as geo-objects specified by latitude amitade.
They comprise a tolling point (pink circle on Figui7), a
central polyline, and cross-sections (ABCD) witft &nd right
extensions of the road (dashed line), and outerdaates to
the left and right (solid line), in meters. Thedm@nces can be
made very wide if there is no neighboring road. iftual
gantry is oriented.

Figure 7: Description of a virtual gantry

When a vehicle passes through the gantry, thesietéon
point between the GNSS trajectory and the croskirgg are
identified and the distance from the center poiot the
intersection point is calculated. This distanceasnpared to
the road width and the tolerance and gives a passegre,
with a maximum value at 1 if the intersection cadecwith
the center point, and going to zero at the outeraace point.
If the intersection is outside the tolerance lintite passage of
this crossing line is ignored. After the passag®uph the
VG, the total score is calculated and if the tetadre is above
a predefined limit and more than p out of q cragdines are
crossed and the crossing lines are crossed inatooreer,
then a VG passage is assessed. The score can basisa
indication of VG passage confidence.

The arrangement makes the passage detection irttkgen
of driving speed and GNSS sampling rate. The metided
spreads the decision out on a large geographieal @everal
hundreds of meters, even kilometers in rural roeehario,
with multiple crossing lines) thus reducing theeefs of the
correlation between individual GNSS samples. Thedd® be
applied to curved roads and also in (or closentgrsections.
This makes the method also suitable for urban U$e
tolerance and width information are set individydbr each
crossing line based on local geographical and topdlogy
properties taking into account typical GNSS perfance at
that location.

A first set of virtual gantries have been definednumally
all along the itinerary repeated in Frankfurt (ilué). These
virtual gantries should be detected and they wilke it
possible a measurement of the missed detectionshef
process. Additional virtual gantries (in orange)yevadded in
the vicinity of the first set. The aim of this sadoset is to
create false detections and make it possible aume@ent of
those. Some of these additional virtual gantriderigeto other
streets, but some are also totally fake. They@satéd in such
a way to trigger false detections. Thus the falsection rates
seen in this article does not reflect at all thofsa real system.

AMA From Ola’s txt in BLUE

e %
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Figure 8: Virtual gantries designed in our expentaéarea in Frankfurt: the
reference trajectory crosses through 20 virtuatrgesn

In Figure 8 and in the following Figures 9 and ifis
color code has been applied:

« green line: reference trajectory
* blue line: real trajectory of uBlox
» magenta line: cloned trajectory of uBlox

* blue virtual gantry: virtual gantry in the origihQFREE
database

 orange virtual gantry: virtual gantry added splgifor
false detection purpose.
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Figure 10: An example of false detection (magein&) |

The chosen metrics for missed detections and false
detections have been chosen with QFREE agreemaht an

according to [ISO/TS 17444-2]. They are the follogs, for N
clones of the uBlox-6T trajectory:

Global metrics:

* CCR Correct Charging Rate = TotalNbCorrectDetections

/ (N*RefNbCorrectDetections)

* OCR Over Charging Rate = TotalNbFalseDetections / N

Metrics local to each virtual gantry:

*CCER Correct Charge Event Recognition =
(NbCorrectDetections for VGi) / (RefNbCorrectDeteatfor
VGi)

» FPCER False Positive Charge Event Recognition =
(NbFalseDetections for VGi) / N

For instance here is the result of the assessnfettieo
RUC algorithm with 17,000 cloned trajectories, watltertain
set of error modeling parameters:

#Output RUC algorithm
total missed number : 9
total false number : 480

#Global metrics
Correct Charging Rate (CCR) : 99.99735%
Over Charging Rate (OCR) : 2.82353%

#Metrics for each Virtual Gantry with at least one missed or one false
#VGi : Virtual Gantry Id
#MISSED : Nb of missed dectections for VGi

#CCER

#FALSE : Nb of false dectections for VGi
#FPCER

VGi MISSEDCCER FALSE FPCER
30279 0 100.00000% 210 1.23529%
30275 100.00000% 145 0.85294%
30273 0 100.00000% 59 0.34706%
30283 0 100.00000% 27 0.15882%
30276 0 100.00000% 39 0.22941%
30113 4 99.97647% 0 0.00000%
30112 3 99.98235% 0 0.00000%
30099 1  99.99412% O 0.00000%
30111 1 99.99412% 0 0.00000%

Numerical details :

N = 17000

TotalNbCorrectDetections = RefNbCorrectDetections*N
TotalMissed= 20*17000 — 9 = 339991
TotalNbFalseDetections = 480

RefNbCorrectDetections = 20

NbCorrectDetections for VGi = RefNbCorrectDetectfon
VGi - Nb of missed detections for VGi
RefNbCorrectDetection for VGi = N for all VG beca&usach
of them has been crossed only once

C. Tuning of the simulation process

A first set of error modeling parameters (denotbd t
default set) has been estimated with the bestctaje (25)
using the Hutter method implemented by Monsifrat [B]
[12]. Afterward the upper bound of the truncatioh the
Laplace law is the only parameter we make varyirgn 22
m to 400 m.

TABLE I. SIMULATION PARAMETERS (RADIUS)
Parameter Default
Laplace
1} 11m
b 36 m
min 0.1m
max 22m 400m |
Cauchy
Xo 0
y 0.5m
min -1.0m
max 1.0m
Filter coefa | {1,-1.728, 0.7544 }
Filter coef b 0.02518
Step prob p 0.032
TABLE II. SIMULATION PARAMETERS (ANGLE)
Parameter Default
Cauchy
Xo 0
y 0.0161 rad * (speed/15 km/h
min -pi
max pi
Filter coef a 1
Filter coef b {0.1,0.1,0.1,0.1,0.1, 0.1,




0.1,0.1,0.1,0.1} |

The speed is normalized by the average speed dthreng
test campaign in Frankfurt (approximately 15 kndny it is
used to modulate the parameyeof the Cauchy law (i.e. the
dispersion of the distribution).

One simulation result (for the radius) is shownFigure
11 along with the true error radius of the beset®@ry (25),
using the default parameters. Another result, usthg
maximum upper bound of 400 m, is shown in Figurealbhg
with the true error radius of the worst traject(2y).

Laplace + Cauchy method: radius-signal
30 -

traj25 real signal
simulated signal

25

10 -

I I I I |
400 600 800 1000 1200

Time (s)
Figure 11: Time evolution of simulated and begyearadii (trajectory 25)
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Figure 12: Time evolution of simulated and worsgé radii (trajectory 21)

IV.  ANALYSIS OFTHE RESULTSOBTAINED

A. Fixing the number N of clones

The first parameter to set is the number N of satad
trajectories we have to produce in order to be ident that
computed metrics are representative of the SA Bet.
instance, N=1 will not produce representative rostrihere is
a good probability that CCR would be 100% and OVR 8y
contrast, N= 10,000,000 will produce much more
representative metrics ; but it will take too muahe to run
the whole process on a computer. For informatibriakes
about 1,5 h of computation for N=10,000 on a qudbust
laptop. In order to estimate the minimum N valub¢oused, a
run with N=30,000 has been conducted.

100 CCR for SA0-N30000-11-36-22

99.9995 -
99.999
99.9985 -
99.998

99.9975 -

99.997

Correct Charging Rate (CCR) (%)

99.9965 -

99.996
0

Number of simulated trajectories (N)

Figure 13: Evolution of CCR over 30,000 runs

OCR for SA0-N30000-11-36-22
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Figure 14: Evolution of OCR over 30,000 runs

The red line corresponds to the mean of the last fart
(from 20,000 to 30,000); the red dash lines cowadpto
+10% and -10% of the first oscillation. As we cdserve,
from N=17,000 oscillations stay inside the 10% higinThis



value of N=17,000 will be used for the next phaseRbC
assessment.

B. Sensitivity analysis

This sensitivity analysis (SA) has focused on vagyihe
upper bound of the Laplace law which drives theumerror.
The two following figures illustrate the random wsafor 5
different sets of SA. Afterward, the notation SA{38-x)
means SA set with all radius and angle parameterstcs
values of Table | and Il, excepted for the maximofmadius
Laplace parameter equal to x (cf. Table III).

Radius Histograms, SAi(mu r-beta r-imax r) Radius Histograms, SAi(mu r-beta r-imax )

6000

SAU(1136-22) SAO113622)
SAL(11.36.4) 1113

SA2(11-36-66)
5A3(11-36.88) SA3(11-36-88)
SAI(11-36.176)

SAY(11-36-176)

[T ——
0 20 4 60 8 100 120 140 160 180 o
radius error (m)

Figure 15: SA random draw for Figure 16: SA random draw for 1138
100,000 samples trajectory samples trajectory

As our original reference trajectory on which cldrmadius
and angle errors had been added is a 1138 samajestary,
the Laplace random draw (Figure 16) is not so closéhe
ideal plot (Figure 15). However, we could observat tsome
high errors should be draw with low occurrence.088,
trajectories have been injected in the RUC algorith 17,000
for each SA — with the pre-defined set of virtuantyies
(Figure 8):

TABLE III. VARYING RADIUS UPPER BOUND AND SIMULATION RESULTS
SAi Total CCR Total OCR

missed (%) false (%)

number number
SA0(11-36-22) 9 99.99 480 2.82
SA1(11-36-44) 2062 99.39 7505 44.15
SA2(11-36-66) 26631 92.16 13651 80.30
SA3(11-36-88) 47105  86.15 17360 102.12
SA4(11-36-176) 72672 78.63 21265 125.09

//
)
*

\

\

Correct Charging Rate
/
Over Charging Rate (OCR) (%
N

20 4 60 8 100 120 140 160 180 20 4 6 80
max of Laplace for radius(m)

0 120 140 160 180
max of Laplace for radius(m)

Figure 17: Figure 18:

We can observe an exponential trend of the evaiutib
CCR and OCR over the Laplace upper bound (Figuresntl
18). In order to confirm this trend (Figures 19 &), other
runs have been realized with different sets of 8énf 11-36-
22 to 11-36-400):

Evolution of CCR metric over max Laplace bound Evolution of OCR metric over max Laplace bound
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Note 1: For CCR the 3 first points have been didedifor
exponential fit. Note 2: OCR results are not repnéative of a
realistic set of virtual gantries. They are onlgnesentative of
the fake virtual gantries that had been added ¢oaitiginal
ones. Note 3: CCR results are representative afrg dense
network of virtual gantries. Here, each large emakes a
missed detection. We could imagine that a low dgnsi
network will be more resilient to large positiomaat

The exponential trends are confirmed. These asyiopto
trends could be explained by the Laplace paranetchave
chosen to make varying trajectories. The averagsuch a
random draw with the upper bound varying is indeedrby
40 m.

C. Conclusions

This study has allowed assessing a real Road User
Charging (RUC) application. Cloned (or simulated)
trajectories have been built from a model issuenfra u-
Blox-6T GPS receiver. It is based on Radius geiwran one
hand, and Angle generation on the other hand. Radnd
Angle generation are driven by different random dawand
their parameters are the ones defined in Tablehik Hind of
model fits quite well real trajectories with lowrers, and has
more difficulties to fit large error trajectories.

Assessment of the RUC algorithm could have beere don
by injecting trajectories increasingly degraded. tdpl8 sets
of 17,000 trajectories have been injected. Thesanpetric
tests have been based on the increase of the maxiraplace
error. The following global metrics have been cotedu
Correct Charging Rate (CCR) and Over Charging Ra@&R).
Metrics relative to each virtual gantry have alseeib
computed: this allows identifying a possible vittuigantry
which has been badly designed. As a matter of fdcfalse
detections have been generated by virtual ganthias have
been intentionally designed for that purpose (airtgantries
added to create false alarms).

Furthermore, assessment of the RUC application has
shown that CCR and OCR reach an asymptotic valiemnline
upper bound of the Laplace law is increasing. In study,
these asymptotic values themselves make no geserse
because the use case is here totally artificial aod-
representative of a real RUC system, but the exéstef these
asymptotes tends to prove that the couple {virgeitries +
RUC algorithm} presents minimum performances imfrof a
given receiver. These performances are actuallyagieed —
and in particular over-charging cannot exceed tlaimum



rate estimate — even if the experienced trajectaie all very
bad ones.
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