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Abstract— The paper deals with the issues that have to be 
faced when designing a national Road User Charging (RUC) in 
Norway based upon GNSS and with an innovative methodology 
especially developed to address these issues proposed by CEN-
CENELEC TC5/WG1 and supported by the SaPPART COST 
Action. The paper presents a case study applying the 
methodology to a specific RUC algorithm developed by the 
Norwegian company Q-Free. A dedicated GNSS position error 
model has been produced by Ifsttar GEOLOC for this purpose. 

Keywords—GNSS positioning; intelligent transportation 
systems; road user charging; error modelling 

I.  INTRODUCTION 

A. Context 

Global Navigation Satellite Systems (GNSS) have a very 
high potential in the development of Intelligent Transport 
Systems (ITS), Personal Mobility and associated services. 
This has been widely demonstrated through the use of GPS in 
supporting the provision of ITS services such as personal 
navigation, fleet management, cooperative traffic monitoring 
and more recently: Road User Charging (RUC), Pay-As-You-
Drive insurance, emergency call (eCall), tracking and tracing 
of dangerous good, Advanced Driver Assistance Systems 
(ADAS), etc. [1]. 

Given the principle of GNSS positioning, performance is 
highly influenced by the conditions of the operational 
environment. Therefore, GNSS integrators and users are 
facing two major challenges: the difficult problem of 
estimating the expected performance of the service when 
using GNSS, and the lack of standards and certification 
references on positioning performance, which are necessary to 
guide their choices [2] [3]. 

B. Road User Charging with GNSS 

As alternative to conventional physical-gantries-based 
RUC systems, GNSS-based RUC systems offer numerous 
advantages, the most important one being their flexibility. In 
Europe, these systems are being adopted by more and more 
countries. Slovakia, Germany, Switzerland and Hungary have 
successfully implemented GNSS-based tolling, Belgium and 
Russia have launched similar projects implementing GNSS-
based schemes and France, Finland, Bulgaria, Denmark, The 

Netherlands and Lithuania have all declared their interest in 
GNSS-based schemes [1]. 

But, RUC is very demanding in terms of false detections 
which are prohibited to avoid the risk of rejection of the 
system by the end-user. For instance, for the French system, 
the acceptable false detection rate of the system had been 
fixed at 10-6 with a confidence level of 5%, which could be 
reached for example if there were no missed detection at all 
during 3.106 consecutive charging events all over the network. 
To be capable of such performance level, the detection of the 
charging event (the vehicle crossing the charging point) has to 
be extremely reliable, which can be quite tricky in difficult 
environments. 

The detection performance of the system at the charging 
point depends on the performance of both the GNSS-based 
positioning terminal (GBPT) and the RUC detection algorithm 
in the given charging points environment. In challenging 
environments, such as urban locations, where poor GNSS 
performances are usual, a very smart detection algorithm can 
overcome these poor GNSS performances and ensure a high 
performance for the whole system. This means that, 
performance assessment of such system needs tests applied to 
the whole system, with a perfect respect of the environmental 
conditions [3]. 

Figure 1 illustrates the 2 main components which impact 
the end-to-end (E2E) service of the system. 

 
Figure 1: The 2 main components of a RUC system impacting the E2E service 



C. Assessment of Road User Charging system performances 

The execution of realistic test campaigns for assessing 
such performance as a false detection rate of 10-6 faces a 
difficult issue: how to carry out millions of tests in real or 
realistic environments ? Obviously, this is not possible to be 
done in real full-scale conditions, and laboratory-only 
conditions would not allow the respect of the realistic 
environment, so, a combined approach has to be followed. 

CEN-CENELEC TC5 WG1, which has addressed this 
issue in his 1st standard [4], proposes a general method, 
applicable to any ITS system based on GNSS, called 
“Sensitivity analysis”. This method is based upon field tests in 
real conditions of the GBPT to identify a PVT error model that 
will be used to generate automatically a high number of 
synthetic degraded trajectories that will be processed by the 
application module. From the outputs of the application 
module, using the E2E performance metrics, will be assessed 
the E2E performances of the system, depending from 
performances of both the GBPT and the application itself.  

This method offers the advantage to multiply field tests 
executed in real operational conditions, the only ones capable 
of capturing the reality of the physical phenomena, in order to 
run a high number of trials, necessary to assess performances 
which are generally expressed by very low probabilities. 

The sensitivity of the system to the performance of the 
GBPT can be analysed by increasing artificially step by step 
the amplitude of the errors of the PVT error model until the 
moment when the target E2E performance is no longer 
fulfilled. To summarize it, the Sensitivity analysis consists in 6 
main steps: 

1. Definition of the operational scenario and of the test 
protocol 

2. GNSS-based positioning terminal (GBPT) field tests 
execution 

3. PVT error model identification 

4. Generation of degraded simulated trajectories 

5. E2E performances assessment 

6. Safety margin analysis 

More details can be found in the draft standard itself [4]. 

This methodology was already followed, under an early 
form, by the test laboratory which was in charge of assessing 
the false detection rate performance of the French RUC 
system [5]. The following sections will be devoted to the 
application of this methodology to the RUC algorithm 
proposed by Q-Free Company. 

The three first steps have already been achieved and 
already reported in previous papers [6]. The next section will 
recall the main principles used for the development of the 
error models and the following ones will describe in more 
details how the degraded trajectories have been generated and 
used for assessing the performances of the RUC algorithm. 

II.  ERROR MODELLING AND SIMULATION OF DEGRADED 

TRAJECTORIES 

The error model is based upon the decomposition of the 
horizontal position error vector into its two local polar 
components: radius (or modulus) R and angle φ relative to the 
local Frenet frame, tangent to trajectory of the vehicle. Figure 
2 shows these two local polar components. 

 
Figure 2: The local Frenet frame and the two polar components of the position 
error vector 

The 2 components of the error data acquired from field 
tests that have been chosen as seeds of the synthetic degraded 
trajectories are respectively modelled by: 

- For the radius, a filtered piecewise constant signal 
where a new step appears with the probability p (a Bernoulli 
trial at every sample); in case of a step, a new amplitude R for 
the radius is drawn from a Laplace distribution and a Cauchy 
additive noise, which is accumulated over each step, is added 
to it: 

 
R[n+1] = {  + Cr[n] (1)

 

where Lr[n] is a realization of a truncated Laplace 
distribution (positive values only) giving the height of the new 
step, and Cr[n] is a realization of a truncated Cauchy 
distribution. 

The accumulation of the Cauchy noise does not operate 
over the whole signal, but it is accumulated only during one 
step. It is reset when there is a new draw from the Laplace 
distribution. 

In a final step, the radius signal is filtered using an auto-
regressive filter which relates the expected error signal with 
the simulated signal. 

- For the angle, a random walk in which the additional 
noise is a realisation of a Cauchy distribution: 

R[n] with probability (1-p) 
Lr[n] with probability p 



 φ[n+1] = φ[n]+Sφ[n] (2) 

where Sφ[n] is a realization of a truncated Cauchy 
distribution. The dispersion of the angle distribution 
(parameter γ) will be modulated with the speed of the vehicle, 
so that when stopping, the error may vary in amplitude but not 
in direction (avoiding that way a possible large rotating error). 

The final angle error signal is also low-passed filtered. 

The identification of the parameters of the Laplace 
distribution of the radius is realized with [7]. This method 
gives us the parameters of the distribution for the step 
amplitudes and also the instants when these steps occur, from 
which we can estimate p. An ARMAX identification is used to 
identify the linear filter for the radius [8]. The identification of 
the parameters of the Cauchy distribution of the angle is 
realized by fitting the experimental PDF [9]. 

Once the models of the radius and the angle components of 
the error have been correctly identified and tuned, the 
generation of the along-track and cross-track components of 
the error is straightforward: 

 
{  (3)

 

where wa and wc are normalisation constants used for the 
situations where the error vector does not distribute equally in 
both directions [10]. 

<<< until here, in GREEN, is what I added to the draft 

>>> from here, in YELLOW, is what I took from the draft 

III.  APPLICATION OF THE DEGRADED TRAJECTORIES TO 

ROAD USER CHARGING 

A. GNSS data collection 

The GNSS position error modelling, as mentioned in item 
3 of the Sensitivity analysis, shall rely on various full scale 
experiments reproducing operational scenarii. In the frame of 
this study, a test vehicle is equipped with several low-cost 
GNSS receivers from uBlox, ST, and SiRF, among which a 
low cost receiver uBlox LEA6-T is considered. The equipped 
vehicle is shown on Figure 3. The test devices were placed 
behind the windshield. 

A reference trajectory is needed, not only for the error 
modelling step of the work, but also later on as a basis for 
cloning. The reference trajectory, supposed to be errorless, 
will actually be degraded N times, applying N different radius 
and angle errors, so that N clones of the initial uBlox 
trajectory will be able to be built in order to be fed into the 
RUC process. The synthetic errors are built by drawing 
random values in each of the probabilistic laws that are used in 
the radius and angle models. 

On the roof one can see the antenna of the reference 
NovAtel CPOS receiver. This receiver is hybridized with an 
IMU and post-processed by the kinematic Precise Point 
Positioning (PPP) Terrapos software. 

 
Figure 3: test vehicle from Q-Free 

The data set is composed of 28 trajectories from Frankfurt, 
Germany, each of them being approximately 5 km long (see 
Figure 4). They were performed at the average speed of 15 
km/h. Despite it is without tunnels and covered sections, the 
driven route goes through deep urban canyons, as visible in 
Figure 5. 

 
Figure 4: Driven route in Frankfurt recorded by the reference receiver 

 
Figure 5: Same route in Frankfurt in a 3D building model 

Figure 6 displays the extreme performances of the uBlox 
receiver observed throughout these 28 revolutions downtown 
Frankfurt. Most trajectories typically show positioning error 
time series close to the best one, but 2 trajectories contain 

Xa = wa R[n] cos (φ) 
Xc = wc R[n] sin (φ) 



large error peaks of 400 meters for a duration of up to 30 
seconds (see Figure 6). 
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Figure 6: Position error of best (25) and worst (21) trajectories 

B. RUC virtual gantries and performance metrics 

The RUC application is based on virtual gantries (VG) 
defined as geo-objects specified by latitude and longitude. 
They comprise a tolling point (pink circle on Figure 7), a 
central polyline, and cross-sections (ABCD) with left and right 
extensions of the road (dashed line), and outer tolerances to 
the left and right (solid line), in meters. The tolerances can be 
made very wide if there is no neighboring road. A virtual 
gantry is oriented. 
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Figure 7: Description of a virtual gantry 

When a vehicle passes through the gantry, the intersection 
point between the GNSS trajectory and the crossing lines are 
identified and the distance from the center point to the 
intersection point is calculated. This distance is compared to 
the road width and the tolerance and gives a passage score, 
with a maximum value at 1 if the intersection coincide with 
the center point, and going to zero at the outer tolerance point. 
If the intersection is outside the tolerance limits, the passage of 
this crossing line is ignored. After the passage through the 
VG, the total score is calculated and if the total score is above 
a predefined limit and more than p out of q crossing lines are 
crossed and the crossing lines are crossed in correct order, 
then a VG passage is assessed. The score can be used as an 
indication of VG passage confidence. 

The arrangement makes the passage detection independent 
of driving speed and GNSS sampling rate. The method also 
spreads the decision out on a large geographical area (several 
hundreds of meters, even kilometers in rural road scenario, 
with multiple crossing lines) thus reducing the effects of the 
correlation between individual GNSS samples. The VG can be 
applied to curved roads and also in (or close to) intersections. 
This makes the method also suitable for urban use. The 
tolerance and width information are set individually for each 
crossing line based on local geographical and road topology 
properties taking into account typical GNSS performance at 
that location. 

A first set of virtual gantries have been defined manually 
all along the itinerary repeated in Frankfurt (in blue). These 
virtual gantries should be detected and they will make it 
possible a measurement of the missed detections of the 
process. Additional virtual gantries (in orange) were added in 
the vicinity of the first set. The aim of this second set is to 
create false detections and make it possible a measurement of 
those. Some of these additional virtual gantries belong to other 
streets, but some are also totally fake. They are located in such 
a way to trigger false detections. Thus the false detection rates 
seen in this article does not reflect at all those of a real system. 

^^^ From Ola’s txt in BLUE 

 
Figure 8: Virtual gantries designed in our experimental area in Frankfurt: the 
reference trajectory crosses through 20 virtual gantries 

In Figure 8 and in the following Figures 9 and 10, this 
color code has been applied: 

• green line: reference trajectory 

• blue line: real trajectory of uBlox 

• magenta line: cloned trajectory of uBlox 

• blue virtual gantry: virtual gantry in the original QFREE 
database 

• orange virtual gantry: virtual gantry added specially for 
false detection purpose. 



 
Figure 9: An example of missed virtual gantry (magenta line) 

 
Figure 10: An example of false detection (magenta line) 

The chosen metrics for missed detections and false 
detections have been chosen with QFREE agreement and 
according to [ISO/TS 17444-2]. They are the followings, for N 
clones of the uBlox-6T trajectory: 

Global metrics: 

• CCR Correct Charging Rate = TotalNbCorrectDetections 
/ (N*RefNbCorrectDetections) 

• OCR Over Charging Rate = TotalNbFalseDetections / N 

Metrics local to each virtual gantry: 

•CCER Correct Charge Event Recognition = 
(NbCorrectDetections for VGi) / (RefNbCorrectDetection for 
VGi) 

• FPCER False Positive Charge Event Recognition = 
(NbFalseDetections for VGi) / N 

For instance here is the result of the assessment of the 
RUC algorithm with 17,000 cloned trajectories, with a certain 
set of error modeling parameters: 

 

#Output RUC algorithm
total missed number : 9
total false  number : 480

#Global metrics
Correct Charging Rate (CCR) : 99.99735%
Over Charging Rate (OCR) :  2.82353%

#Metrics for each Virtual Gantry with at least one missed or one false
#VGi : Virtual Gantry Id
#MISSED : Nb of missed dectections for VGi
#CCER
#FALSE : Nb of false dectections for VGi
#FPCER
VGi MISSEDCCER FALSE  FPCER
30279 0 100.00000% 210   1.23529%
30275 0 100.00000% 145   0.85294%
30273 0 100.00000% 59   0.34706%
30283 0 100.00000% 27   0.15882%
30276 0 100.00000% 39   0.22941%
30113 4  99.97647% 0   0.00000%
30112 3  99.98235% 0   0.00000%
30099 1  99.99412% 0   0.00000%
30111 1  99.99412% 0   0.00000%

 
Numerical details : 
N = 17000 
TotalNbCorrectDetections = RefNbCorrectDetections*N-
TotalMissed= 20*17000 – 9 = 339991 
TotalNbFalseDetections = 480 
RefNbCorrectDetections = 20 
NbCorrectDetections for VGi = RefNbCorrectDetection for 
VGi - Nb of missed detections for VGi 
RefNbCorrectDetection for VGi = N for all VG because each 
of them has been crossed only once 

C. Tuning of the simulation process 

A first set of error modeling parameters (denoted the 
default set) has been estimated with the best trajectory (25) 
using the Hutter method implemented by Monsifrot [6] [7] 
[12]. Afterward the upper bound of the truncation of the 
Laplace law is the only parameter we make varying, from 22 
m to 400 m. 

TABLE I.  SIMULATION PARAMETERS (RADIUS) 

Parameter Default  
Laplace   

µ  11 m  
b  36 m  

min 0.1 m  
max 22 m 400 m 

Cauchy   
x0 0  
γ 0.5 m  

min  -1.0 m  
max  1.0 m  

Filter coef a  { 1, -1.728, 0.7544 }  
Filter coef b  0.02518  
Step prob p 0.032  

TABLE II.  SIMULATION PARAMETERS (ANGLE) 

Parameter Default 
Cauchy  

x0 0 
γ 0.0161 rad * (speed/15 km/h) 

min  -pi 
max  pi 

Filter coef a 1 
Filter coef b { 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 



0.1, 0.1, 0.1, 0.1 } 
 

The speed is normalized by the average speed during the 
test campaign in Frankfurt (approximately 15 km/h) and it is 
used to modulate the parameter γ of the Cauchy law (i.e. the 
dispersion of the distribution). 

One simulation result (for the radius) is shown in Figure 
11 along with the true error radius of the best trajectory (25), 
using the default parameters. Another result, using the 
maximum upper bound of 400 m, is shown in Figure 12 along 
with the true error radius of the worst trajectory (21). 
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Figure 11: Time evolution of simulated and best target radii (trajectory 25) 
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Figure 12: Time evolution of simulated and worst target radii (trajectory 21) 

 

IV.   ANALYSIS OF THE RESULTS OBTAINED 

A. Fixing the number N of clones 

The first parameter to set is the number N of simulated 
trajectories we have to produce in order to be confident that 
computed metrics are representative of the SA set. For 
instance, N=1 will not produce representative metrics: there is 
a good probability that CCR would be 100% and OVR 0%. By 
contrast, N= 10,000,000 will produce much more 
representative metrics ; but it will take too much time to run 
the whole process on a computer. For information, it takes 
about 1,5 h of computation for N=10,000 on a quite robust 
laptop. In order to estimate the minimum N value to be used, a 
run with N=30,000 has been conducted. 
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Figure 13: Evolution of CCR over 30,000 runs 
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Figure 14: Evolution of OCR over 30,000 runs 

The red line corresponds to the mean of the last third part 
(from 20,000 to 30,000); the red dash lines correspond to 
+10% and -10% of the first oscillation. As we can observe, 
from N=17,000 oscillations stay inside the 10% bounds. This 



value of N=17,000 will be used for the next phase of RUC 
assessment. 

B. Sensitivity analysis 

This sensitivity analysis (SA) has focused on varying the 
upper bound of the Laplace law which drives the radius error. 
The two following figures illustrate the random draws for 5 
different sets of SA. Afterward, the notation SA(11-36-x) 
means SA set with all radius and angle parameters set to 
values of Table I and II, excepted for the maximum of radius 
Laplace parameter equal to x (cf. Table III). 
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Figure 15: SA random draw for 
100,000 samples trajectory 
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Figure 16: SA random draw for 1138 
samples trajectory 

As our original reference trajectory on which cloned radius 
and angle errors had been added is a 1138 samples trajectory, 
the Laplace random draw (Figure 16) is not so close to the 
ideal plot (Figure 15). However, we could observe that some 
high errors should be draw with low occurrence. 85,000 
trajectories have been injected in the RUC algorithm – 17,000 
for each SA – with the pre-defined set of virtual gantries 
(Figure 8): 

TABLE III.  VARYING RADIUS UPPER BOUND AND SIMULATION RESULTS 

SAi Total 
missed 
number 

CCR 
(%) 

Total 
false 
number 

OCR 
(%) 

SA0(11-36-22) 9 99.99 480 2.82 

SA1(11-36-44) 2062 99.39 7505 44.15 

SA2(11-36-66) 26631 92.16 13651 80.30 

SA3(11-36-88) 47105 86.15 17360 102.12 

SA4(11-36-176) 72672 78.63 21265 125.09 
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Figure 17: 
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Figure 18: 

We can observe an exponential trend of the evolution of 
CCR and OCR over the Laplace upper bound (Figures 17 and 
18). In order to confirm this trend (Figures 19 and 20), other 
runs have been realized with different sets of SA (from 11-36-
22 to 11-36-400): 

Note 1: For CCR the 3 first points have been discarded for 
exponential fit. Note 2: OCR results are not representative of a 
realistic set of virtual gantries. They are only representative of 
the fake virtual gantries that had been added to the original 
ones. Note 3: CCR results are representative of a very dense 
network of virtual gantries. Here, each large error makes a 
missed detection. We could imagine that a low density 
network will be more resilient to large position error. 

The exponential trends are confirmed. These asymptotic 
trends could be explained by the Laplace parameter we have 
chosen to make varying trajectories. The average of such a 
random draw with the upper bound varying is indeed nearby 
40 m. 

 

C. Conclusions 

This study has allowed assessing a real Road User 
Charging (RUC) application. Cloned (or simulated) 
trajectories have been built from a model issued from a u-
Blox-6T GPS receiver. It is based on Radius generation on one 
hand, and Angle generation on the other hand. Radius and 
Angle generation are driven by different random laws, and 
their parameters are the ones defined in Table 1. This kind of 
model fits quite well real trajectories with low errors, and has 
more difficulties to fit large error trajectories. 

Assessment of the RUC algorithm could have been done 
by injecting trajectories increasingly degraded. Up to 18 sets 
of 17,000 trajectories have been injected. These parametric 
tests have been based on the increase of the maximum Laplace 
error. The following global metrics have been computed: 
Correct Charging Rate (CCR) and Over Charging Rate (OCR). 
Metrics relative to each virtual gantry have also been 
computed: this allows identifying a possible virtual gantry 
which has been badly designed. As a matter of fact, all false 
detections have been generated by virtual gantries that have 
been intentionally designed for that purpose (virtual gantries 
added to create false alarms). 

Furthermore, assessment of the RUC application has 
shown that CCR and OCR reach an asymptotic value when the 
upper bound of the Laplace law is increasing. In our study, 
these asymptotic values themselves make no general sense 
because the use case is here totally artificial and non-
representative of a real RUC system, but the existence of these 
asymptotes tends to prove that the couple {virtual gantries + 
RUC algorithm} presents minimum performances in front of a 
given receiver. These performances are actually guaranteed – 
and in particular over-charging cannot exceed the maximum 
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Figure 19: 
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Figure 20: 



rate estimate – even if the experienced trajectories are all very 
bad ones. 
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