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Vision- and map-based non-line-of-sight satellites hybridized processing

David Bétaille1, Cyril Meurie2 and Yann Cocheril2

Abstract— Intelligent transportation systems use GNSS re-
ceivers as basic technological components. In urban applications
one faces the problem of GNSS multipath and particularly
of non-line-of-sight (NLOS) satellites. The development of
GNSS receiver technologies for mass market encompasses the
capability NLOS satellites processing by innovative techniques,
not only based on the Signal to Noise Ratio, but also on vision or
city model. This is particularly needed for urban positioning of
cars for applications which require high accuracy and integrity,
typically driving automation.
This article deals with the detection of NLOS satellites among
those tracked by an automotive-range receiver. We aim at
developing a method jointly based on the analysis of video
stream and a 3D map model of the environment. The article
provides a literature review, an evaluation of some existing
techniques and a preliminary analysis of the implementation of
the retained algorithm on a prototype developed in the frame
of a European H2020 ”Fundamental Elements call” project.

I. INTRODUCTION

Global Navigation Satellites Systems (GNSS) widely con-
tribute to the localization and navigation systems in Intelli-
gent Transport Systems (ITS). However, as GNSS position-
ing relies on the propagation time measurement of at least 4
satellites simultaneously, their positioning performances are
degraded in constraint environments such as urban zones.
The impact of the surroundings of the antenna can be, first,
unavailability of the service when signals are blocked, but
also accuracy decrease in presence of multipath reception.
Moreover, the case of Non-Line-Of-Sight (NLOS) signals
- i.e. signals received after reflections on the surrounding
obstacles with no direct ray - frequently occur in densely
built environments and degrade localization accuracy because
of the delay observed on the propagation time measurement
when a reflection occurs. This delay creates an additional
error on the pseudo-range measurement. In order to mitigate
multipath impacts onto signal reception and tracking, a
number of hardware solutions have been developed for a
while by GNSS manufacturers, both at the antenna level
and at the receiver level. This is not specifically the purpose
of this research. In the meanwhile, many works focus on
the development of solutions based on the complementarity
of other sensors such as vision. Some of these solutions
provide good results but are not yet integrated into embedded
systems to be industrialized. This is one of the objectives
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of the eMAPs project. Another is to take advantage in
this LOS/NLOS discrimination problem of local city map
models, when available.

The development of GNSS receiver technologies for mass
market encompasses the capability of NLOS satellites pro-
cessing by innovative techniques, not only based on the
Signal to Noise Ratio (SNR), but also on vision or city
model. This is particularly needed for urban positioning of
cars for applications which require high accuracy and high
integrity, typically driving automation.

We aim at developing a method jointly based on the analy-
sis of video streams and a 3D map model of the environment,
in order to guarantee the detection of NLOS satellites among
those tracked by an automotive-range receiver. This article
is divided into four main parts. Section 2 gives a literature
review. Section 3 is related to the NLOS detection based
on vision. The definition of the retained algorithm for the
sky/not-sky classification step is described and the validation
is carried out on the experimental multi-sensors dataset cre-
ated in Toulouse. Section 4 is related to the NLOS detection
based on map model, including the description of the retained
strategy that is applied in comparison to the vision-based
strategy. Section 5 describes in deep the navigation results.
Then we conclude on the work realized.

II. LITERATURE REVIEW

Literature focusing on techniques for localization per-
formance enhancement in harsh environments is abundant.
The most spread rely on multi-sensor-based approaches, for
which the goals are to compensate the lack of performance
of GNSS by adding other sensors (odometer, Inertial Mea-
surement Unit, etc.). The number of sensors can increase the
system complexity. Considering that, even with augmentation
systems, multipath remain the main source of errors in lo-
calization systems, some studies investigate how to enhance
accuracy by mitigating this specific source of errors [1]. Such
techniques propose some exclusion procedures to avoid using
corrupted data [2]. They can rely on GNSS observables such
as SNR or the elevation angle [3] that can inform on pseudo-
range reliability. Another approach consists in exploring the
knowledge of the structure of the environment crossed by
the vehicle for enhancing accuracy using vision. This part is
specifically detailed below.

A. Review about NLOS detection using vision

This knowledge of the structure of the environment
crossed by the vehicle can be extracted from video records
or 3D models when available [4] [5] [6] [7] [8] [9].



Concerning, the first option, that is called direct, no a
priori database or mapping is required. The structure can
be obtained by images provided by several cameras installed
on the roof of the vehicle. The approach has already been
validated with the PREDISSAT tool [4] and is continuously
improved in several research project (CAPLOC, SATLOC,
ERSAT-GCC, SMARTIES, LOCSP and FERROMOBILE).
In a first step, the state of reception of satellite signals is
determined by comparing satellite positions and obstacle
positions around the antenna. Satellites positioned in the sky
area are directly visible: those behind the mask are NLOS.
The information extracted from the image can allow us, for
example, to exclude or weight, the satellites that degrade the
receiver performances. In this way, the literature proposes
different methods based on sky/not-sky classification using
image processing. But most of them do not respect the real
time constrain for embedded application or do not provide
satisfactory results in complex urban environment. Some of
which are proposed, tested and improved in the framework
of research projects, but are not yet industrialized. This is
why the eMAPs project aims to use the potential of the most
promising methods by going to the end of the process, i.e.
the industrialization of the complete embedded system. In
the following, we present the different categories of NLOS
detection methods based on image processing, called direct,
and detail, for each of them, the most relevant papers of the
state-of-the-art regarding the eMAPs project.

As introduced previously, during the last decade, we have
seen a strong growth of research works using computer
vision for applications related to localization systems. They
can be classified into different categories. First of all, we
can distinguish methods using perspective images and other
solutions based on omnidirectional images allowing a wider
field of view. In the framework of the eMAPs project and
the eHermes prototype, we focus on the second approach.
Secondly, one can classify the proposed approaches into
different categories. The first one consists in using methods
based on matching algorithms to find, from a database of
georeferenced images, the image closest to the requested
image [10] [11] [12]. The second one consists in using
images (mainly omnidirectional) coupled with 3D models
to detect the skyline separating the sky from other objects in
the environment (vegetation, bridge, building, etc.) [13] [5]
[14]. The third one consists in using omnidirectional image
to detect the skyline and classify the pixels/regions of the
acquired image as sky (respectively non-sky) in order to
identify, after repositioning in the image, satellite classified
LOS (respectively NLOS). This is the last category that we
retain for the real-time detection task of the LOS/NLOS
satellites of the eMAPs project. The methods of this category,
which are likely to be appropriate, can also be classified with
a finer level of detail, depending on whether they deal with:

• image segmentation or unsupervised clustering [16] [15]
[18] [17] [19] [20] [21] [22] [23];

• machine learning, big-data or deep-learning [17] [24]
[21] [25] [26] [27] [28];

• specific sensors such as infrared cameras [29] [5];
• dedicated on FPGA architecture [30] [31].
To summarize the literature review on LOS/NLOS vision-

based and conclude, current state-of-the-art approaches use
convolutional neural networks to segment image into sky
vs non-sky regions. They offer in certain case better re-
sults compared to more classical strategies but require a
powerful training process, dedicated hardware and a huge
computational time when large scenario coverage is aimed.
This is for this reason, that we will not retain these types of
approach in the framework of eMAPs project. Other works,
most of which are older, but which offer very interesting
performances focus on so-called more classical clustering
techniques. They are applied on infrared, multispectral, or
visible images. We can now reject the methods devel-
oped for infrared images because of the type of cameras
embedded in the eHermes prototype. The other methods
used in the visible domain are mainly methods based on:
edge detection (Sobel, Canny), automatic and non-parametric
image thresholding (Otsu), supervised (SVM, k-NN, Bayes,
Neural Networks...) or unsupervised clustering (Fisher, K-
means, Fuzzy C-means...). They can also combine more
in-depth methods used in pre-processing of the clustering
step such as color space changes or segmentation methods
based on graph analysis, on superpixels or combining various
complementary characteristics such as texture, luminosity,
points of interest, etc. The comparison of the performance
of the vision-based algorithms proposed in the framework of
sky/non-sky detection for the improvement of the localization
is often discussed in research papers. It allows us to carry
out cross-checks to isolate the most interesting approaches.
In our opinion, edge detection methods are not adapted to
the high complexity of the urban environment in which the
eHermes system will be used. Classification approaches that
are coupled with a pre-processing step based for example
on superpixels segmentation or combining complementary
features are to be avoided due to the low speed/performance
gain. Unsupervised or supervised classification techniques
seem to be the most suitable and preferred approaches.
Several studies have shown that the Fisher algorithm used on
a simplified image offers very good results on real dataset
acquired with a fisheye camera as well as SVM but with
a higher processing time. This one seems to us relevant
as well as the Otsu algorithm which has been recognized
for several years and by several authors as very interesting
in terms of performance and processing time. Considering
the real-time detection task of the LOS/NLOS satellites in
the eMAPs project, we will therefore focus on these two
approaches by giving the advantage to the Otsu algorithm
for its computational cost and its easy integration on a FPGA
board.

B. Review about NLOS detection using map model

As indicated in introduction, an alternative exists to detect
NLOS satellites, which is indirect, making use of a digital
map into which an a priori user location is projected. The
use of geometric city models in urban canyons has first



been addressed simultaneously by [32] and [33]. Next, a few
research teams have been active: [34] [35] [36], coupling
3D modelling with road plane or numerical terrain 2D con-
straints. Sky plot of building boundaries from the perspective
of the user is made popular at that time.

Whereas these articles present methods that do not model
the additional path delay due to signal reflection, a few oth-
ers, on the contrary, will actually make this next step forward:
[37] [38] [8] [9] [39]. In addition to this LOS/NLOS indirect
methodology, shadow matching leverages the possibility of
predicting which satellites will be visible from the point
of view of the user, and compares this prediction to the
actual observation [40] [41] [42]. One can restrict the user’s
location domain by considering those satellites present in the
ephemeris and for which no measurement is made. Whilst
[8] introduced urban trench modelling of the street (UTM:
Urban Trench Model), more recent development [43] got
rid of this geometrical approximation, to take advantage of
the full polygonal description of the buildings, instead of
considering simple parallelepiped streets. This methodology
(UMM: Urban Multipath Model) is presented in section
3. Despite several proofs of concept for map aided GNSS
location through LOS/NLOS detection, there is still need for
large scale experiment and results, unless the methodology
cannot be generalized. This is one of the purposes of this
research in eMAPs, the other being the comparison with
vision-based.

III. NLOS DETECTION BASED ON VISION

Considering our analysis of the state-of-the-art, it seems
judicious to use the Otsu algorithm in the sky/non-sky classi-
fication task in the framework of the eMAPs project. Indeed,
this method is relatively simple to implement, does not
require any specific hardware, and has a reduced calculation
time. These are all reasons why it is often used in the vision
aided GNSS applications. Thus, we recall, the principle and
the definition of the algorithm given in details in [44] and
synthetized in [19].

Algorithm 1 Summary of Otsu algorithm
1. Compute the histogram (the number of occurrences for
each intensity level) and the probability of each intensity
level pi
2. Set the initial values P0(0) and P1(0) and their initial
corresponding means µIC0

(0) and µIC1
(0)

3. Set through all possible thresholds from 1 to L :
3.1. Update P0, P1 and µIC0

and µIC1

3.2. Compute the inter-class variance α2
k

4. The desired threshold k∗ corresponds to the maximum
of α2

k

Otsu algorithm is a non-parametric and unsupervised
method based on an automatic threshold selection currently
used in image segmentation. It allows to binarize an image by
analysing its histogram and calculating an optimal threshold.
This threshold value used to classify the pixels of the image

into one of the two possible classes (sky and non-sky in our
works) is the one that maximizes the interclass variance.

The eMAPs dataset (see section V) contains 43683 images
acquired in the area of Toulouse with the fisheye camera
oriented toward the sky for the NLOS detection task. The
sky/not-sky classification procedure based on Otsu algorithm
has been tested on the entire dataset and provide visual satis-
factory results. Nevertheless, to provide quantitative results,
we have calculated four classical metrics used actually in
artificial intelligence domain: accuracy, recall, precision and
f1-score. These metrics require a ground truth of the sky/not-
sky classification but which cannot be carried on the whole
dataset because of the time involved, a problematic well
know of the research community. To solve this problem, we
have created a reduced dataset (with a frame rate of 250) con-
taining 175 images evenly distributed along the course. The
corresponding reference classification has been handmade
created by four experts with the Computer Vision Annotation
Tool. Figure 1 illustrates four fisheye images acquired in
different environments during the experimentation (line 1),
the output classification provided by Otsu algorithm (line
2), the corresponding temporary ground truth image created
with CVAT (line 3). the LOS/NLOS satellites detection after
repositioning in the current image (line 4). In this line, LOS
(respectively NLOS) satellites are marked in green color
(respectively in red color).

(a) #8500 (b) #17750 (c) #19000 (d) #31250

Fig. 1. LOS/NLOS satellites detection by vision

Thus, on this reduced dataset, the sky/not-sky classifica-
tion results based on Otsu algorithm obtains an accuracy of
93.16 %, a recall of 99.96%, a precision of 89.95% and a
f1-score of 93.66%. Figure 2 illustrates the different metrics
calculated on each image of the reduced dataset. It permits
to shows if the classification results are constant or if some
images are more difficult to treat. Globally, the f1-score is
upper to 80% whatever the image considered expect for 3
slots regrouping 9 images over 175 images. Indeed, as we
can notice in Figure 2, three slots show a decrease of the
performance: the first one (images 21-23) shows a minimum
at 44%, the second one (images 86-88) is lower at 32%
and the last one (images 93-96) is the worse at 16%. These
classification errors are all due vegetation in the images.



Fig. 2. Sky/not-sky classification results on the reduced eMAPs dataset,
compared to the ground truth and using the classical metrics: accuracy,
recall, precision and f1-score

IV. NLOS DETECTION BASED ON MAP MODEL

The basic idea is to project the current rover position
estimate into a 3D map model and determine, from this point
of view, whether or not satellites are LOS or NLOS. The
rover position estimate could be:

• either the one based on the GNSS only observations
• or the one based on GNSS hybridized with other

sensors, e.g. wheel speed, IMU, visual odometry...
In test, the ground truth can also be used instead of the

rover position, to estimate best feasibility.
The 3D map model, in the context of this research, makes
use of the French national database, BD Topo ®. This is
available everywhere in France, with approximately 3 years
age. The building layer is used, i.e. polygons representing
buildings and their average height. In order to keep reason-
able computational throughput, a selection in the map data
should be made. This has been specified in accordance with
the itinerary performed for test purpose in section V.

The LOS/NLOS decision based on 3D map model is
returned to the GNSS navigation algorithm in order to
e.g. reweight the GNSS observations depending on the
LOS/NLOS decision. In addition to this decision, the
methodology is capable of computing a ranging correction in
NLOS case. This correction can be applied by the navigation
algorithm. The process is first to detect if any facade exists
in every satellite azimuth, with a height enough to occult the
corresponding satellite elevation. This initial step identifies
LOS/NLOS satellites. The next step is to examine every
facade, locally, to detect whether it could make a specular
reflection with the occulted satellite previously identified. In
this case, the final step is to check that no other facade may
occult the reflected ray, whether in between the antenna and
the impact point, or whether in between the impact point
and the satellite. In case several facades exist with reflected

rays, the one with the largest incidence angle is preferred.
Facades are regarded as vertical planes, with the height of
the polygon they belong to. There are several options finally,
but the one suggested by Ni Zhu in her PhD dissertation
[43] relies on both functional and stochastic approaches. For
those satellites being NLOS: ranging are corrected, using the
additional travelled paths estimated with the 3D map model
(functional) and ranging are reweighted in the least-squares
of Kalman filter GNSS navigation algorithm: their variances
are multipied by 10 (stochastic).

Fig. 3. One hour loop in Toulouse

V. NAVIGATION RESULTS

A. Experimental setup

An acquisition campaign has been carried out in the city
of Toulouse, on 23 April 2021 (Figure 3). There are two
sections, initial and final, in urban environment, and an inter-
mediate section, on the south ad east highways of Toulouse.
The total duration of the test is 62 minutes: 56 minutes in the
city centre and 6 minutes on the highway. 5 minutes (between
17:14 and 17:19) in the very deep centre of the city have
been chosen to focus on in the analysis. In addition to the
skyward facing camera, the GNSS equipment on-board the
vehicle was, in addition to a Ublox F9P multi-constellation
receiver, a Novatel SPAN GNSS inertial navigation system,
for ground truth purpose, continuously available and reliable
(i.e. dm accurate).

B. Global confusion matrix

A confusion matrix has been computed in order to com-
pare both methodologies of LOS/NLOS classification using
vision and map. The rover position used for map-based
LOS/NLOS decision was, for feasibility purpose, the refer-
ence trajectory or ground truth. We prove, in the deep centre
of Toulouse, that LOS/NLOS classification disagreement
between both methods will not occur for more than 12%
of the total number of satellite observations.

In the deep urban centre, one counts 1501 epochs with
GPS measurements (5 minutes @ 5 Hz) on 23 April 2021
in Toulouse. This totalizes 11821 measurements, among
which the elevation and azimuth of 7270 satellites have their
projection in the fisheye field.

The LOS/NLOS confusion matrix for fisheye vision versus
map model classifications is given in Table I.



TABLE I
CONFUSION MATRIX OBTAINED BY VISION VERSUS MAP MODEL

LOS by vision NLOS by vision
LOS by map model 5953 images: 81.9% 401 images: 5.5%

NLOS by map model 502 images: 6.9% 414 images: 5.7%

C. Navigation results based on 3D model

The navigation solvers used are a GPS-only ordinary least-
squares (OLS), in which every satellite has the same weight,
and a weighted least-squares (WLS), similar as RTKLIB with
usual modelling of range errors, in which the variance equals:

σ2
GPS = 0.32+0.32/sin(el)+2.42+0.32+0.32+0.52 (1)

where 2.4m stands for orbit error, 0.3m for receiver
noise, 0.3m and 0.5m for iono and tropospheric errors resp.
Broadcasted ephemeris are used (tlse113z.21n). An elevation
cutoff of 15° is optional.

In case of NLOS satellite, a geometrical correction is
applied, and the satellite is downweighted by a factor 10
(i.e. variance*10). LOS/NLOS decision and range correction
are based on the ground truth in this computation.

The plane error (HPE: horizontal positioning error) is
computed and given in Table II, i.e. the quadratic sum of
East and North (E, N) deviations between the GPS solutions
and the reference trajectory.

TABLE II
NAVIGATION RESULTS: PLANE ERROR (HPE)

Each cell displays Highway City centre City centre
median, 68 and 95 1855 ep 16791 ep 16791 ep
percentiles of HPE map-aided
OLS no el mask 1.23m 2.71m

(no ep w/o solution) 1.47m 5.90m /
2.21m 32.33m

WLS no el mask 1.21m 2.69m 2.33m
1.47m 5.83m 4.87m
2.21m 30.90m 26.54m

OLS el>15° 1.80m 2.43m
(13 ep w/o solution) 2.08m 3.03m /

2.95m 24.26m
WLS el>15° 1.79m 2.43m 2.40m

2.08m 3.03m 3.00m
2.95m 24.19m 19.44m

The plane error envelop (HPL: horizontal protection level),
i.e. the semimajor axis of the plane error ellipse, is computed
and given in Table III, with a probability of missed detection
PMD of 0.1% and dimension 4 (for E, N, Up and receiver
clock term), which is supposed to bound 99.9% of the plane
error. Note that, before computing this HPL, a global test is
made, in order to select only reliable solutions. This test, a
χ2 test based on the sum of weighted residuals, eliminates
solutions with a probability of false alarm PFA of 0.1%. The
degree of freedom applicable in this test equals the number
of used satellites minus 4.

In this table, we focus on results in the city only, and for
weighted least-squares. The misleading information (MI) is

also indicated, i.e. the rate of HPE being actually over HPL,
violating the computed integrity.

TABLE III
NAVIGATION RESULTS: PROTECTION LEVEL (HPL)

Each cell displays City centre City centre
median, 68 and 95 16791 epochs 16791 epochs
percentiles of HPL map-aided
WLS no el mask 71.5% global test ok 78.9% global test ok

7.33m 7.65m
8.64m 11.00m
18.14m 31.99m

18.1% violation 1.6% violation
WLS el>15° 88.1% global test ok 92.2% global test ok

11.68m 11.96m
12.18m 12.95m
21.87m 43.60m

7.8% violation 1.8% violation

A particular focus, Table IV, is made onto the 5 minutes
subset in the deep city centre of Toulouse.

TABLE IV
NAVIGATION RESULTS IN THE DEEP CITY CENTRE: HPE AND HPL

Each cell displays Deep city centre Deep city centre
median, 68 and 95 1501 epochs 1501 epochs

percentiles map-aided
WLS no el mask 9.78m 8.85m

16.95m 11.20m
31.51m 20.22m

27.2% global test ok 76.7% global test ok
14.03m 25.56m
15.24m 26.77m
25.46m 36.75m

25.7% violation 1.6% violation
WLS el>15° 8.36m 4.65m

10.70m 7.68m
22.75m 14.74m

74.5% global test ok 96.7% global test ok
17.70m 25.57m
17.90m 28.07m
21.68m 48.14m

14.4% violation 1.2% violation

The improvement for GPS-only with no elevation cutoff
is around 0.3m less on the median plane error in Toulouse
urban test globally (after removing the highway). One gets
2.33m instead of 2.69m, applying the NLOS downweighting
and correction. This is in the city centre. The 68 and 95
percentiles are improved by resp. 1 and 4 meters. Almost
the same accuracy seems achievable with a 15° cutoff,
which would disqualify the map-based NLOS correction,
even based on ground truth. However, removing satellites
below 15° elevation increases error on the highway, by 0.6m
approx. Hence, keeping all satellites, even low in elevation,
with NLOS detection and correction seems rather valuable.
Moreover, the combination of this 15° cutoff with NLOS
detection and correction gives the best results, with a median
plane error still equal to 2.40m but with improved 68 and
95 percentiles. An examination into details of samples of the
trajectory in the deep urban centre of Toulouse have also be
carried out. This shows that UMM does bring improvement



when combined again the elevation cutoff. In the case of 15°
elevation mask and UMM, the best accuracy is obtained. This
indicates that UMM calculation is applicable and valuable to
satellites above this elevation mask.

At first analysis, results are positive in Toulouse, even
if not so impressive compared to what we used to obtain
in Nantes and, above all, in Paris. Note that formerly, we
also experienced slightly less success in applying UMM in
Toulouse, except in the urban city centre. Globally, Toulouse
streets are very different from Paris Haussmannian streets.
(UTM was not that good approximating in Toulouse.) An-
other challenge is to measure the improvement by UMM on
the same version of the navigation algorithm, i.e. every other
tuning (in particular stochastic parameters) being unchanged.
This was not the case in several of our previous works
neither in some other articles one can read about map-aided
navigation. It is non sense e.g. comparing an OLS with
a map-based WLS. Both should be weighted or not, with
modulations due to the use of the 3D city model.

For further works, we aim at investigating again with the
same algorithms our former data sets, in 2012, 2014 and
2019, in Nantes, Paris and Toulouse. Some are running the
F9P (the latter), some the LEA 6T from Ublox. Again, the
impact of the ionosphere should be regarded carefully, in
particularly in 2014 where it was maximum and not properly
modelled in our previous investigations [45]. Note that range
downweighting in NLOS case mechanically increases protec-
tion level, leading to less integrity failure. An alternative, in
order to keep almost constant envelop, would be to upweight
all other ranges in LOS case.

D. Navigation results based on vision

Instead of map-based, one suggests in this last part to
move to vision-based (for those satellites projecting in the
fisheye field of view). In this case, no range correction is
made, but only downweighting in NLOS case. In short (Table
V), the introduction of vision-based LOS/NLOS sorting in
the solver does not change much to the results already
shown. They remain almost unchanged. In the deep centre
of Toulouse, we have 4.65m of median error against 7.03m
for fisheye sorting (8.36m if we do nothing).

TABLE V
VISION-AIDED NAVIGATION RESULTS: PLANE ERROR (HPE)

Each cell displays City centre Deep city centre
median, 68 and 95 16791 epochs 1501 epochs
percentiles of HPE vision-aided vision-aided
WLS no el mask 2.69m 8.53m

5.95m 17.02m
32.18m 32.22m

WLS el>15° 2.41m 7.02m
3.00m 10.72m
25.76m 24.42m

Since we know that both sorts match 88% in Toulouse,
one can assume that the ranging correction makes a signif-
icant difference in the very final navigation results, because
downweighting only seems not so efficient.

VI. CONCLUSION

This article is based on the research and development
activities on the vision subsystem of the GNSS eHermes
platform, delivered during the eMAPs H2020 project. The
vision-based GNSS is challenged with a 3D model-based
LOS/NLOS satellite processing.

The first part of the article summarises an analysis of the
current state-of-the-art of the NLOS detection based either
on vision or on 3D map. At this stage, Otsu algorithm seems
to be promising for the vision-based NLOS detection on
the eHermes prototype. The second part is devoted to the
description of the NLOS detection based on vision and the
evaluation of the performance of the retained Otsu algorithm.
The evaluation concludes that Otsu algorithm yields good
results: a good classification rate around 96% and a com-
putational time of 27ms/frame on the experimental multi-
sensors dataset created by ENAC during the eMAPs project
in Toulouse. The third part is devoted to the NLOS detection
based on 3D map model using the French national database,
BD Topo ®. The methodology based on the detection of
satellite occluding facade and the possible reflecting ones
is described. The jointly use of functional and stochastic ap-
proaches combined seems to be an interesting and promising
way. Finally, a comparison between vision-based and map-
based LOS/NLOS processes has been carried on a focus of
5 minutes in the very deep centre of the Toulouse city. Both
techniques agree by 88% with an advantage, in terms of
accuracy, using the map and the inferred additional pseudo-
ranges, if NLOS, due to building reflections.

Additional work is on-going in order to finalize the
eHermes implementation and also to generalize the processes
to other satellites than GPS only. Trying to keep reasonable
protection level, not increased PL due to downweight of
NLOS ranges, is also targeted in further research about aided
urban navigation.
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