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Abstract: In the field of geophysics and civil engineering applications, ground penetrating radar
(GPR) technology has become one of the emerging non-destructive testing (NDT) methods thanks
to its ability to perform tests without damaging structures. However, NDT applications, such
as concrete rebar assessments, utility network surveys or the precise localization of embedded
cylindrical pipes still remain challenging. The inversion of geometric parameters, such as depth
and radius of embedded cylindrical pipes, as well as the dielectric parameters of its surrounding
material, is of great importance for preventive measures and quality control. Furthermore, the precise
localization is mandatory for critical underground utility networks, such as gas, power and water
lines. In this context, innovative signal processing techniques associated with GPR are capable of
performing physical and geometric characterization tasks. This paper evaluates the performance
of a supervised machine learning and ray-based methods on GPR data. Support vector machines
(SVM) classification, support vector machine regression (SVR) and ray-based methods are all used to
correlate information about the radius and depth of embedded pipes with the velocity of stratified
media in various numerical configurations. The approach is based on the hyperbola trace emerging
in a set of B-scans, given that the shape of the hyperbola varies greatly with pipe depth and radius
as well as with velocity of the medium. According to the ray-based method, an inversion of the
wave velocity and pipe radius is performed by applying an appropriate nonlinear least mean squares
inversion technique. Feature selection within machine learning models is also implemented on the
information chosen from observed hyperbola travel times. Simulated data are obtained by means of
the finite-difference time-domain (FDTD) method with the 2D numerical tool GprMax. The study is
carried out on mono-static, ground-coupled GPR datasets. The preliminary study showed that the
proposed machine learning methods outperforms the ray-based method for estimating radius, depth
and velocity. SVR, for instance, calculates depth and radius values with mean absolute relative errors
of 0.39% and 6.3%, respectively, with regard to the ground truth. A parametric comparison of the
aforementioned methodologies is also included in the performance analysis in terms of relative error.

Keywords: non-destructive testing; ground penetrating radar; support vector machines; ray-based
method; utility pipes; parameter estimation; GprMax
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1. Introduction

Ground penetrating radar (GPR) is a non-destructive testing (NDT) method used
to both assess the subsurface conditions of a structure and locate buried objects using
electromagnetic waves [1]. Thanks to its sensitivity to the material characteristics (such as
permittivity, conductivity, etc.), GPR can be used to detect both metallic and non-metallic
targets. In addition to the wide range of GPR applications listed in [2], estimating the
depth and radius of buried cylindrical pipes has become an important task—for instance,
in concrete rebar investigation and underground utility network localization [3]. How-
ever, regardless of the information acquired using GPR, each application requires suitable
processing techniques in order to interpret GPR data and for decision-making purposes.
Within the scope of buried utility pipes, since the 3D localization of underground utility
pipes has become mandatory to avoid accidents during excavation, the estimation of depth
and radius has been widely studied, as demonstrated in the literature, using the following:
the ray-based method [4], full-wave inversion (FWI) [3], Hough transforms [5] and ma-
chine learning techniques [6]. Recently, Liu et al. [3] used ray-based and FWI approaches to
develop a novel method to estimate radius, depth and relative permittivity of utility pipes.
However, the latter approach demands heavy computational resources. Therefore, in order
to reduce the complexity, FWI is not considered in this paper.

Within the family of several machine learning algorithms, support vector machines
(SVMs) have shown promising results in various applications. Moreover, SVMs have
been extended to regression problems via the support vector regression method (SVR).
Ihamouten et al. [7] used an SVR-based supervised learning method to determine the
correlation between the complex dielectric permittivity and the volumetric water content
of hydraulic concretes based on GPR data. In addition, Le Bastard et al. [8] applied SVR to
estimate the thin pavement thickness. Furthermore, Todkar et al. [9] used two-class support
vector machines (SVM) to detect debonded sections of the pavement structure.

SVM techniques have also displayed promising results for underground utility ap-
plications. SVMs serve to detect utilities by automatic hyperbola detection [10]. Notably,
Terrasse et al. [11] made use of SVM-based automatic hyperbola detection for utility net-
work detection. In terms of parameter estimation, Kaur et al. [12] focused on the features
extracted from rebar hyperbola, whereas Muniappan et al. [6] employed the skeletonization
technique to estimate rebar radius and depth in concrete structures. This latter approach
however is applied on images and consequently encounters fitting errors on the skeleton
compared to the theoretical hyperbola.

The ray-based method was used in [4] to detect buried rebars using inverse problem
approach, whereas Li et al. [13] used it to estimate radius of the buried pipe at previously
known velocity condition. Dolgiy et al. [14] sought to invert the radius of buried pipes using
a ray-based method coupled with least squares fitting techniques. Ristic et al. [15] proposed
a nonlinear hyperbola fitting approach to invert the velocity and radius concurrently.
Both approaches were developed for mono-static antenna configurations and derived
the hyperbola as a function of depth, radius and velocity. Although these methods are
promising, the error introduced on the peak localization in the temporal signal leads to
large errors in the radius estimation [16].

The depth precision for the mapping of critical underground utility networks such
as gas, power and water are regulated by law in countries such as France. For instance,
in the case of critical networks, the Class A mandates a maximum inaccuracy of 40 cm.
However, it is difficult to estimate the depth precisely since existing methods are not
precise to be robust enough to guarantee the desired precision levels. Therefore, the
objective of this paper is to provide a preliminary study to compare the physical ray-based
and machine learning methods, namely multi-class SVM classification and regression, in
order to identify a precise and robust approach to estimate velocity, depth and radius.
The proposed objectives are illustrated in Figure 1. The depth (di) from the surface AB
to the top of the cylindrical object, the velocity (vm) of the surrounding medium of the
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buried cylindrical objects and the radius (ri) of the buried cylindrical objects are the three
parameters of interest, as observed in Figure 1. 
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Figure 1. Buried cylinders in the subsurface and intended estimated parameter.

Due to the lack of suitable experimental data at this stage of the research project, the
comparison is drawn on numerical GPR data (B-scan from various configurations) created
using the FDTD-based software 2D GprMax [17].

The remainder of this paper is organized as follows: Section 2 presents the two
proposed parameter estimation methods, Section 3 reviews the 2D GprMax data models
generated to validate the methods, Section 4 presents the results, Section 5 is focused to
discussion, and the final section draws a set of conclusions.

2. Estimation Methods

In this paper, three parameters related to embedded pipes were estimated, namely:
radius (r), pipe depth (d) and the propagation velocity (v). For this purpose, four approaches
have been considered to be broadly categorized into two groups: ray-based and machine
learning models. The ray-based method can be implemented in two ways: (1) a concurrent
estimation of v, d and r parameters; and (2) a radius (r)-only estimation at a previously
known propagation velocity (v) of the medium. This method is performed using an
appropriate nonlinear least squares optimization algorithm on the extracted hyperbola
with respect to an analytical geometrical ray-based objective function.

To draw a contrast, the machine learning method, namely SVM, has also been imple-
mented as either a multi-class classification model or a regression model, i.e., SVR, in order
to estimate the v, d and r parameters.

2.1. Ray-Based Method

The hyperbolic signatures in the GPR data are created by reflections occurring on the
target surface due to a change in distance between antenna and target.

As shown in Figure 2, in the case of a mono-static antenna configuration—assuming
that the reflection takes place on the line between the antenna phase center and the center of
the cylinder, when the pipe orientation axis is perpendicular to the horizontal displacement
axis of the GPR—the two-way travel time ti of the reflected wave on the cylindrical surface
appears at a two-way travel time distance t′i on the A-scan of the particular GPR position,
such that ti = t′i. Hence, the geometrical relationship can be defined in Equation (1) below [4]:

∆x2
i =

v2t2
i

4
+ vs.rti − (d2 + 2dr) (1)

where ∆x2
i = (xi − x0)

2 is derived as a polynomial function of v, r, d and ti, with i
denoting the GPR’s horizontal spatial position. From Equation (1), for a given hyperbola,
the v, r and d parameters can be inverted since they remain constant, while ∆xi and ti
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are the variable components. For this step, the unconstrained, Newton quasi-nonlinear
optimization algorithm was adopted by virtue of the assumption that the vs. value of
the medium remains constant around the hyperbola (a homogeneous and dispersiveness
medium without anisotropic properties). The unconstrained solver was chosen given that
the inversion results are highly sensitive to both boundary conditions and starting values.
In addition, each hyperbola requires fine tuning of the boundary conditions, which proves
to be difficult for large datasets with broad configurations in terms of velocity, depth and
radius. Hence, the unconstrained, Newton quasi-nonlinear optimization algorithm was
adopted to generalize the model and remove its dependence on boundary conditions.

(v, d, r) = argmin(ξ,τ,ζ)

N

∑
i=1

[
∆x2(ξ, τ, ζ, ti)− ∆x2

i

]2
(2)

where ξ, τ and ζ are the intermediate values of v, d and r, respectively.

5 10 15 20 25 30 35 40
Number of A-scans

500

1000

1500

T
im

e 
sa

m
pl

es

-6

-4

-2

0

2

4

6

A
m

plitude

103

d

r

t'
i

t
i

x
i

x
0

Figure 2. Geometrical, Ray−based relationship of a buried cylinder.

2.2. Machine Learning Methods: SVM and SVR

The second family of methods studied in this paper are the SVM and the SVR. These
methods are adapted to estimate the v, d and r parameters with three independent trained
models. For each parameter inversion, the extracted hyperbola features are considered as
inputs, while v, d and r parameters are the predicted values.

While SVM is based on the structural risk minimization principle, SVR is a very
specific class of non-parametric regression methods based on SVM. Among two different
approaches of SVR, ε-SVR is adopted for this study. Multi-class SVM is applied with the
perception that the labeled parameters are classified into set of different classes, while SVR
is adopted when parameters are considered as continuous value problem.

Formulation

Let TS = {(z1, S1), . . . , (zN, SN)} be composed of N pairs of observation, with zi
being the features vector associated with the ith B-scan and Si is the label. In case of radius
estimation, we have Si ∈ r, for velocity, we have Si ∈ v and for depth estimation, we have
Si ∈ d; where r, v and d are as defined in the next section. We begin by describing the case
of the linear function, f , given by [18]:

f (z) = 〈a, z〉+ b with z ∈ X, b ∈ R (3)
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where a and b are weight vector and bias, respectively. 〈·, ·〉 represents the dot product in X
(where X denotes the space of the input patterns).

In case of classification, the optimization problem is expressed as ([9]):

minimizea,b,ξ
1
2

aTa + C
N

∑
i=1

ξi

subject to Si(aTΦ(zi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ...N.

where Φ is the kernel function that maps vectors into higher dimensional functions, ξ is
the slack variable introduced to reduce training errors and C > 0 is the regularization
parameter.

The solution f (x) uses Lagrange multipliers and is given by [9]:

f (z) = sgn
{ N

∑
i=1

Si αi Φ(zi, z) + b
}

(4)

where sgn is the sign function, αi are Lagrange multipliers and Si are the class labels.
In case of regression, an additional parameter e is introduced. In addition, in this case

ξ and ξ∗i are the slack variables included to reduce training errors. Thus, the classification
equation can be rewritten as [18]:

minimizea,b,ξ
1
2

aTa + C
N

∑
i=1

(ξi + ξ∗i )

subject to


Si − 〈a, zi〉 − b ≤ e+ ξi,
〈a, zi〉+ b− Si ≤ e+ ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , N

The solution for nonlinear regression given by [18], as follows:

f (z) =
N

∑
i=0

(αi − α∗i )Φ(zi, z) + b (5)

where αi and α∗i are Lagrange multipliers. Furthermore, in case of a Gaussian kernel
function, Φ can be defined as follows:

Φ(z, zi) = e−
|z−zi |

2

2σ2 (6)

and this is often simplified as
Φ(z, zi) = e−γ|z−zi |2 (7)

where the γ, C and e are optimized in LIBSVM.

2.3. SVM Implementation

Three separate multi-class SVM models (SVMr, SVMd, SVMv) and three separate
ε-SVR models (SVRr, SVRd, SVRv) were trained independently with their corresponding
labels. Each separate, model-enabled single parameter inversion at a time, solely by relying
on the proposed six features. Furthermore, the same set of training and testing data were
utilized in all models to avoid any bias in the results due to data set difference.

2.3.1. Feature Selection

The feature selection for the machine learning step is based on the hypothesis that a
pipe with a large radius yields flatter hyperbola and the tail of hyperbola is observed to
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become more parallel in the same medium velocity as observed from experiments (argued
by [16]). This pattern correlation relates the hyperbola sector with the three parameters
under study namely, v, d and r.

Figures 3–5 illustrate how the hyperbola shape varies across different v, d and r.
Based on this fact, the features were selected to fully represent the hyperbola shape while
minimizing the dimension of the features.
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Figure 3. Examples of hyperbola shape variation across different velocity at same depth and radius.
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Figure 4. Examples of hyperbola shape variation across different depth at same velocity and radius.

0 10 20 30 40 50 60 70 80

Antenna positions (cm)

0

0.5

1

1.5

2

2.5

T
im

e 
(n

s)

r=1 cm
r=5 cm
r=10 cm

Figure 5. Examples of hyperbola shape variation across different radii at same velocity and depth.
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In this context, the B-scan data are initially preprocessed to obtain the six features
(ta, tb, tc, td, te, t f ), as shown in Figure 6. These features are described as follows: ta is the
two-way travel time from the ground to the vertex of hyperbola, tb is the mean of first 25 %
of hyperbola data points, tc is the mean of 25 % to 75 % of hyperbola data points, td is the
mean of 75 % to 100 % of hyperbola data points, t f is the maximum travel time within the
window and te is the travel time difference (i.e., t f − ta).
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Figure 6. Representation of travel-time-based feature selection from the hyperbola on a B-scan; εr = 6,
r = 1 cm, d = 30 cm.

The adopted ray-based and machine learning methods presented hereafter are im-
plemented using resulting B-scan feature sets. In this work, travel time, t, was picked, as
shown in Figure 7. In the first echo, the antenna radiation source, ground surface and direct
coupling wavelets overlap with each other; whereas, in the second echo, a phase inversion
of the signal is observed when the pipe is encountered. Due to this, minimum peak from
the first echo and the maximum peak from the second echo are selected.
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Figure 7. Travel time estimation from A−scan for hyperbola formation.



Remote Sens. 2022, 14, 1047 8 of 17

2.3.2. Training, Validation and Testing

Feature extraction is performed on each B-scan signals to obtain the features matrix
Z. The data is then divided into two sets—learning and testing—with learn-to-test ratio
80%:20%. The ratio was chosen as an optimized value in terms of model performance while
maximizing the size of training data with reasonable amount of test data. The test data is
independent from the learning data. Both SVM and SVR are then implemented using the
SVM toolbox in MATLAB 2020a. A k-fold cross validation technique is used (with k = 5) in
the learning stage to validate the model in the learning phase, avoid over-fitting [9] and
provide insight on the model’s behavior to unknown data sets.

A loss function, namely average root mean square error (RMSE), is used to determine
the optimal values for each method. While SVM adopted fine Gaussian kernel one-to-
one multi-class classification, ε-SVR adopted the fine Gaussian kernel. In case of SVM,
two parameters, namely c and γ, are optimized, whereas an additional ε parameter in
case of ε-SVR were optimized against the RMSE loss function. In this study, described
hyperparameters were optimized using the Bayesian optimization algorithm.

3. Database Generation

In order to validate the proposed estimation approaches, simple homogeneous disper-
sive 2D GprMax models were used [17]. GprMax is an open source simulation software
developed in python environment for forward modeling of GPR that uses finite difference
time domain (FDTD) to simulate EM wave propagation solving Maxwell’s equations [17].

In our work, the domain size is defined as 1.0 m× 1.0 m. The domain mesh sizes are
∆x = 2.5× 10−3 m, ∆y = 2.5× 10−3 m and the time sampling resolution is ∆t = 5.89× 10−12 s,
which satisfies the Courant, Freidrich and Lewy conditions [17]. In terms of the source, a
Hertzian dipole is excited with point source with zero-offset, at height of 5 mm, from the
surface. The excitation waveform was the Ricker wavelet, centered at fc = 1.5 GHz.

The model consists of a metallic cylindrical pipe embedded within a single layer, as
described in Figure 2. The permittivity of the layer (εr) is varied between 6 and 16 with
steps of 0.33. Cylindrical pipe’s positioning depth (d) varies between 30 cm to 70 cm with
incremental steps of 10 cm. The radius of the pipe on the other hand are 1 cm, 2 cm, 3 cm,
5 cm, 7 cm and 10 cm with 3 different conductivity (σ) levels at 1× 10−5 S/m, 1× 10−3 S/m
and 1× 10−1 S/m. The spatial resolution between adjacent A-scans is 2 cm. Thus, a total of
2610 unique B-scans were created with each B-scan made up of 41 A-scans. Furthermore,
the ground truth values of v, d and r for both the training and test sets were obtained
from the above-mentioned simulation settings, whereas the ground truth is required either
for supervised learning with train data and then to calculate the model’s performance on
test data.

4. Results

Table 1 compares the performance results of the mean relative error (mean err) and the
maximum relative error in terms of 95th percentile (P95) were computed using Equation (8):

err =
∣∣∣∣ (Mest −Mact)

Mact

∣∣∣∣× 100 (8)

where Mest is the estimated value and Mact is the actual value.
The relative error (err) of the predicted value with reference to its actual value of every

tested data (in this case hyperbolas or its features) was estimated. Then, the relative errors
(err) are populated for the whole test results in order to obtain the mean relative error
(mean err). Like wise, the mean relative error of each parameter estimation (for radius (r),
depth (d) and velocity (v)) was calculated separately for every proposed model (ray-based,
SVMm and SVRm), that are presented in Table 1.
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Table 1. Mean relative error and maximum relative error in terms of 95th percentiles (P95) with
respect to radius (r), depth (d) and velocity (v) estimation. The last row represents the number of
false alarms in SVM.

Method
err(r)% err(d)% err(v)%

Mean P95 Mean P95 Mean P95

Ray-based 260% 464% 25.1% 65% 11.3% 22%concurrent

Ray-based 120% 353% - - - -fixed
velocity

Regression 6.3% 26.5% 0.39% 1% 0.22% 0.5%(SVR)

Classification 2% (10/500) 0% (0/500) 1% (5/500)(SVM)

Globally, as seen in Table 1, both SVM and SVR show promising results for estimation
of v, d and r. SVM shows the highest performance with false alarm of 10/500 for radius
estimation, and SVR shows 6.3% mean relative error (err) for continuous value problems
in the radius estimation. Among ray-based method, performance of radius estimation is
slightly increased when the velocity is pre-known, but not significantly. The obtained mean
err of depth (d) and velocity (v) estimation is comparatively very low in the SVR and SVM
approach, whereas the err is less than 1%.

5. Discussion
5.1. Ray-Based Method

The proposed ray-based parameter estimation method was applied in two different
approaches. First, all parameters such as v, d and r were estimated concurrently. Then r
was estimated for pre-known values of v and d. Both approaches adhere to the objective
function described in Equation (1), followed by the best fit error minimization function
mentioned in Equation (2). Hyperbola obtained from numerical B-scans were fitted with
analytical objective function to invert the best value of the coefficients, such as v, d and r.

From concurrent ray-based estimation method, means err are 260%, 25.1% and 11.3%,
for r, d and v , respectively. Thus, the concurrent parameter estimation’s performance is
very poor among all tested methods according to the results in Table 1. However, fixed
velocity ray-based method shows relatively better performance for the radius estimation
with 120% of mean err. Nevertheless, the mean err is still higher compare to machine
learning based methods. The possible contribution of higher uncertainty in ray-based
method arises from the bias in the travel time picking and lack of regularization techniques.
Furthermore, error increases with medium’s conductivity (σ) due to the fact that the pulse’s
high frequency components are attenuated by the medium and it cause a shift in the signal
peak further resulting in more travel time picking errors.

Additionally, it was observed that the boundary conditions and starting values of the
optimization process greatly influence the estimated results. When optimization techniques
are applied on broad range of r, d and v configurations with single boundary conditions,
the optimization converges at the local minima instead of global minima. Thus, fine tuning
of boundary conditions for each hyperbola is required; which is not feasible for broad
configurations at this stage. Therefore, considering all above drawbacks, the objective func-
tion for the ray-based method must be revised along with more innovative unconstrained
optimization techniques to further improve the performance of the ray-based method. Fur-
thermore, the objective function may vary based on the frequency configurations, antenna
type and antenna offset of the GPR. Due to the time complexity of further parametric study
in this direction, the scope of this study is limited to the proposed objective function.
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5.2. SVM

In case of SVM classification, multi class one-to-one SVM classification is adopted as
another approach for the proposed estimation problem in this study. In certain applications,
such as concrete rebars and certain underground utilities, the depth (d) and radius (r) are
being standardized and motivated to implement the multi-class SVM classifier in order to
predict the closest possible class. In this context, each design parameter value of v, d and r
of the training data set was trained as a classification label so that the model could predict
the closest class for an input data. In this context, three separate SVM models were trained
for v, d and r. In this respect, the SVM model results shows 1%, 0% and 2% false alarm
rates for v, d and r inversions, respectively.

In the radius estimation, as demonstrated in Figure 8, the boxes highlighted in blue
indicate correct class predictions while pink boxes correspond to false alarms. SVM’s false
alarms are higher at 1 cm and the false alarm rate decreases with the increasing radius size.
Noticeably the false alarms are only one class away from the actual value. For example,
when the true radius value is 1 cm, the model predicts 96 cases correctly while in 5 cases it
falsely classifies as 2 cm. In overall, only 10/500 predictions were found to be false alarms
particularly, which come from 1 cm, 2 cm and 3 cm classes with the medium’s relative
permittivity range of 6–7 (overall permittivity range of studied data: 6–16). Although the
performance of SVM models are better than other approaches, due to the lack of radius
standardization between pipe fabricators, it limits the applicability of SVM.
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Figure 8. Confusion matrix of predicted results for radius estimation based on multi-class SVM
classification model. Radius classes: 1 cm, 2 cm, 3 cm, 5 cm, 7 cm and 10 cm, respectively. Blue boxes
indicates number of correct predictions and pink boxes represents number of false alarms.

5.3. SVR

The SVR models are trained based on proposed features as a continuous value problem.
Three separate SVR models were trained for, respectively, r, d and v, with the same data sets.
According to Table 1, its observed that the mean err obtained from SVR models are very
low compared with ray-based methods, whereas the estimated means err corresponding
to the SVR models are 6.3%, 0.39% and 1% for r, d and v , respectively. According to
Figures 9 and 10, the err significantly drops from 120% to 6.3% in case of SVR compared
with the ray-based approach. The errors are significantly lowered at larger radius (r) classes
and relatively higher at high conductivity (σ).
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Figure 9. Absolute relative error (err) in ray−based estimation of radius at fixed velocity scenario.
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Figure 10. Absolute relative error (err) in SVR−based estimation of radius.

Overall mean err of the radius (r) estimation is 6.3% as seen from Table 1, and based
on Figures 11 and 12, radius err shows an increasing trend with depth (d) and the velocity
(v), and it is relatively higher when medium’s conductivity (σ) level is at 1× 10−1 S/m.
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Figure 11. Absolute relative error (err) variation in SVR−based radius estimation across different
depths.
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Figure 12. Absolute relative error (err) variation in SVR−based radius estimation across different
velocities of mediums.

Referring to the histogram in Figure 13, based on Equation (9), it shows that the linear
relative error (l.r.e) of the radius estimation varies within the range of −1 to 1 cm; and from
Figure 14, which is based on Equation (10), maximum linear relative absolute error (a.l.r.e)
is nearly 1 cm, its comparatively low at 10 cm radius class and higher at high-conductivity
(σ) medium, which is plotted in red.
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Figure 13. SVR−linear relative error (l.r.e) of radius estimation.
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Figure 14. SVR−linear absolute relative error (a.l.r.e) of radius estimation.
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l.r.e = (Mest −Mact) (9)

a.l.r.e = |(Mest −Mact)| (10)

In terms of depth (d) estimation errors in SVR, overall mean err was as low as 0.39%
as per Table 1. Furthermore, as shown in Figure 15, the err of the depth (d) estimation
remained consistent across the depth classes. Nevertheless, according to Figure 16, the
depth (d) estimation error is slightly increasing with the velocity (v). Meanwhile, both
figures indicate that depth estimation error is less sensitive to a medium’s conductivity (σ)
variation in contrast to radius (r) estimation.
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Figure 15. Absolute relative error (err) variation in SVR−based depth estimation across different
depths.
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Figure 16. Absolute relative error (err) variation in SVR−based depth estimation across different
velocities of mediums.

Likewise, according to the Figure 17, l.r.e varies approximately between −5 mm and
5 mm, and its increased with higher depth classes as in Figure 18.
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Figure 17. SVR−linear relative error (l.r.e) of depth estimation.
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Figure 18. SVR−linear absolute relative error (a.l.r.e) of depth estimation.

Figures 19 and 20 present the velocity estimation’s err variation within different depth
(d) and velocity (v) classes, respectively. Overall mean err of velocity estimation remains
below 0.5%; however, few outliers were noticed in the lower depth classes from 0.2 m to
0.25 m, but error level is consistent across other depth classes. On the other hand, err is
increases slightly with the velocity; however, it does not show any significant variation
with medium’s conductivity, except, once again, a few outliers observed in the higher
velocity classes.

The impact of the buried medium’s conductivity in the SVR’s model performance
was analyzed in terms of mean err at three predefined conductivity levels, such as (σ)
1× 10−5 S m−1, 1× 10−3 S m−1 and 1× 10−1 S m−1, which is presented in Table 2. Overall
mean err and the 95th percentile of err increases with the conductivity in r, d and v estima-
tions. For example, though the mean err is 6.3% in radius estimation, the error has increased
from 5.3% to 7.7% when (σ) is increased from 1× 10−5 S m−1 to 1× 10−1 S m−1. However,
the error difference is very small between (σ) levels 1× 10−5 S m−1 and 1× 10−3 S m−1.
The trend is similar for both depth d and velocity v as well. However, The depth d and
velocity v estimation mean err are well remained below 1%. Radius estimation mean err are
larger at higher conductivity medium due to the fact that the pulse’s frequency components
are attenuated by the medium and it cause changes in the pulse shape and shifts the signal
peak and causes travel time picking error. Since the radius is highly sensitive to the travel
time error, it leads to large error in the radius estimation.
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Figure 19. Absolute relative error (err) across depth classes.

0.7 0.8 0.9 1 1.1 1.2 1.3

Velocity (108 m/s)

0

2

4

6

8

10

R
el

at
iv

e 
er

ro
r 

(%
)  = 10(-1) S/m

 = 10(-3) S/m

 = 10(-5) S/m

Figure 20. SVR−velocity error (err) across velocity classes.

Table 2. Mean absolute relative error and 95th percentiles (P95) with respect to radius (r), depth (d)
and velocity (v) estimation in SVR approach.

Conductivity (σ)
err(r)% err(d)% err(v)%

Mean P95 Mean P95 Mean P95

1× 10−5 S m−1 5.3% 26.04% 0.25% 0.74% 0.12% 0.39%

1× 10−3 S m−1 5.9% 25.5% 0.26% 0.75% 0.14% 0.42%

1× 10−1 S m−1 7.7% 28.4% 0.52% 1.1% 0.32% 0.79%

6. Conclusions

In this article, we presented a comparative study to analyze the performance of the ray-
based method, SVM and SVR to estimate velocity, depth and radius of buried cylindrical
pipes. It shows that, in this particular study, with the proposed feature set, the SVM and
SVR performances were much better than the ray-based method. A detailed analysis
with respect to radius, depth and velocity estimation were presented. The overall results
suggests that the depth and velocity estimation accuracy is more robust than the radius
inversion in the proposed model. Furthermore, between SVR and SVM, due to the lack
of radius standardization between pipe fabricators, it is difficult to obtain a conclusive
model for parameter inversion and thereby it constitutes a limit for the applicability of
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multi-class SVM. The ray-based method suffered from many different factors, including
being trapped in the local minima during the optimization. However, its still be a choice for
an approximated estimation if objective function and optimization techniques are further
modified, accounting all factors discussed in this article, but it requires further study in
this direction.

The radius estimation is less accurate compare to other parameters due to fact that
radius is highly sensitive to the travel time error, and the support vector region size (ξ∗i )
of SVR is comparable to the RMSE difference between adjacent radius classes, leading to
additional error. Even though the machine learning models produce promising results, the
availability of large training data set with known design values are still being the challenge
for the applicability. Hence, it must be overcome by creating a large experimental data set
which is unique to a certain GPR equipment.

In perspective, first the authors propose to perform the analysis on PVC pipes and
further on more complex, noisy and realistic data followed by validation of experimental
data to evaluate whether uncertainties remain at acceptable level for different applications
on specific standards. Authors also propose to modify the ray based objective function
with more robust unconstrained optimisation technique. Moreover, authors propose to
study the impact of cross validation ratio and database size. Furthermore, artificial neural
network approach for the parameter estimation also in the scope of extended study in-order
to evaluate if the radius estimation can be further improved compared to SVR.
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