
HAL Id: hal-04462750
https://univ-eiffel.hal.science/hal-04462750

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent multiscale simulations of nonlinear random
materials using probabilistic learning
Peiyi Chen, Johann Guilleminot, Christian Soize

To cite this version:
Peiyi Chen, Johann Guilleminot, Christian Soize. Concurrent multiscale simulations of nonlinear ran-
dom materials using probabilistic learning. Computer Methods in Applied Mechanics and Engineering,
2024, 422, pp.116837. �10.1016/j.cma.2024.116837�. �hal-04462750�

https://univ-eiffel.hal.science/hal-04462750
https://hal.archives-ouvertes.fr


Concurrent Multiscale Simulations of Nonlinear Random Materials Using
Probabilistic Learning

Peiyi Chena, Johann Guilleminotb, Christian Soizec

aDepartment of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
bDepartment of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
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Abstract

This work is concerned with the construction of statistical surrogates for concurrent multiscale modeling in structures
comprising nonlinear random materials. The development of surrogates approximating a homogenization operator is a
fairly classical topic that has been addressed through various methods, including polynomial- and deep-learning-based
models. Such approaches, and their extensions to probabilistic settings, remain expensive and hard to deploy when
the nonlinear upscaled quantities of interest exhibit large statistical variations (in the case of non-separated scales, for
instance) and potential non-locality. The aim of this paper is to present a methodology that addresses this particular
setting from the point of view of probabilistic learning. More specifically, we formulate the approximation problem
using conditional statistics, and use probabilistic learning on manifolds to draw samples of the nonlinear constitutive
model at mesoscale. Two applications, relevant to inverse problem solving and forward propagation, are presented
in the context of nonlinear elasticity. We show that the framework enables accurate predictions (in probability law),
despite the small amount of training data and the very high levels of nonlinearity and stochasticity in the considered
system.

Keywords: Concurrent Methods; Nonlinear Elasticity; Probabilistic Learning; Random Media; Surrogates;
Uncertainty Quantification

1. Introduction

1.1. Background
Concurrent nonlinear simulations involve the strong coupling between a macroscopic (or structural) formulation

and a microscopic description capturing subscale details [1, 2, 3, 4, 5, 6, 7, 8]. One popular approach is the so-called
FE2 method [3, 4], where information (in the form of a deformation gradient and any adapted stress variable) is trans-
ferred back-and-forth between quadrature points at the macroscale and statistical or representative volume elements
(depending on whether the separation of scales exists or not). While versatile and powerful, such frameworks require
significant computational resources that often surpass the capabilities of intermediate-power computers, especially
when the underlying behavior is highly nonlinear. In this context, the development of surrogate models for large-
scale systems has become a very active research domain and has generated a substantial body of literature. Various
methodologies have been proposed to address this challenge, including (in a non-exhaustive manner) the development
of deterministic representations [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and probabilistic/statistical-based ap-
proaches [21, 22, 23, 24, 25, 26], and more recently, the integration of machine learning (ML) tools, both with and
without probabilistic/statistical formulations; see, e.g., [27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

In most of the above contributions, the multiscale surrogate is built either through polynomial approximations or
deep learning models, and applied locally at each point of the coarse scale discretization. In these settings, the intrinsic
randomness — and potential non-locality — induced by random media with non-separated scales is very challenging
to capture due to representation limitations. In this work, we explore an alternative path to address this problem and
seek to construct a statistical surrogate model where the forward map of interest (specifically, the non-local consti-
tutive model) is approximated using statistical conditioning. Instead of calibrating a regression model between the
input (e.g., the deformation gradient) and the output (say, a stress measure), we aim to directly generate samples
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from the input-output joint probability measure, and to estimate quantities of interest through conditional means. This
viewpoint requires the use of a generative model capable of accurately capturing measure concentration and the (un-
known) geometry of the support of the measure in the small data limit — a task that remains particularly challenging
for strongly non-Gaussian distributions in high dimensions. We note that the construction of generative models is a
vibrant topic across many scientific communities, and providing an extensive review on existing techniques is beyond
the scope of this paper. In the present study, we employ probabilistic learning on manifolds (PLoM) [37, 38, 39] to
perform this task. The choice of this technique is motivated by (i) its capability to sample the probability measure
defined by the training dataset and in particular, to respect measure concentration and support information (as demon-
strated in [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]), (ii) relative ease of implementation, and (iii) its reliance
on low-dimensional, interpretable parameterization. Our main contributions are as follows. First, we formulate the
approximation of the non-local homogenized response in nonlinear elasticity as a learning problem. Second, we per-
form extensive numerical studies and address the validation of the framework under two scenarios relevant to inverse
problem solving and forward propagation. In the former case, the approach can be used, for instance, to calibrate
hyperparameters in the material model at fine scale, integrating data at the coarse scale. The latter case represents the
classical surrogate setting with aleatoric uncertainties induced by subscale randomness (without separation of scales).
Notice that while the proposed developments are derived in the context of nonlinear elasticity, they remain applicable
to other classes of constitutive models — at the expense of adapting the mechanistic parameterization.

This paper is organized as follows. The multiscale mechanistic framework is first introduced in Section 2. The
deterministic scale-coupling problems (and their stochastic counterparts) are presented, together with the stochastic
model enabling the representation of material randomness at mesoscale. Section 3 provides a comprehensive overview
on the probabilistic learning framework, including both theoretical and algorithmic aspects. In Section 4, the proposed
framework is applied in the context of finite elasticity. The two aforementioned scenarios are specifically introduced
to assess the robustness of the method (in probability law). Concluding comments are finally provided in Section 5.

1.2. Main Notation
(i) Conventions for variables.
A lower-case Latin or Greek letter, such as x or η, is a deterministic real variable.
A boldface lower-case Latin or Greek letter, such as x or η, is a deterministic vector.
An upper-case Latin or Greek letter, such as X or Ξ, is a real-valued random variable.
A boldface upper-case Latin letter, such as X, is a vector-valued random variable.
A lower- or upper-case Latin letter between brackets, such as [x] or [X], is a deterministic matrix.
A boldface upper-case letter between brackets, such as [X], is a matrix-valued random variable.

(ii) Probability space, random variable, probability measure, and probability density function.
For any finite integer m ≥ 1, the Euclidean space Rm is equipped with the σ-algebra BRm . If Y is a Rm-valued random
variable defined on the probability space (Θ,T ,P), Y is a mapping θ 7→ Y(θ) from Θ into Rm, measurable from
(Θ,T ) into (Rm,BRm ), and Y(θ) is a realization (sample) of Y for θ ∈ Θ. The probability distribution of Y is the
probability measure PY(dy) on the measurable set (Rm,BRm ) (we will simply say on Rm). The Lebesgue measure on
Rm is denoted by dy and PY(dy) = pY(y) dy, with pY the probability density function (pdf) on Rm of PY(dy) with
respect to dy. Finally, E denotes the mathematical expectation operator.

(iii) Algebraic notations.
R: set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
Mn,m: set of all the (n × m) real matrices.
Mn: set of all the square (n × n) real matrices.
M+n : set of all the positive-definite symmetric (n × n) real matrices.
[In]: identity matrix in Mn.
x = (x1, . . . , xn): point in Rn.
⟨x, y⟩ = x1y1 + . . . + xnyn: inner product in Rn.
∥ x ∥: norm in Rn such that ∥ x ∥ = ⟨x, x⟩.
[x]T : transpose of matrix [x].
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∥ [x] ∥: Frobenius norm of matrix [x].
δkk′ : Kronecker’s symbol.

2. Description of the Mechanistic Framework

2.1. Definition of the Structural Problem
Let Ωstr be an open bounded domain in Rd (here, d = 2 without loss of methodological generality) representing

the reference configuration for the structure of interest, and denote by ∂Ωstr the boundary of Ωstr. For any material
point x ∈ Ωstr, the spatial point xφ in the deformed configurationΩφstr is given by xφ = φ(x), where φ is the deformation
map. To make the presentation concrete, we assume that the material (at fine scale) is hyperelastic, compressible and
isotropic. For any x ∈ Ωstr, the deformation gradient [F] is a second-order tensor defined as [F] = [∇xxφ]. The
right Cauchy-Green deformation tensor is defined as [C] = [F]T [F], and the Green-Lagrange strain tensor defined as
[EGL] = 1

2 ([C] − [I]). For the sake of simplicity, we consider a Saint Venant–Kirchhoff model, with a strain energy
density function given by

ψ([EGL]) =
λ

2
[tr([EGL])]2 + µ tr([EGL]2) , (1)

where λ and µ are the Lamé parameters (see Section 2.3.1 for details). It is well-known that the above Saint Venant-
Kirchhoff material is not polyconvex (see, e.g., Section 4.3 in [52]). The use of this model may thus lead to poor
numerical stability and pathological behaviors in general. Such issues were not observed in the applications presented
in this paper, given the multiscale surrogate modeling context. In particular, the boundary conditions inherited from
the structural boundary value problem did not generate asymptotic behavior. The results supporting the relevance of
the proposed methodology (and more specifically, the ability to approximate the homogenized constitutive model)
are therefore not expected to be fundamentally affected by this choice. Note also that the proposed approach can
accommodate other types of constitutive behaviors, and that the above choice pertaining to the strain energy density
function is not expected to impact the methodological results presented in this research.

In a general setting, the strong form (resulting from the balance of linear momentum) of the boundary value
problem (BVP) in the reference configuration is stated as [52]

Div [P(x)] + b(x) = 0 , ∀ x ∈ Ωstr , (2)

u(x) = u(x) , ∀ x ∈ ∂ΩD
str , (3)

[P(x)] · n(x) = t(x) , ∀ x ∈ ∂ΩN
str , (4)

where Div denotes the divergence operator in the reference configuration, [P] is the first Piola-Kirchhoff stress tensor
defined as

[P] =
∂ψ([F])
∂[F]

, (5)

the vector b is the body force, n is unit vector normal to the boundary in the reference configuration, u and t are given
smooth vector fields on the Dirichlet and Neumann boundaries, denoted by ∂ΩD

str and ∂ΩN
str respectively. The solution

to the above problem is classically sought (in an appropriate function space) as a stationary point of the following
energy functional [52, 53, 54]:

Π(φ) =
∫

B
ψ([F]) dV −

∫
B

b · φ dV −
∫
∂BN

t · φ dA . (6)

In this work, we apply a Dirichlet boundary condition u on ∂Ωstr (i.e., no traction is applied, and the body force is
neglected).

2.2. Definition of the Macroscopic Problem in the Context of Concurrent Multiscale Approaches
Let Ωmac ⊂ Ωstr denote the reference configuration for the subdomain where the surrogate must be constructed,

and denote by ∂Ωmac its boundary (see Fig. 1). Let umac be the restriction of the solution to the structural problem
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Figure 1: Definition of scales in the concurrent multiscale simulations. Fluctuations in the first Lamé parameter λ are introduced at fine scale.

(defined in the previous section) to the boundary ∂Ωmac. The strong form of the boundary value problem in the
reference configuration of Ωmac is stated as

Div [Pmac(x)] = 0 , ∀ x ∈ Ωmac , (7)
u(x) = umac(x) , ∀ x ∈ ∂Ωmac , (8)

where [Pmac] is the first Piola-Kirchhoff stress tensor at macroscale.
In order to define the multiscale setting, we consider a statistical volume elementΩmes(x) located at point x ∈ Ωmac,

and denote by ∂Ωmes the boundary of Ωmes (as shown in Fig. 1). Given a finite element discretization of Ωstr and
at a given iteration in the nonlinear (Newton-Raphson) solver, the concurrent method proceeds by estimating the
deformation gradient [Fmac(xq)] at any quadrature point xq inΩmac, and by evaluating the apparent first Piola-Kirchhoff
stress tensor defined as

[Pmac(xq)] =
∂ψmac([Fmac(xq)];Ωmes(xq))

∂[Fmac(xq)]
, (9)

where ψmac(·;Ωmes(xq)) is the apparent strain energy density function associated with the mesoscopic domainΩmes(xq),
using localization (through [Fmac(xq)]) and homogenization (via ψmac(·;Ωmes(xq))). Note that as previously pointed
out, scale separation is not enforced and thus, all quantities obtained by upscaling are termed apparent, following the
convention introduced by Huet [55] (see also [56]). In order to compute [Pmac] at each quadrature point xq ∈ Ωmac,
we use the FE2 method [4, 57] and solve the boundary value problem defined as

Div [Pmes(x)] = 0 , ∀ x ∈ Ωmes(xq) , (10)
u(x) = ([Fmac(xq)] − [I])x , ∀ x ∈ ∂Ωmes(xq) , (11)

in the reference configuration of Ωmes(xq), where [Fmac(xq)] is the deformation gradient inherited from the macroscale
boundary value problem at xq. The apparent first Piola-Kirchhoff stress tensor at xq is then evaluated as [58]

[Pmac(xq)] =
1

|Ωmes(xq)|

∫
Ωmes(xq)

[Pmes(x)] dx . (12)

As we will explain in the next section, the pairs of associated deformation gradients and first Piola-Kirchhoff stress
tensors at all quadrature points in the macroscopic domain Ωmac are then used to compute the pairs of associated right
Cauchy-Green deformation tensors and second Piola-Kirchhoff stress tensors, which are the (objective) mechanistic
variables considered in the probabilistic learning process introduced in Section 3. Note that while the deformation
gradient and the first Piola-Kirchhoff stress tensor could also be used in the learning approach, the choice of the right
Cauchy-Green deformation tensor and second Piola-Kirchhoff stress tensor as quantities of interest leads to smaller
dimensions since both tensors are symmetric. It should also be pointed out that preserving mechanical variables over
the entire domain (namely, Ωmac) enables the consideration of a nonlocal apparent constitutive model, as opposed
to the calibration of a surrogate at one particular point in the domain (which is more relevant to local constitutive
models).
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2.3. Description of Material Uncertainties

2.3.1. Definition of the Stochastic Model
In this section, we detail the construction of the stochastic model for the strain energy density function defined by

Eq. (1). Given the scope of this work, which is focused on the learning perspective rather than stochastic modeling,
the hyperelastic model is randomized by defining the first Lamé parameter, λ, as a random field. Models enabling the
randomization of all parameters in various classes of strain energy density functions can be found in the references
provided after Eq. (15), and in [59, 60] for linear elasticity (for all symmetry classes). We also note that results
published elsewhere reporting on the (first-order) marginal cross-correlation of elastic moduli suggest that one latent
random field may be sufficient to induce multiscale-informed stochasticity in the isotropic case (depending on the
material under consideration; see, e.g., [61] for a reinforced composite material).

The first Lamé parameter random field is denoted by {λ(x), x ∈ Ωstr}, is defined on probability space (Θ,T ,P),
and takes values in R+\{0}. In this paper, we define {λ(x), x ∈ Ωstr} as

λ(x) = H (Ξ(x)) , ∀x ∈ Ωstr , (13)

where H denotes a so-called transport map, constructed to enforce admissibility (in the almost sure sense), and
{Ξ(x), x ∈ Rd} is a centered homogeneous Gaussian random field. This Gaussian field is completely defined by its
correlation function (x, x′) 7→ ρ(x, x′) = E{Ξ(x)Ξ(x′)}, which is taken as

ρ(x, x′) =
d∏

i=1

exp

(
−

(
xi − x′i
ℓc

)2
)
, ∀(x, x′) ∈ Rd × Rd , (14)

for the sake of illustration, with ℓc a model parameter such that
∫ +∞

0 exp
(
−(τ/ℓc)2

)
dτ = Lc, where Lc is the spatial

correlation length of the Gaussian random field (which is assumed to be independent of the direction, for simplicity).
Following the methodology introduced in [62] in the context of anisotropic linear elasticity, the transport map is
constructed using information theory and the principle of maximum entropy [63, 64, 65]; see [66] for an introduction
to concepts and methodologies, as well as [67] for specific results in (linear and nonlinear) mechanics of materials.
Specifically,H is defined by imposing that

λ(x) = H (Ξ(x)) ∼ PME , ∀x ∈ Ωstr , (15)

where PME is the probability measure induced by entropy maximization under constraints. General methodologies
and information-theoretic results for a large class of models in nonlinear elasticity can be found in [68] and [69],
for the cases of isotropic incompressible and compressible materials, respectively. Extensions to spatially-dependent
anisotropic hyperelastic models can be found in [70, 71], and applications including calibration and validation using
experimental data are available in [72, 73, 71] (see also [74] and the references therein for a review of applications
to canonical mechanics problems). Since λ corresponds to an elasticity parameter, results obtained in the context
of stochastic linearized elasticity can also be invoked. Accounting for the positiveness constraint, as well as for the
existence of second-order moments for the linearized elasticity tensor and its inverse [62, 75], it can be shown that
PME corresponds to a Gamma distribution. Denoting by λ and δλ the mean and coefficient of variation of λ, it follows
that

H = F−1
G(δ−2

λ ,λδ−2
λ ) ◦ FN(0,1) , (16)

where F−1
G is the inverse cumulative distribution function of the Gamma distribution with shape and scale parameters

given by δ−2
λ and λδ−2

λ , respectively, and FN(0,1) is the cumulative distribution function of the standard Gaussian
distribution. Notice that these hyperparameters can be made spatially-dependent to improve expressiveness in the
model: this sophistication is, however, irrelevant for the objectives pursued in this paper.

In the applications presented below, the underlying Gaussian random field {Ξ(x), x ∈ Rd} is sampled using a
truncated Karhunen-Loève expansion, with an order of truncation determined such that the L2 error falls below a
given threshold (chosen as 1e−2). Samples for both the Gaussian and non-Gaussian random fields are shown in
Fig. 2, for λ = 40 000, δλ = 0.2, and Lc = 0.3.
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(a) Sample of {Ξ(x), x ∈ Ωstr}. (b) Sample of {λ(x), x ∈ Ωstr} computed from (a).

Figure 2: Realizations of the underlying Gaussian field (left) and material parameter random field (right).

2.3.2. Definition of the Stochastic Boundary Value Problems
Considering the Lamé parameter random field defined in Section 2.3.1 in the BVPs introduced in Sections 2.1 and

2.2 leads to the definition of stochastic boundary value problems (SBVPs), which are briefly described below for the
sake of readability. All equalities below hold in the almost sure sense.

Following the retained modeling setup, the structural stochastic boundary value problem is given by

Div [P(x)] = 0 , ∀ x ∈ Ωstr , (17)

U(x) = u(x) , ∀ x ∈ ∂ΩD
str , (18)

where [P] is the stochastic Piola-Kirchhoff stress tensor (arising from the randomization of the strain energy density
function via λ), {U(x), x ∈ Ωstr} is the displacement solution random field and x 7→ u(x) is the known deterministic
field introduced in Section 2.1. Similarly, the macroscopic SBVP on the domain of interest Ωmac (where the statistical
surrogate is built) writes

Div [Pmac(x)] = 0 , ∀ x ∈ Ωmac , (19)

U(x) = Umac(x) , ∀ x ∈ ∂Ωmac , (20)

where {Umac(x), x ∈ ∂Ωmac} is now a random field with values in Rd, due to the fact that the background medium
is stochastic. Finally, the SBVP considered in the concurrent approach (for any subdomain Ωmes(xq) centered at
quadrature point xq in Ωmac) is

Div [Pmes(x)] = 0 , ∀ x ∈ Ωmes(xq) , (21)
U(x) = ([Fmac(xq)] − [I])x , ∀ x ∈ ∂Ωmes(xq) , (22)

where [Fmac(xq)] is the stochastic deformation gradient at xq, defined through localization.
In this work, we consider the strong stochastic solutions to the weak formulations (using the Galerkin method

and a finite element discretization) of the above SBVPs. The Monte Carlo approach is chosen as the stochastic
solver. The pairs of right Cauchy-Green deformation tensors and second Piola-Kirchhoff stress tensors (denoted by
{[Cmac(xq)], [S mac(xq)]}Qmac

q=1 ) are collected at all quadrature points, for all samples of the Lamé parameter random field,
to constitute the dataset for the probabilistic learning procedure introduced in Section 3.

2.4. Implementation Verification for the FE 2 Method (With Deterministic Background Media)

For the sake of illustration, we consider the structural domainΩstr = [0, 3]2, and define the macroscopic domain of
interest asΩmac = [1, 2]2. The mesoscopic domainΩmes(xq) at quadrature point xq is defined by a characteristic length
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LΩmes = 0.025. Spatial discretization is realized using Q4 elements at all mesh resolutions. The number of elements
per direction is 15 in Ωstr, 5 in Ωmac, and 5 in Ωmes. The Dirichlet boundary conditions applied on the boundary of
Ωstr are given by

u(x) = 0 , x1 = 0 , ∀x2 ∈ [0, 3] , (23)

u(x) =
[

0.1
0

]
, x1 = 3 , ∀x2 ∈ [0, 3] . (24)

As described in the previous section, the solution vector u in Ωstr along the boundary ∂Ωmac of Ωmac is applied as the
Dirichlet boundary condition for the multi-scale problem.

Implementation was performed within the MOOSE finite element framework [76]. A convergence study on the
solution onΩstr was first conducted. A manufactured displacement field taken as uMMS(x) = (0.01 sin(y), 0.01 sin(x))T

is considered, with material parameters given by λ = 40 000 [kg/cm2] and µ = 10 000 [kg/cm2] (these values, taken
from [77], correspond to a soft biological tissue, modeled as a Saint Venant–Kirchhoff material). Dirichlet boundary
conditions in accordance with the above solution are prescribed on all boundaries. A body force is defined such that
the manufactured solution corresponds to the nonlinear boundary value problem defined in Section 2.1. Regarding
numerical solving, a standard Newton-Raphson solver was used with a maximum number of nonlinear iterations set
to 25, with a relative tolerance taken as 1e−10, and an absolute tolerance given by 1e−12. The convergence order is
measured by the L2-norm of the difference between the approximation uh and the reference solution uref within the
domain [0, 3]2. Standard h-convergence is observed, as illustrated in Fig. 3.

Figure 3: Convergence of the L2 error (h-refinement) for the reference solution.

Next, the implementation of the FE2 method was verified by comparing the normalized L2-norm error between
the solution vector (at all nodes) on Ωstr without multiscale coupling, and the solution vector (at all nodes) obtained
by using the FE2 method in the subdomain Ωmac = [1, 2]2. Fig. 4 shows the first sample of the material random field
λ (for λ = 40 000, δλ = 0.2, and Lc = 0.3), as well as solutions to the structural and macroscale problems. In order to

(a) {λ(x, θ), x ∈ Ωstr} (b) x 7→ ∥ustr(x)∥ (c) x 7→ ∥uFE2 (x)∥

Figure 4: Sample of the material parameter λ (left) and associated displacement magnitudes for the solutions on Ωstr (middle) and Ωmac (right).

perform a statistical analysis on the error, 500 independent samples of λ were generated. The mean of the normalized
L2 error is 4.69e−4, and the coefficient of variation is 0.22. The probability density function of the normalized L2

norm error is shown in Fig. 5. These results indicate proper implementation of the concurrent multiscale method,
which is used to build the dataset for the probabilistic learning technique (introduced in the next section).
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Figure 5: Probability density function of the normalized L2-norm error (estimated with 500 samples).

3. Overview of the Probabilistic Learning on Manifolds (PLoM) Algorithm and its Parameterization

In this section, we provide a concise overview of the PLoM algorithm. The reason for providing this review
is twofold. First, we aim to assist readers in analyzing and comprehending the underlying parameterization, the
values chosen for the parameters, and the results pertaining to algorithmic control and convergence. Second, there
is no published paper that summarizes all the ingredients of the PLoM approach that are used in this work. Early
developments addressing, for instance, the quantification of probability measure concentration and the estimation of
the smoothing parameter in the calculation of the diffusion maps basis and its truncation order, are disseminated in
a series of papers (see below). On the other hand, some presented results are new, including the expression of the
relaxation parameters as a function of the iteration number (in the implementation of the learning algorithm), and the
expression of the drift matrix associated with the normalization condition.

The PLoM approach [37, 38, 39] starts with the consideration of a training dataset Dd, comprising a relatively
small number nd of points generated from an underlying stochastic manifold associated with a Rn-valued random
variable X = (Q,W), defined on a probability space (Θ,T ,P). Here, Q represents the quantity of interest and is a
Rnq -valued random variable, while W denotes the control parameter and is a Rnw -valued random variable. The total
dimension is n = nq + nw. Another Rnu -valued random variable U, defined on (Θ,T ,P), is also considered as an
uncontrolled parameter. The random variable Q is assumed to be expressed as Q = f(U,W), where the measurable
mapping f is not explicitly known. The joint probability distribution PW,U(dw, du) of W and U is assumed to be given.
The non-Gaussian probability measure PX(x) = PQ,W(dq, dw) of X = (Q,W) is concentrated in a region of Rn, for
which the only available information is the cloud of points in the training dataset Dd. The PLoM method enables
the generation of the learned dataset Dar for X, consisting of nMC ≫ nd points (learned realizations) generated by the
non-Gaussian probability measure estimated using the training dataset. The preservation of the probability measure
concentration is guaranteed by the utilization of a diffusion-maps basis, which enriches the available information from
the training dataset. Utilizing the learned dataset Dar, PLoM enables the computation of conditional statistics, such
as w 7→ PO|W(do|W = w), on Cw. Here, O = ξ(Q), where ξ is a measurable mapping from Rnq into Rno , allowing
for the construction of statistical surrogate models (metamodels) within a probabilistic framework. The formulas for
the computation of conditional mathematical expectations, conditional probability density functions, and conditional
cumulative distribution functions, given any w0 in Cw, are given in Appendix A.

The training datasetDd comprises nd independent realizations x j
d = (q j

d,w
j
d) in Rn = Rnq × Rnw for j ∈ {1, . . . , nd}

of random variable X = (Q,W), in which q j
d = f(u j

d,w
j
d). The PLoM method allows for generating the learned dataset

Dar, consisting of nar ≫ nd learned realizations {xℓar, ℓ = 1, . . . , nar} of random vector X. Once the learned dataset is
constructed, the learned realizations for Q and W can be extracted as (qℓar,wℓ

ar) = xℓar for ℓ = 1, . . . , nar.
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3.1. Construction of a Reduced Representation

The nd independent realizations {x j
d, j = 1, . . . , nd} are represented by the matrix [xd] = [x1

d . . . x
nd
d ] in Mn,nd . Let

[X] = [X1, . . . ,Xnd ] be the random matrix with values in Mn,nd , where its columns are nd independent copies of random
vector X. Utilizing Principal Component Analysis (PCA) of X, random matrix [X] is written as,

[X] = [x] + [φ] [µ]1/2 [H] , (25)

where [H] = [H1, . . . , Hnd ] is a Mν,nd -valued random matrix (ν ≤ n), and [µ] is the (ν × ν) diagonal matrix of the ν
positive eigenvalues of the empirical estimate of the covariance matrix of X. The (n × ν) matrix [φ] consists of the
associated eigenvectors such [φ]T [φ] = [Iν]. The matrix [x] in Mn,nd has identical columns, each being equal to the
empirical estimate x ∈ Rn of the mean value of random vector X. The columns of [H] are nd independent copies of
a random vector H with values in Rν, satisfying the normalization conditions, E{H} = 0ν and E{H ⊗ H} = [Iν]. The
realization [ηd] = [η1

d . . . η
nd
d ] ∈ Mν,nd of [H] is computed by [ηd] = [µ]−1/2[φ]T ([xd] − [x]). The value ν is classically

calculated in order that the L2- error function ν 7→ errX(ν), defined by

errX(ν) = 1 −
∑ν

α=1 µα
E{∥X∥2}

, (26)

be smaller than εPCA. If ν < n − 1, statistical reduction occurs.

3.2. Probability Measure of H
The probability measure PH of H has to be estimated in order to construct the probability measure of random

matrix [H] used in the PLoM methodology. Let PH(dη) = pH(η) dη be the probability measure on Rν of H, whose
probability density function η 7→ pH(η) on Rν is estimated by using the Gaussian kernel-density estimation (KDE)
with the training datasetDtrain(η) = {η j, j = 1, . . . , nd},

pH(η) =
1
nd

nd∑
j=1

1
(
√

2π ŝ )ν
exp

(
−

1
2ŝ2 ∥

ŝ
sν
η j − η ∥2

)
, ∀η ∈ Rν . (27)

In these equations, ŝν is a modification of the standard Silverman bandwidth sν, defined by

ŝν =
sν√

s2
ν +

nd−1
nd

, sν =
{

4
nd(2 + ν)

}1/(ν+4)

.

With such a modification, the normalization of H is preserved for any value of nd, that is to say,

E{H} =
∫

Rν

η pH(η) dη =
1

2ŝ2 η̂ = 0ν ,

E{H ⊗H} =
∫

Rν

(η ⊗ η) pH(η) dη = ŝ2 [Iν] +
ŝ2

s2
ν

(nd − 1)
nd

[ĈH] = [Iν] ,

where η̂ ∈ Rν and [ĈH] ∈ M+ν are the estimates of the mean value and the covariance matrix of H, performed with
Dtrain(η). Theorem 3.1 in [38] proves that, for all η fixed in Rν, Eq. (27) is a consistent estimation of the sequence
{pH}nd for nd → +∞.

3.3. Development of a Reduced-Order Basis Using Diffusion Maps

To preserve the concentration of the learned realizations in the region where the points of the training dataset
are concentrated, PLoM relies on an algebraic basis in vector space Rnd , constructed using the diffusion-maps basis
[78]. Let [K] and [b] be matrices such that, for all i and j in {1, . . . , nd}, [K]i j = exp{−(4 εDM)−1∥ηi

d − η
j
d∥

2} and
[b]i j = δi j bi with bi =

∑nd
j=1[K]i j, where εDM > 0 is a smoothing parameter. Let [P] = [b]−1[K] be the matrix in

Mnd , with positive entries, satisfying
∑nd

j=1[P]i j = 1 for all i = 1, . . . , nd. Matrix [P] can be regarded as the transition
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matrix of a Markov chain that represents the probability of transition in one step. The eigenvalues λ1, . . . , λnd and the
associated eigenvectors ψ1, . . . ,ψnd of the right-eigenvalue problem [P]ψα = λα ψα satisfy 1 = λ1 > λ2 ≥ . . . ≥ λnd

and are computed by solving the generalized eigenvalue problem [K]ψα = λα [b]ψα with the normalization condition
⟨[b]ψα,ψβ⟩ = δαβ. The eigenvector ψ1 associated with λ1 = 1 is a constant vector. For a given integer κ ≥ 0,
the diffusion-maps basis {g1, . . . , gα, . . . , gnd } forms a vector basis of Rnd defined by gα = λκα ψα. The reduced-order
diffusion-maps basis of order m is defined, for a given integer m, as the set {g1, . . . , gm}, represented by the matrix
[gm] = [g1 . . . gm] ∈ Mnd ,m with gα = (gα1 , . . . , g

α
nd

) and [gm] jα = gαj . This basis depends on two parameters, εDM and m,
which need to be identified. It is proven in [38], that the PLoM method does not depend on κ, which can therefore be
chosen to 0. We aim to determine the optimal value mopt ≤ nd for m and the smallest value εopt > 0 for εDM such that
(see [39])

1 = λ1 > λ2(εopt) ≃ . . . ≃ λmopt (εopt) ≫ λmopt+1(εopt) ≥ . . . ≥ λnd (εopt) > 0 , (28)

with an amplitude jump equal to an order of magnitude (a factor 10, as demonstrated in [38]) between λmopt (εopt)
and λmopt+1(εopt). A more detailed analysis leads to the following algorithm for estimating εopt and mopt. Let εDM 7→

Jump(εDM) be the function on ]0,+∞[ defined by

Jump(εDM) = λmopt+1(εDM)/λ2(εDM) . (29)

The algorithm is as follows: set the value of m to mopt = ν+ 1 and identify the smallest possible value εopt of εDM such
that Jump(εopt) ≤ 0.1 and Eq. (28) is satisfied.

3.4. Reduced-Order Representation of Random Matrices [H ] and [X ] to Preserve Probability Measure Concentration
The diffusion-maps vectors g1, . . . , gm ∈ Rnd span a subspace of Rnd that characterizes, for the optimal values

mopt and εopt of m and εDM, the local geometry structure of dataset {η j
d, j = 1, . . . , nd}. The PLoM method introduces

the Mν,nd -valued random matrix [Hm] = [Zm] [gm]T with m ≤ nd, corresponding to a data-reduction representation of
random matrix [H], in which [Zm] is a Mν,m-valued random matrix. The MCMC generator of random matrix [Zm] is
chosen from the class of Hamiltonian Monte Carlo methods, explicitly described in [37], and mathematically detailed
in Theorem 6.3 of [38]. For generating the learned dataset, the best probability measure of [ Hm] is obtained for
m = mopt and by using the previously defined basis [gmopt ]. For these optimal quantities mopt and [gmopt ], the generator
allows for computing nMC realizations {[zℓar], ℓ = 1, . . . , nMC} of [Zmopt ] and therefore, for deducing the nMC realizations
{[ηℓar], ℓ = 1, . . . , nMC} of [Hmopt ]. The reshaping of matrix [ηℓar] ∈ Mν,nd allows for obtaining nar = nMC × nd learned
realizations {ηℓ

′

ar, ℓ
′ = 1, . . . , nar} of H. These learned realizations enable the estimation of converged conditional

statistics, which are then utilized to construct statistical surrogate models related to X, and subsequently, to (Q,W).

3.5. Quantifying the Probability Measure Concentration of Random Matrix [Hmopt ]
For m ≤ nd, the probability measure concentration of random matrix [Hm] is defined (see [39]) by:

d2
nd

(m) = E{∥[Hm] − [ηd]∥2}/∥[ηd]∥2 . (30)

LetMopt = {mopt,mopt + 1, . . . , nd}, where mopt represents the optimal value of m as defined earlier. Theorem 7.8 of
[38] shows that minm∈Mopt d2

nd
(m) ≤ 1 + mopt/(nd − 1) < d2

nd
(nd), indicating that the PLoM method, for m = mopt

and [gmopt ], is a better method than the standard one corresponding to d2
nd

(nd) = 1 + nd/(nd − 1) ≃ 2. Using the nMC

realizations {[ηℓar], ℓ = 1, . . . , nMC} of [Hmopt ], we have the estimate d2
nd

(mopt) ≃ (1/nMC)
∑nMC

ℓ=1{∥[η
ℓ
ar] − [ηd]∥2}/∥[ηd]∥2.

3.6. Generation of Learned Realizations {ηℓ
′

ar, ℓ
′ = 1, . . . , nar} for the Random Vector H

The MCMC generator is detailed in [37]. Let {([Z(t)], [Y(t)]), t ∈ R+} be the unique asymptotic (as t → +∞)
stationary diffusion stochastic process with values in Mν,mopt ×Mν,mopt , representing the following reduced-order ISDE
(stochastic nonlinear second-order dissipative Hamiltonian dynamic system), for t > 0,

d[Z(t)] = [Y(t)] dt ,

d[Y(t)] = [L([Z(t)])] dt −
1
2

f0 [Y(t)] dt +
√

f0 [dWwien(t)] ,
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with [Z(0)] = [ηd] [a] and [Y(0)] = [N] [a], in which

[a] = [gmopt ] ([gmopt ]
T [gmopt ])

−1 ∈ Mnd ,mopt .

(i) [L([Z(t)])] = [L([Z(t)] [gmopt ]
T )] [a] is a random matrix with values in Mν,mopt . For all [u] = [u1 . . . und ] in Mν,nd

with u j = (u j
1, . . . , u

j
ν) in Rν, the matrix [L([u])] in Mν,nd is defined, for all k = 1, . . . , ν and for all j = 1, . . . , nd, by

[L([u])]k j =
1

p(u j)
{∇u j p(u j)}k , (31)

p(u j) =
1
nd

nd∑
j′=1

exp{−
1

2ŝ 2
ν

∥
ŝν
sν
η j′ − u j∥2} ,

∇u j p(u j)=
1

ŝ 2
ν nd

nd∑
j′=1

(
ŝν
sν
η j′− u j) exp{−

1
2ŝ 2

ν

∥
ŝν
sν
η j′− u j∥2} .

(ii) [Wwien(t)] = [Wwien(t)] [a] where {[Wwien(t)], t ∈ R+} is the Mν,nd -valued normalized Wiener process.
(iii) [N] is the Mν,nd -valued normalized Gaussian random matrix that is independent of process [Wwien].
(iv) We then have [Zmopt ] = limt→+∞ [Z(t)] in probability distribution. The Störmer-Verlet scheme is used for solving
the reduced-order ISDE (see [37]), which allows for generating the learned realizations, [z1

ar], . . . , [znMC
ar ], and then,

generating the learned realizations [η1
ar], . . . , [ηnMC

ar ] such that [ηℓar] = [zℓar] [gmopt ]
T . It should be noted that the calcula-

tion of the realizations of [Zmopt ] is done in parallel computation, each realization [zℓar] of [Zmopt ] being calculated on
a ”worker” associated with a realization [Wwien,ℓ] of the Wiener process [Wwien].
(v) The free parameter f0, satisfying 0 < f0 < 4/ŝν, allows for the control of the dissipation term in the nonlinear
second-order dynamic system (a dissipative Hamiltonian system) to quickly damp the transient effects induced by the
initial conditions. A commonly used value is f0 = 4 (noting that ŝν < 1). Consequently, the ISDE is solved over the
interval ]0,T ], where T depends on f0 and represents the smallest integration final time allowing [Zmopt ] to be chosen
as [Z(T )] while being in the stationary regime.
(vi) The learned realizations {xℓ′ar , ℓ

′ = 1, . . . , nar} of random vector X are then obtained by reshaping the realizations
{[xℓar] = [x] + [φ] [µ]1/2 [ηℓar] , ℓ = 1, . . . , nMC} (see Eq. (25)) with nar = nMC × nd.

3.7. Preserving Normalization Conditions Through Constraints on Second-Order Moments of H
In general, the mean value of H estimated using the nar learned realizations {ηℓ

′

ar, ℓ
′ = 1, . . . , nar}, is sufficiently

close to zero. Similarly, the estimate of the covariance matrix of H is also sufficiently close to the identity matrix.
However, there are instances where the mean value may not be sufficiently small, and the diagonal entries of the
estimated covariance matrix can fall below 1. The normalization conditions can be reestablished during the learning
algorithm described in Section 3.6 by imposing, for all k = 1, . . . , ν, the constraints E{Hk} = 0 and E{(Hk)2} = 1.
These constraints can be globally rewritten as

E{h(H)} = b on Rnc , (32)

in which nc = 2ν. Here, the function h = (h1, . . . , hnc ) and the vector b = (b1, . . . , bnc ) are defined such that, for all k
in {1, . . . , ν}, we have hk(H) = Hk, hk+ν(H) = (Hk)2, bk = 0, and bk+ν = 1.

(i) Methodology for imposing the constraint in the learning algorithm. We apply the Kullback-Leibler minimum
cross-entropy principle as proposed in [79, 80]. Let Hc be the Rν-valued random variable that satisfies the constraint
defined by Eq. (31), expressed as E{h(Hc)} = b. The learned probability measure PHc (dη) = pHc (η) dη, represented
by a density pHc on Rν, which satisfies the constraint and which is closest to pH defined by Eq. (27), is the solution of
the following optimization problem,

pHc = arg min
p∈Cad,p

∫
Rν

p(η) log
(

p(η)
pH(η)

)
dη , (33)

11



in which the admissible set Cad,p is defined by

Cad,p =

{
η 7→ p(η) : Rν → R+ ,

∫
Rν

p(η) dη = 1 ,
∫

Rν

h(η) p(η) dη = b
}
. (34)

It is proven that there exists a unique solution to the optimization problem defined by Eqs. (33) and (34), which is
reformulated using Lagrange multipliers to account for the constraints in the admissible set (refer to Proposition 1 in
[80] for the construction of the probability measure of Hc and the proof of its existence and uniqueness).

(ii) Learning algorithm implementation. To take into account the constraints in the learning algorithm defined in
Section 3.6, Eq. (31) is replaced by the following one,

[Lλ([u])]k j =
1

p(u j)
{∇u j p(u j)}k − λk − 2 λk+νu

j
k .

in which the Lagrange multiplier λ ∈ Rnc , associated with the constraint defined by Eq. (32), is calculated using an
iteration algorithm (see [80]). At each iteration i, the value of λ is denoted by λi and the corresponding random vector
Hc is denoted by Hλi . The value λi+1 is computed as a function of λi by

λi+1 = λi − αi[Γ′′(λi)]−1 Γ′(λi) , i ≥ 0 ,

λ0 = 0nc ,

in which Γ′(λi) = b − E{h(Hλi )} and [Γ′′(λi)] = [cov{h(Hλi )}] (the covariance matrix). The positive coefficient αi is
a relaxation parameter (less than 1) that is introduced for controlling the convergence of the iteration algorithm. For
given i2 ≥ 2, for given β1 and β2 such that 0 < β1 < β2 ≤ 1, αi is defined, for i ≤ i2, by αi = β1+(β2−β1)(i−1)/(i2−1),
and for i > i2, by αi = β2. The convergence of the iteration algorithm is controlled by the error function i 7→ err(i)
defined by

err(i) = ∥b − E{h(Hλi )}∥/∥b∥ . (35)

At each iteration i, E{h(Hλi )} and [cov{h(Hλi )}] are estimated using nar = nMC × nd learned realizations of the random
vector Hmopt (λ

i), which is obtained by reshaping the nMC learned realizations of the random matrix [Hmopt (λ
i)].

4. Application

4.1. Notation and Definition of Case Studies
In order to deploy and assess the performance of the PLoM approach, two scenarios are introduced as follows.

• In the first scenario, relevant to inverse problem solving, the stochastic boundary conditions on Ωmac and the
hyperparameters in the random field model (see Section 2.3) are used as control parameters. Let Wdisp be the
random vector corresponding to the discretization of the random field {Umac(x), x ∈ ∂Ωmac} (see Section 2.3.2),
and let Whyp be the random vector associated with the randomization of the mean value, the coefficient of
variation, and the correlation length of λ. The control variables are Whyp and Wdisp.

• In the second scenario, related to propagation, the hyperparameters for the random field model are set to their
mean values and are not considered as control variables. The latter only comprise the boundary displacements
on Ωmac, gathered in Wdisp.

In the context of statistical surrogate modeling, our goal is then to estimate conditional distributions for the mechanistic
variables in the homogenized constitutive model (namely, the right Cauchy-Green deformation tensor and the second
Piola-Kirchhoff stress tensor), at any quadrature point of interest in the region where concurrent multiscale coupling
is considered, given specific values of the control parameters. For the first scenario, this would enable, through the
formulation of an ad hoc statistical inverse problem, the identification of the hyperparameters in the material random
field model, assuming that (e.g., experimental) data on the above tensors are available. In the second scenario, this
would allow for the estimation of the stress and strain variables (defined as conditional means) for given values of the
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(Dirichlet) boundary conditions on the macroscopic domain — a statistical extension to standard surrogate modeling
where the mapping [Cmac(xq, θ)] 7→ [S mac(xq, θ)], 1 ≤ q ≤ Qmac would be approximated using, e.g., regression.

For the sake of illustration, non-informative prior models are chosen in the first scenario. More specifically, the
mean, coefficient of variation, and the correlation lengths are assumed to be statistically independent and uniformly
distributed on [32000, 48000], [0.1, 0.3], and [0.2, 0.4], respectively. The truncation order in the Karhunen-Loève
expansion is computed for each sample of the correlation length, using the same threshold (1e−2).

The relationships between the notations used for the PLoM algorithm summarized in Section 3 and the notations
of mechanical quantities are as follows. We recall that, for the np = 100 Gauss points referred to by the set of indices
I = {i = 1, ..., np}, {Ci j, j = 1, 2, 3} represents the 3 components of the random Cauchy-Green tensor at index point
i ∈ I, and {S i j, j = 1, 2, 3} represents the 3 components of the random second Piola-Kirchhoff stress tensor. We
will also use the notations C and S for the reshaping of these two random tensors, which are then random vectors
with values in R3np . Finally, plots of probability density functions are obtained using (non-parametric) kernel density
estimators, while the conditional probability density functions are estimated using Eq. (31).

(i) Quantity of interest. The Rn-valued random variable Q is defined by Q = (S,C) with nq = 2 × (3 np) = 600.

(ii) Control parameter. Following the previous discussion, let Wdisp be the Rnw,disp -valued random variable for which
the nw,disp = 48 components are the discretized displacements on the boundary. Let Whyp = (Whyp,1,Whyp,2,Whyp,3)
be the hyperparameters that control the prior probability model of the random medium (defined in Section 2.3). For
the construction of the training and learned datasets, the definition of the Rnw -control parameter W depends on the
scenario.

• Scenario 1: the training and learned datasets are constructed with W = (Whyp,Wdisp) and nw = 3 + nw,disp =

3 + 48 = 51. The conditional statistics are constructed for given Whyp = whyp,o ∈ R3.

• Scenario 2: the training and learned datasets are constructed with W = Wdisp and nw = nw,disp = 48. The value
of Whyp is fixed to the statistical mean value whyp = (whyp,1,whyp,2,whyp,3) of the prior probability model of Whyp.
The conditional statistics are constructed for given Wdisp = wdisp,o ∈ R48.

The random variable U (uncontrolled parameter) corresponds to the stochastic germs in the Karhunen-Loève
expansion of the underlying Gaussian random field, which are statistically independent normalized Gaussian random
variables.

4.2. Conditional Statistics

For the validation of the proposed methodology, the conditional statistics estimated with the learned dataset and
those estimated with the validation dataset (considered as a reference) will be compared. Below, we define the consid-
ered conditional statistics, including the conditional probability density functions and the conditional mean functions
(given the control parameter).

• Scenario 1: for all i ∈ I, for j ∈ {1, 2, 3}, for wo given in R3, and for all q in R, we consider

q 7→ pCi j |Whyp (q |wo) , q 7→ pS i j |Whyp (q |wo) ,

i 7→ E{Ci j |Whyp = wo} =

∫
R

q pCi j |Whyp (q |wo) dq

and
i 7→ E{S i j |Whyp = wo} =

∫
R

q pS i j |Whyp (q |wo) dq .

• Scenario 2: for all i ∈ I, for j ∈ {1, 2, 3}, for wo given in R48, and for all q in R, we consider

q 7→ pCi j |Wdisp (q |wo) , q 7→ pS i j |Wdisp (q |wo) ,
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i 7→ E{Ci j |Wdisp = wo} =

∫
R

q pCi j |Wdisp (q |wo) dq ,

and
i 7→ E{S i j |Wdisp = wo} =

∫
R

q pS i j |Wdisp (q |wo) dq .

4.3. Parameter Values and Convergence Analysis of PLoM Algorithms for Scenarios 1 and 2

In this section, we define the parameter values used by the PLoM algorithms (as summarized in Section 3), and
we present the convergence analysis for both scenarios. Notations are those introduced in Section 3. To simplify
referencing with respect to each scenario, the first provided value corresponds to Scenario 1, while the second value
corresponds to Scenario 2. For instance, ”nc = 280 and 272” means that nc = 280 for Scenario 1 and nc = 272 for
Scenario 2. When a single value is given, it applies to both scenarios. For example ”nd = 500” means that nd = 500
for Scenario 1 and Scenario 2.

(i) Values of the general parameters. The total dimension of X = (Q,W) is n = nq + nw = 651 and 648. The number
of points in the training datasetDd is nd = 500.

(ii) Reduced representation and diffusion-maps basis. Fig. 6a displays the graph of the function ν 7→ errX(ν) defined
by Eq. (26). For Scenario 1, convergence of the representation is achieved at ν = 140, resulting in an error of
errX(140) = 2.85 × 10−4. In Scenario 2, convergence occurs at ν = 136, with an error of errX(136) = 2.99 × 10−4.
Regarding the computation of the diffusion-maps basis introduced in Section 3.3, the optimal value of the smoothing
parameter εDM is determined as εopt = 454 and 278, corresponding to the optimal value mopt = 141 and 137 of
parameter m. Fig. 6b shows the graph of the function α 7→ λα representing the eigenvalues of the transition matrix
[P].
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(a) Graph of function ν 7→ errX(ν)
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(b) Graph of the eigenvalues α 7→ λα

Figure 6: Convergence of the PCA reduced representation (a). Eigenvalues of the transition matrix [P] for the diffusion-maps basis (b). Scenario 1
(thin line), Scenario 2 (thick line).

(iii) Generating the learned realization. The learned realizations are generated as explained in Section 3.6, incorpo-
rating the constraints outlined in Section 3.7. The free parameter f0 is chosen as 4, and the integration step ∆t of the
Störmer-Verlet scheme is 0.21. Each realization [zℓα] represents the ℓth realization of [Z(T )] for T = 30 × ∆t (due to
the damping controlled by f0 = 4, T is a time at which the stationary response is reached). We have chosen nMC = 100,
resulting in nar = nMC × nd = 50 000.

(iv) Constraints on second-order moments of H. For Scenario 1, the number of constraints is nc = 280, and the
relaxation parameter αi is defined by β1 = 0.01, i2 = 10, and β2 = 0.1. For Scenario 2, nc = 272, and β1 = 0.01, i2 =
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20, and β2 = 0.5. The convergence of the iterative algorithm presented in Section 3.7-(ii), to take into account the
constraints on second-order moments of H in PLoM, as a function of iteration number i, is studied in analyzing the
graph of the error function i 7→ err(i) defined by Eq. (35) (see Fig. 7a) and the graph of the function i 7→ ∥λi∥ (see
Fig. 7b). A very good convergence is observed, with err(2000) = 10−3 (Scenario 1) and err(109) = 3.2×10−4 (Scenario
2). For both scenarios and for all k in {1, . . . , ν}, at convergence, it holds that |E{Hc,k}| ≤ 10−7 and 0.999 ≤ E{H2

c,k} ≤ 1.
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(a) Graph of function i 7→ err(i)
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(b) Graph of function i 7→ ∥λi∥

Figure 7: Convergence analysis of the iterative algorithm to take into account the constraints on second-order moments of H in PLoM as a function
of iteration number i, presented in log-log scales. Scenario 1 (thin line), Scenario 2 (thick line).

(v) Concentration of the learned probability measure. As explained in Section 3.5, the quality of the PLoM algorithm
is assessed by examining the value of d2

nd
(mopt), defined by Eq. (30). At convergence, we obtain d2

nd
(mopt) = 0.17 and

0.16, indicating excellent quality of PLoM to preserve the concentration of the learned probability measure.

(vi) Illustration of the learned pdf of components of H and of the clouds of the learned points. In Hc, the subscript c is
removed to simplify the writing. Fig. 8 (Scenario 1) and Fig. 9 (Scenario 2) depict the probability density functions of
components H1, H30, and H70 of H, estimated using the training dataset and the learned dataset. These figures exhibit
a good coherence. It should be noted that the convergence of these estimates is not the same, as there are nd = 500
points in the training dataset and nar = 50 000 points in the learned dataset. Fig. 10a (Scenario 1) and Fig. 10b
(Scenario 2) display the clouds of the learned points and the training points of H, associated with components H1,
H30, and H70. These results illustrate the preservation of the concentration of the probability measure.
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Figure 8: Scenario 1: probability density functions of components H1, H30, and H70 of H, estimated with the training dataset (dashed line) and
with the learned dataset (solid line).
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Figure 9: Scenario 2: probability density functions of components H1, H30, and H70 of H, estimated with the training dataset (dashed line) and
with the learned dataset (solid line).

(a) Scenario 1: cloud of points for training (blue star) and learning (red
hexagram)

(b) Scenario 2: cloud of points for training (blue star) and learning (red
hexagram)

Figure 10: Clouds of the learned points and the training points of H, associated with components H1, H30, and H70.

4.4. Validation Analysis

In this section, we present a validation of the proposed methodology. This methodology is based on the con-
struction of conditional statistics (statistical surrogate model) defined in Section 4.2, which are estimated with the nar
points of the learned dataset, generated with the PLoM algorithm. The estimates of these conditional statistics are
converged because nar is large. For validation purposes, these conditional statistics must be compared with a reference.
This reference can only be obtained by constructing a validation dataset with nv points generated with the nonlinear
computational model used to construct the nd points of the training dataset. Ideally, nv ≃ nar and the construction of
a validation dataset can be achieved for both scenarios. Here, due to limitations in computational resources, we only
consider the construction of a new validation dataset for Scenario 2. This validation datasetDv comprises nv = 20 000
independent realizations (qℓv,wℓ

v) in Rn = Rnq × Rnw with nq = 600 and nw = 48, for ℓ ∈ {1, . . . , nv} of the random
variable (Q,W) (note that nv < nar in this case). The constitution of this dataset requires solving 2 040 000 nonlinear
finite-element computations overall. The following settings are then considered.

• For Scenario 1: as explained in Section 4.1, we have W = (Whyp,Wdisp) and nw = 3 + 48 = 51. To construct the
reference conditional statistics with the validation dataset Dv, we can therefore consider a single value no = 1,
wo = whyp ∈ R3 of the random control parameter Whyp. The realizations {wℓ

v}ℓ≥1 are not useful, and only the
realizations {qℓv}ℓ≥1 are used.

• For Scenario 2: for the validation of the conditional statistics, the control variable is W = Wdisp with nw =

nw,disp = 48. To construct the reference conditional statistics with the validation dataset Dv, we introduce no

values, {wo,k ∈ Rnw , k = 1, . . . , no}, of the random control parameter W with values in Rnw . We have randomly
drawn, with a uniform distribution, the no vectors {wo,k, k = 1, . . . , no} from the set {wℓ

v, ℓ = 1, . . . , nv}. Due to
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space limitations, we consider no = 2: these two vectors correspond to the realizations #1 882 and #19 502 in
the set {wℓ

v, ℓ = 1, . . . , 20 000}.

The validation results are presented below for each scenario.
(i) Validation for Scenario 1. Concerning the conditional probability density functions, we select the first components
at point #60, corresponding to the random variables C60,1 and S 60,1 relative to the random tensors C and S, as quantities
of interest. This point is relatively central in the macroscopic domain, and the first components at this location
present significant fluctuations — hence making this choice a reasonable one from a validation standpoint. Fig. 11
displays the graphs of the conditional probability density functions q 7→ pC60,1 |Whyp (q|wo) of random variable C60,1 and
q 7→ pS 60,1 |Whyp (q|wo) of random variable S 60,1 given Whyp = w0, estimated with the learned dataset and the validation
dataset. It can be seen that the width of the supports, which control the variances, is well predicted.
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Figure 11: Validation of Scenario 1: Graph of the conditional pdf given Whyp = w0 of component 1 of the random tensors C and S at point 60.
Learned dataset (solid line), validation dataset (dashed line).

For the three components indexed by j ∈ {1, 2, 3}, Fig. 12 displays the graphs of the conditional mathematical
expectations i 7→ E{Ci, j|Whyp = wo} for the family {Ci, j, i ∈ I} of random variables, while Fig. 13 displays the
graphs of i 7→ E{S i, j|Whyp = wo} for the family {S i, j, i ∈ I}. While very large variations are observed over the
quadrature points, the accuracy in the predictions of the conditional expectations remains remarkably good given the
small number of training data. It should be noted that the graphs in Figs. 12b and 13b differ only from a constant.
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Figure 12: Validation of Scenario 1: Graph of the conditional mathematical expectation as function of points i given Whyp = w0 for the three
components of the random tensor C. Learned dataset (solid line), validation dataset (dashed line).

(ii) Validation for Scenario 2. The conditional probability density functions are estimated for the first components
of the tensorial quantities of interest at point #60, as for Scenario 1. For the two values of the control parameter,
k = 1 and k = 2, Fig. 14 displays the graphs of the conditional probability density functions q 7→ pC60,1 |Wdisp (q|wo,k)

17



0 20 40 60 80 100

1340

1360

1380

1400

1420

1440

1460

(a) Graph of function i 7→ E{S i,1 |Whyp = wo}

0 20 40 60 80 100

-40

-20

0

20

40

(b) Graph of function i 7→ E{S i,2 |Whyp = wo}

0 20 40 60 80 100

60

80

100

120

140

160

180

200

(c) Graph of function i 7→ E{S i,3 |Whyp = wo}

Figure 13: Validation of Scenario 1: Graph of the conditional mathematical expectation as function of points i given Whyp = w0 for the three
components of the random tensor S. Learned dataset (solid line), validation dataset (dashed line).

for random variable C60,1 given Wdisp = w0,k, estimated with the learned dataset and the validation dataset. Similarly,
Fig. 15 displays the graphs of q 7→ pS 60,1 |Wdisp (q|wo,k) for random variable S 60,1 given Wdisp = w0,k. Again, it is seen
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Figure 14: Validation of Scenario 2: Graph of the conditional pdf given Wdisp = w0,1 or w0,2 of component 1 of the random tensor C at point 60.
Learned dataset (solid line), validation dataset (dashed line).
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Figure 15: Validation of Scenario 2: Graph of the conditional pdf given Wdisp = w0,1 or w0,2 of component 1 of the random tensor S at point 60.
Learned dataset (solid line), validation dataset (dashed line).

that the supports of the (marginal) distributions are well predicted, and the validation results are reasonably good.
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For j ∈ {1, 2, 3} and the two values of the control parameter (k = 1 and k = 2), Figs. 16 and 17 display the graphs
of the conditional mathematical expectations i 7→ E{Ci, j|Wdisp = wo,k} for the family {Ci, j, i ∈ I} of random variables,
while Figs. 18 and 19 display the graphs of i 7→ E{S i, j|Whyp = wo,k} for the family {S i, j, i ∈ I}. Good accuracy is
observed over all quadrature points, which demonstrates the capability of the framework to capture the non-smooth
large variations generated by the localization in the nonlinear stochastic boundary value problems.
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Figure 16: Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wdisp = w0,1 for the three
components of the random tensor C. Learned dataset (solid line), validation dataset (dashed line).
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Figure 17: Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wdisp = w0,2 for the three
components of the random tensor C. Learned dataset (solid line), validation dataset (dashed line).

4.4.1. Remarks on CPU Time
For the probabilistic learning algorithm, the total CPU time is due to the construction of the learned dataset, the

numerical cost of conditional statistics being completely negligible. For the construction of learned datasets, the CPU
time is directly proportional to the number of iterations required to satisfy the normalization constraints. For the first
scenario, 2, 000 are used and the total CPU time is 4 hr and 26 min. For the second scenario, only 109 iterations are
necessary to reach excellent convergence and the total CPU time is 19 min. It should be noted that for scenario 1,
the convergence tolerance could have been reduced without significantly penalizing the quality of the results, and this
would have significantly reduced the number of iterations and therefore CPU time.

Regarding the generation of the training dataset using nonlinear finite element simulations and the FE2 approach,
the average CPU time to complete one simulation is 449.80 s, and one multiscale simulation at any Gauss point (and
final increment) takes from 0.5 to 5.401 s (depending on both the sample of the local material properties and the
applied boundary conditions). Assuming that conditional statistics would be computed using 50,000 samples, the
CPU time associated with a brute force approach (with sequential execution) would then be ≈ 50, 000 × 450 = 6, 250
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Figure 18: Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wdisp = w0,1 for the three
components of the random tensor S. Learned dataset (solid line), validation dataset (dashed line).
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Figure 19: Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wdisp = w0,2 for the three
components of the random tensor S. Learned dataset (solid line), validation dataset (dashed line).

hr. While this time can be reduced using distributed computing, it remains much larger than the cost induced by the
learning method.

5. Conclusion

In this work, we have introduced a statistical surrogate model for concurrent multiscale simulations involving
nonlinear materials with non-separated scales. The methodology combines probabilistic learning on manifolds, a
generative model that allows for measure concentration and support information to be accurately captured, with the use
of conditional statistics to approximate the mapping between apparent strain and stress variables — namely, the right
Cauchy-Green tensor and the second Piola-Kirchhoff stress tensor — at a finite set of points (defining a subregion of
interest where concurrent coupling must be deployed). As opposed to standard techniques relying on, e.g., polynomial
or neural network surrogates, the proposed approach (1) can readily accommodate the (aleatoric) randomness raised
by the multiscale setting, (2) enables the seamless integration of nonlocal interactions through the consideration of
joint distributions, and (3) can perform efficiently in the small data regime. Two applications, relevant to inverse
problem solving and forward propagation, were presented in the context of nonlinear elasticity. In the first case, the
hyperparameters for the prior model defining the random media and boundary conditions at mesoscale are considered
as control parameters. This setting can be used, for instance, to identify the hyperparameters when experimental
observations are available. In the second application, only mesoscopic boundary displacements are used as control
variables. In this case, the prior model at fine scale is fixed, and the effect of material randomness can be quantified.
In both cases, large spatial variations, large statistical fluctuations, and strong non-Gaussianity are observed. It was
shown that despite these challenges, the framework remains capable of delivering reasonably accurate estimations,
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even with a fairly limited amount of training data. The information contained in the latter is a critical aspect in the
methodology: this information must be rich enough to learn the probability measure and discover the geometry of the
manifold defining its support.
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Appendix A. Formulas for Conditional Statistics

In this Appendix, we use the following notation. The real-valued random variable Q denotes any component of
the Rnq -valued random variable Q, and the real variable q represents the corresponding component of the vector q in
Rnq . Let Q̃ and W̃ = (W̃1, . . . , W̃nw ) be the normalized random variables defined by

Q̃ = (Q − q)/σQ , W̃k = (Wk − wk)/σWk , k = 1, . . . , nw , (A.1)

where q, wk, and σQ, σWk are the mean values and standard deviations of the random variables Q and Wk. These
values are estimated using empirical statistical estimators based on the learned realizations {(qℓar,wℓ

ar), ℓ = 1, . . . , nar}.
For any value w0 = (w0,1, . . . ,w0,nw ) of the control parameter given in Cw ⊂ Rnw , we define the vector w̃0 in Rnw such
that

w̃0,k = (w0,k − wk)/σWk , k = 1, . . . , nw . (A.2)

The Gaussian KDE estimation of the joint probability distribution of Q̃ and W̃, with respect to dq̃ dw̃, is written as

pQ̃,W̃(q̃, w̃) =
1

nar

nar∑
ℓ=1

1
√

2πs
exp(−

1
2s2 (q̃ − q̃ℓar)

2)
1

(
√

2πs)nw
exp(−

1
2s2 ∥w̃ − w̃ℓ

ar∥
2) . (A.3)

In Eq. (A.3), s is the Silverman bandwidth defined by

s =
{

4
nar(2 + n)

}1/(n+4)

, n = 1 + nw , (A.4)

and, for ℓ = 1, . . . , nar, q̃ℓar and w̃ℓ
ar,k are defined by

q̃ℓar = (qℓar − q)/σQ , w̃ℓ
ar,k = (wℓ

ar,k − wk)/σWk , k = 1, . . . , nw . (A.5)

From Eq. (A.3), the following formulas for conditional statistics are derived.

(i) The conditional mathematical expectation E{Q |W = wo} of Q given W = w0 in Cw is given by

E{Q |W = w0} = q + σQ

∑nar
ℓ=1 q̃ℓar × exp(− 1

2s2 ∥w̃0 − w̃ℓ
ar∥

2)∑nar
ℓ=1 exp(− 1

2s2 ∥w̃0 − w̃ℓ
ar∥

2)
. (A.6)

(ii) The conditional probability density function pQ|W(q |w0) with respect to dq of Q given W = w0 in Cw is defined
as

pQ|W(q |w0) =
1

√
2π sσQ

∑nar
ℓ=1 exp(− 1

2s2 (q̃ − q̃ℓar)
2) × exp(− 1

2s2 ∥w̃0 − w̃ℓ
ar∥

2)∑nar
ℓ=1 exp(− 1

2s2 ∥w̃0 − w̃ℓ
ar∥

2)
, q̃ = (q − q)/σQ . (A.7)

(iii) The conditional cumulative distribution function FQ|W(q∗|w0) = Proba{Q ≤ q∗ |W = w0} of Q given W = w0 in
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Cw is estimated using

FQ|W(q∗|w0) =

∑nar
ℓ=1 F̃ℓ(q̃∗) × exp(− 1

2s2 ∥w̃0 − w̃ℓ
∥2)∑nar

ℓ=1 exp(− 1
2s2 ∥w̃0 − w̃ℓ

∥2)
, q̃∗ = (q∗ − q)/σQ , (A.8)

with

F̃ℓ(q̃∗) =
1
2
+

1
2

erf(
1
√

2 s
(q̃∗ − q̃ℓar)) , erf(y) =

2
√
π

∫ y

0
e−t2

dt . (A.9)
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