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Traffic flow is known to be unstable at high densities, creating undesirable stop-and-go waves. Using real-time data and a long-range perception, an automated vehicle (AV) could detect perturbations early and adapt its trajectory to keep a nearly constant speed, making the overall flow smoother. This paper presents the following algorithm. Using a short-time prediction of its leader's trajectory, the AV computes a future trajectory that minimizes speed variations while keeping both a bounded acceleration and jerk. This controled trajectory is updated in real-time until the perturbation is passed and the vehicle goes back to its normal behavior. Simulation results using human drivers data for the downstream traffic show that the speed variations is reduced by more than 20 %.

I. INTRODUCTION : STABILITY AND MULTI-ANTICIPATION

High density traffic is known to be unstable : in a 2008 experiment, Sugiyama [START_REF] Sugiyama | Traffic jams without bottlenecks -Experimental evidence for the physical mechanism of the formation of a jam[END_REF] proved that stop-and-go waves arise naturally when the traffic density is high, even in the absence of bottlenecks or other obstacles. The resulting speed variations increase the risk of accidents, the fuel consumption, and can lead to a suboptimal use of the infrastructures. Microscopic models can easily reproduce this instability [START_REF] Bando | Dynamical model of traffic congestion and numerical simulation[END_REF], and show that there exists a range of unstable densities, which depends on the reaction time of drivers.

Multi-anticipative driving behavior, where a vehicle reacts to many vehicles in front (instead of just one), is well known to increase the traffic stability. Recent studies have shown, using both microscopic [START_REF] Farhi | Multi-Anticipative Piecewise Linear Car-Following Model[END_REF], [START_REF] Hoogendoorn | Empirics of multianticipative car-following behavior[END_REF] and macroscopic [START_REF] Ngoduy | Multianticipative Nonlocal Macroscopic Traffic Model[END_REF] models, that the trajectories are smoother, and that the range of unstable densities is reduced by multi-anticipation. Other works [START_REF] Gong | Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon[END_REF] use communication to control the interdistances of a connected platoon of cars and avoid the reactive behavior, responsible for the instability.

These models are either concerned with human driving behavior, or with a platoon of all connected vehicles. However, a single automated vehicle (AV),
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Gustave Eiffel University, COSYS -PICS-L, France remi.sainct@univ-eiffel.fr reacting to the positions and speeds of many vehicles in front, could anticipate perturbations and stabilize the traffic flow more efficiently than any human driver could.

The idea of mitigating stop-and-go waves using a small number of AVs in a flow of human drivers has started to be investigated in recent years. The most common approach is to optimize ACC parameters to ensure stability [START_REF] Jin | Connected cruise control among humandriven vehicles: Experiment-based parameter estimation and optimal control design[END_REF]. Stern [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF] proposes to limit the maximum speed of the AV, depending on the local traffic density. Wang [START_REF] Wang | Infrastructure assisted driving to stabilise heterogeneous vehicle strings[END_REF] uses a smart infrastructure to detect unstable platoons, and commands an AV in the platoon to change its parameters in real-time. Like in [START_REF] Jin | Connected cruise control among humandriven vehicles: Experiment-based parameter estimation and optimal control design[END_REF], the real-time data collection is only used on a macroscopic scale, to estimate some parameters related to the human drivers downstream, not to directly predict their behavior. This paper presents a novel and more direct approach to this stability problem. Like Stern and Wang, we assume that the AV has more information about its (downstream) surrounding than a human driver normally would (for example using advanced sensors and perception modules, V2V communication, and/or a smart infrastructure). From this data we make a short-time (3 to 6 seconds depending on the traffic speed) prediction of the trajectory of the vehicle just in front of the AV (leader). When a stop-and-go wave is detected, the AV's trajectory is optimized accordingly to minimize speed variations.

Section II presents the optimization algorithm. Assuming that the leader's future trajectory is known, the AV's speed variation is minimized, taking into account passenger comfort and the need for smooth transitions. A method to avoid oscillations due to the update frequency is proposed. Section III presents the full agorithm, using position and speed data from the downstream vehicles to create an extended dynamic perception map and predict the leader's future trajectory. The efficiency of the dampening is compared with the perfect prediction case.

Normal behavior of the AV

In this article we will consider the "normal behavior" of the AV to be the classical Optimal-Velocity (OV) model :

ẍi = 1 τ (V opt (x i+1 -x i ) -ẋi ) , (1) 
where x i , ẋi and ẍi are the position, speed, and acceleration of vehicle i, V opt is the optimal velocity function and τ is a characteristic time. Although this model is not the most realistic for reproducing human driving in general, its linear stability can be calculated analytically, and its parameters can be fitted to reproduce stop-andgo waves quite realistically in terms of wave amplitude and propagation speed. It also has the following property : the stationary solution on an infinite road where all vehicles drive at a distance d of their leader and at speed V opt (d) is linearly stable if and only if V opt (d) < 1/(2τ ).

Data used for the simulations

In order to realistically assess the performance of our algorithm, the downstream traffic in our simulations will use trajectory data (see Fig. 1) from the 2015 american experiment [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF], provided by professor Seibold from Temple University. Fig. 2 shows the speed of one of the vehicles from this experiment (dotted line) and of a virtual follower using the OV model (dashed line). Notice the reaction time of the follower. The speed variations of this trajectory will be used as base case to evaluate the performance of the instability mitigation algorithm.

II. WAVE DAMPENING USING A PERFECT PREDICTION

A. Trajectory optimization

When a perturbation is approaching, our goal is to mitigate it without reducing the traffic flow (which would happen is the AV simply lags behind). Therefore, we aim to slow down earlier, then catch up to the vehicle in front at the moment it accelerates again, in a smooth way.

Our criteria for wave damping will be the amplitude of the perturbation (ie the difference between maximum and minimum speed) for the controled trajectory compared to the reference case (OV model). Therefore, we optimize our trajectory by minimizing the total speed variation T 0 |ẍ(t)|dt of the controled trajectory while traveling the same distance X and having the same initial and final speed (V 0 and V f ) and acceleration (a 0 and a f ) as in the reference trajectory.

We also add constraints on the maximum acceleration (for mechanical reasons) and maximum jerk (for comfort). The minimization problem then writes :

min T 0 |ẍ(t)|dt with                        x(0) = 0 x(T ) = X ẋ(0) = V 0 ẋ(T ) = V f ẍ(0) = a 0 ẍ(T ) = a f ẍ(t) ∈ [-B, A] ∀t |x (3) (t)| ≤ J ∀t, (2) 
where T is the duration of the controled trajectory. This problem has a unique solution if X ≤ T min(V 0 , V f ) or if X ≥ T max(V 0 , V f ) ; otherwise, we choose the solution with the longest period of constant speed.

Given a prediction of the leader's trajectory (dotted line in Fig. 3), the algorithm proceeds as follows :

1) compute the trajectory x g (t) it would take using the normal driving model ("system off", dashed line in Fig. 3), up to the prediction horizon. This "ghost trajectory", that the vehicle computes but doesn't take, ensures a smooth transition back to normal behavior (here at t = 43 s). 2) Solve the minimization problem (2) using the last point of the ghost trajectory as final state (position, speed and acceleration) : this gives a controled trajectory x c (t).

3) The trajectory is accepted only if it stays behind the ghost at all time : x c (t) < x g (t) ∀t ; therefore, its safety distance will always be larger or equal to the safety distance of the normal driving mode. Otherwise, the previous points of the ghost trajectory are tried sequentially.

The trajectory that is finally selected is therefore the longest controled trajectory that doesn't intersect the ghost (blue line in Fig. 3).

B. Result with perfect knowledge of the future

Fig. 3 shows an example of the optimal trajectory assuming the leader's future trajectory (dotted line) is perfectly known. The controled trajectory starts at t = 30 seconds and ends at t = 43.4 seconds. Without the algorithm (in black dashed line), the AV reaches a maximum and minimum speed of 8.1 and 2.8 meters per second, in less than 7 seconds. Using the optimized trajectory, it only reaches a maximum and minimum speed of 7.7 and 4.25 meters per second : the speed range has been reduced by 34%.

C. Result with perfect knowledge of the next 5 seconds

In the previous example (Fig. 3), the AV optimises its trajectory only once (at t = 30 seconds), but uses a very long (15 seconds) prediction of its leader's trajectory to do so, which is highly unrealistic. In this next example, the AV only knows its leader's behavior 5 seconds in advance, with a 0.2 second update time. It solves the same optimization problem (now with T ≤ 5 seconds), then updates its controled trajectory using the following rules :

• while the AV is in normal mode, it accepts the longest controled trajectory that doesn't intersect the ghost. If none exists, it stays in normal mode (OV model). • If the AV was already in a controled trajectory and a new, longer acceptable controled trajectory exists, it is accepted if it leads to a lower acceleration after 0.2 second. These rules might result in an undesirable oscillation of the acceleration (see Fig. 5), if each new trajectory starts with a very short negative jerk then a positive jerk. To prevent these oscillations (for both control and comfort reasons), a possible method is to impose a constant jerk for the first 0.2 second of the controled trajectory, the value of which depends on the desired speed and acceleration at 0.2 second. The position and speed of the AV are not significantly changed by this smoothing process. Fig. 4 shows the result when the AV knows its leader's trajectory 5 seconds in advance, with an update every 0.2 seconds and no error, and uses the smoothing method. The controled trajectory now starts at t = 30.6 seconds (first accepted trajectory) and finishes at t = 41.2 seconds. The AV has a maximum and minimum speed of 7.9 and 3.8 meters per second, thus the speed amplitude is reduced by 23% compared to the reference trajectory.

Result with multiple waves

This algorithm was tested using human drivers data, from the 2015 american experiment [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF]. One of the vehicles was chosen as the leader, and its trajectory was given in real time to the AV with a 5 seconds advance. Fig. 6 shows the speed of the AV for this simulation. The control was activated 11 times (on the blue squares). Excluding the last activation and the very short one (at t = 144 seconds), the 9 big stop-and-go waves were reduced by 27% of the speed variation on average, with a minimum reduction of 19% (for the fourth one at t = 80 seconds).

These results are very promising, but they might be very sensitive to the quality of the prediction.

III. OPTIMAL CONTROL WITH REAL-TIME

PREDICTION

This section will demonstrate the performance of the mitigating algorithm even when the prediction is quite inaccurate. We will assume that the AV is equipped with sensors and communication means allowing it to know in real-time the position and speed of all the vehicles in front of it, up to 100 meters, or equivalently that this information is sent via a smart infrastructure. This second hypothesis is made for example by Wang in his 2018 paper on Infrastructure assisted adaptive driving [START_REF] Wang | Infrastructure assisted driving to stabilise heterogeneous vehicle strings[END_REF].

Using this real-time data, we will evaluate the propagation speed of the stop-and-go wave, then predict the trajectory of the AV's leader. It should be noted that the prediction method presented here is not very accurate compared to some advanced reconstruction methods found in the litterature, and could be improved. However, we will see that the dampening algorithm still performs very well even in this case.

A. Evaluation of the wave propagation speed

Evaluating the propagation speed of a stop-and-go wave is relatively easy, even with just the data from a 100-meters interval in front of the AV, by computing the least-square distance between the different trajectories for example. However, this speed is also relatively constant. In this work, we will assume a constant propagation speed of -8 meters per second (against the driving direction).

B. Prediction of the leader's trajectory

Using the real-time position x i (t) and speed v i (t) of several vehicles in front, and the wave propagation speed σ, we can make a prediction of the trajectory of the leader. We make the following assumptions : system off system on leader Fig. 6. Demonstration of the algorithm with a perfect 5 s prediction and an update frequency of 5 Hz. The leading vehicle's speed is in dotted line. The autonomous vehicle's speed is in dashed line (without the algorithm) and in blue (with the algorithm).

• the drivers have locally the same trajectory, shifted in space and time :

∀t, x i (t + ∆t i ) = x i+1 (t) -∆x i .
• The shifts ∆t i and ∆x i depend on the vehicle (they are not constant), but the wave speed is constant :

∀i, ∆x i ∆t i = σ.
Thus, an aggressive driver would have smaller values of ∆t i and ∆x i , when a sluggish one would have higher values. • The trajectory of the leader is piecewise parabolic, from which we can deduce : From our 3 assumptions, we deduce that there is a unique solution for ∆t i :

x i+1 (t) -x i (t) = ∆t i V i (t) + V i+1 (t) 2 + ∆x i .
∆t i = x i+1 -x i (V i+1 + V i )/2 + σ . (3) 
Fig. 7 shows how the trajectory is constructed. The ∆t i are first computed using the last equation, then the acceleration, speed, and position are sequentially computed on each interval.

C. Results

The full algorithm now works as follows. Every 0.2 second, the AV gets the real-time position and speed data from all the vehicles in a 100-meters downstream interval (either from sensors or communication). It uses these data to update its prediction of the leader's trajectory using the method described in III.A and III.B (note that the prediction horizon can now vary). Then, it updates the entire ghost trajectory (and not just the end, since the prediction changed).

Then, if the AV was in a controled trajectory, it recomputes a controled trajectory (by solving the minimization problem (2)), using the same prediction horizon but the new ghost trajectory for the final point. Thus, the previous controled trajectory is slightly modified to adapt to the new prediction.

After this step, we proceed with exactly the same update rules as in II.C :

• compute the longest controled trajectory that doesn't intersect the ghost ; • accept this trajectory if the AV was in normal mode or if the new controled trajectory leads to a lower acceleration than the old one. Fig. 8 shows the results of both the 5-seconds perfect prediction and the 100-meters vision. Although the AV's trajectory in the second case (in red) is slightly less smooth (due to the prediction errors), it is often as good or even better than the perfect prediction case : the speed amplitude is reduced by 32.5 % on average, with a minimum of 22 %, compared to an average reduction of 27 % for the perfect prediction. This is due to the fact that given the low speed of the vehicles (5 meters per second on average), a 100-meters vision leads to a prediction horizon of more than 5 seconds.

This paper comes with an attached 1'48" video file, 'predictive_control.mp4'. While the efficiency of the algorithm (in terms of speed amplitude reduction) can be seen on Fig. 8, the video allows to compare the leader's actual speed with the prediction (in red dashed line on the top right panel, after the first 10 seconds), at every time step.

Conclusion and future work

With the development of the new means of mobility and AVs, more researches are made about how to manage efficiently mixed traffic and how to provide reliable strategies of traffic regulation involving AVs. In this paper, a first solution has been presented in order to reduce the traffic waves, which generate traffic jams. Clearly, the main objective is to propose, with a first set of assumptions, a proof of concept for a predictive control algorithm applied to an AV in order to minimize the traffic instabilities.

The first results present relevant and interesting benefits of such a method of AV speed regulation. Nethertheless, the main hypothesis of the proposed algorithm brings some interesting remarks and ways of improvements. For instance, the 3 assumptions for the prediction (see III.B.) are clearly wrong and the prediction could be improved in several ways. However, our results show that the algorithm is quite robust with respect to these prediction errors. The second way of improvement could be on the perception stage. In our approach, the perception is assumed to be perfect, with no delay. In a future work, it will be relevant to use a realistic communication channel [START_REF] Demmel | An IEEE 802.11p Empirical Performance Model for Cooperative Systems Applications[END_REF]. The communication errors and delays are expected to be somewhat compensated by a better prediction algorithm. A last limitation of this kind of solution for the traffic instability mitigation is the single-lane hypothesis and configuration. In a multi-lane traffic, especially at higher speed, the interdistance in front of the AV cannot become too large, to prevent lane cutting. 
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 12 Fig. 1. Position data (on a circular ring road) from the Seibold experiment, showing clear stop-and-go waves.
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 3 Fig. 3. Demonstration of the algorithm with a perfect prediction and 1 computation of trajectory at t = 30 s. The leading vehicle's position (left), speed (middle) and acceleration (right) is in dotted line. The autonomous vehicle's trajectory is in blue (with the dampening algorithm) and in black dashed line (without).
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 45 Fig.[START_REF] Gong | Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon[END_REF]. Demonstration of the algorithm with a perfect 5 s prediction and an update frequency of 5 Hz, using the smoothing method. The leading vehicle's position (left), speed (middle) and acceleration (right) is in dotted line. The autonomous vehicle's trajectory is in dashed line (without the algorithm) and in blue (with the algorithm).
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 7 Fig. 7. Trajectory reconstruction with non-identical drivers.
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 8 Fig.8. Speed of the AV for a 5 s perfect prediction (blue) and a 100 m vision (red). The update frequency is 5 Hz. The leading vehicle's speed is in dotted line. The black dashed line shows the AV's speed without the algorithm. The triangles show the maximum and minimum speed for the 9 stop-and-go waves.
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