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Abstract— Ensuring access to good quality water is crucial for 

sustainable development, particularly in developing nations. 

However, the lack of affordable and reliable solutions for 

monitoring water quality remains a significant challenge that the 

LOTUS sensor meets: it is a compact and versatile 

multiparametric sensor designed for real-time monitoring of 

chlorine, pH, temperature, and conductivity in potable water. 

The proposed solution features a cylinder-like structure, 

measuring 21 cm long and 3.5 cm in diameter. It integrates 

temperature sensors, conductivity sensors, and a 2 x 10 sensor 

array of multi-walled carbon nanotube (CNT) chemistors. The 

CNTs, arranged in random networks between interdigitated 

electrodes, can remain non-functionalized or be functionalized 

with a dedicated polymer to modulate their sensitivity. Six 

LOTUS sensors were tested in a 44m-long water loop under a 

flow rate of 0.3m/s and pressure of 1 bar to evaluate the system 

performance. To manage the high noise levels caused by strong 

electromagnetic interferences in the facility, particularly under 

flowing water conditions, a strong effort was put into data 

denoising techniques. After extensive denoising and calibration 

model optimization, temperature, conductivity, chlorine, and pH 

estimation were achieved with mean absolute error (MAE) as low 

as 0.34°C, 73.2 µS/cm, 0.13 mg/L and 0.12 pH unit in flowing 

water (achieved on different sensors due to dataset limitations). 

Notably, the dataset also demonstrates the role of CNT 

functionalization in chemical sensing, with the selected polymer 

modulating the sensitivity to pH by 50%. 

Keywords—Multiparametric; Carbon nanotube; water quality 

monitoring; multisensor; 

I. INTRODUCTION 

UNICEF labels “Water scarcity” as a risk multiplier 
impacting socio-economic and geopolitical issues while 
adversely affecting human survivability [1]. While the main 
drivers of water scarcity are climate changes, urbanization, and 
population growth, deteriorating water quality and lack of 
integrated water management further degrades the situation. 
The 2022 UN Sustainable Development Goals report 
highlights that the lack of water monitoring is more prevalent 
in countries with lower GDP [2], [3], as they lack sufficient 
infrastructure to support the required monitoring. In this article, 
we present the results of a validation campaign in a scale 1 
water loop of a low-cost, real-time multiparametric water 
quality sensor that can be directly installed in water distribution 

pipelines and does not require any complex or expensive 
infrastructure.  

This sensor was developed as part of the EU-Indo Horizon 
2020 project LOTUS (https://www.lotus-india.eu/), which 
focuses on providing affordable sensing solutions for 
monitoring water quality and decision-support tools to improve 
water management and distribution. 

II. THE LOTUS SENSOR 

Current water quality monitoring technologies can be 
generally classified into online or offline analysis. The latter 
consists of laboratory analysis based on samples collected in 
the distribution network, which is expensive in time and 
resources and is not real-time. The alternative, online 
monitoring, has extensively demonstrated its advantages to 
optimize water quality but is available for only a limited set of 
parameters at a reasonable cost (<1,000 €), typically pH, 
chlorine, conductivity, and temperature [4]–[7]. Even 
considering the available parameters so far, the cost of 
monitoring several parameters together (which is needed by 
water operators) quickly adds up to numbers that even mature 
economies cannot always afford (> 5,000 € range) in sufficient 
numbers. The LOTUS project targets precisely to offer a 
multiparameter sensor at the cost and size of a typical 
monoparameter sensor. This is achieved by co-integrating on a 
1cm² silicon chip, physical sensors (based on MEMS 
technology), and chemical sensors based on functionalized 
Carbon nanotube sensor arrays, as is detailed in Fig.  1[8].  

 

Fig.  1. LOTUS sensor - chip: overview 
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Each LOTUS sensor chip contains, more specifically, 2 
temperature sensors (T1 and T2), 3 conductivity sensors (C1 to 
C3), and a 2x10 array of chemistors targeting pH and chlorine 
[8]. The chemistors consist of multi-walled carbon nanotubes 
ink-jet printed between interdigitated electrodes. Ten of the 
chemistors use functionalized CNTs (labeled 1.F – 1.I and 2.F 
– 2.I), and the other 10 non-functionalized CNTs (labeled 1.A 
– 1.E and 2.A – 2.E). The functional polymer is a polyfluorene 
carrying urea moieties. The multiplicity of sensing devices 
within the chip provides redundancy to the measurements and 
enables performance improvement via data fusion.  

III. DEPLOYMENT IN SENSE-CITY WATER LOOP 

To anticipate the performance of LOTUS sensors in field 

conditions, six different LOTUS sensors were deployed for an 

extended period of time in a scale 1, 44 m-long water loop in 

Sense-city facility (https://sense-city.ifsttar.fr/) located at 

Université Gustave Eiffel, France. At any given time, 2 units 

of the LOTUS sensor can be installed in the loop and tested 

under flow (Fig.  2). While some of the sensors were deployed 

for several weeks, and one even for over a year, the exposure 

to flow was during shorter periods of time only (due to 

operating constraints of the facility). The flow rate was ~0.3 

m/s and ~1 bar when under flow. The temperature, 

conductivity, chlorine, and pH ranged from 15°C and 20°C, 

870 µS/cm to 1270 µS/cm, 0 to 5 mg/L, and pH 7 to 8.5 over 

the course of the different experiments.  

 

Fig.  2. Sensor installation in the Sense-city pipe 

IV. DATA PROCESSING 

A total of 20 GB of data was collected and sorted out. Fig.  3 

shows an 800h-long example of collected data, comparing the 

signal of one of the chemistors with the data of the reference 

sensors in the water loop measuring pH, chlorine, flow rate, 

and temperature. Sense-City is outfitted with multiple power 

equipment, making it an electromagnetically-noisy 

environment. This contaminates the sensor response with 

several artefacts, as illustrated in Fig.  4. A series of algorithms 

compatible with real-time sensor operation were applied to 

reduce the impact of these artefacts on the sensor response. An 

example of such data post-processing is shown in Fig.  5. 

Among the six sensors, one of the sensors, labeled here S1, was 

selected for further analysis of temperature, chlorine, and pH 

performances, as its dataset could be consistently denoised and 

contained sufficient variations for all the target parameters 

except conductivity. The conductivity performance was 

assessed on another sensor, S2. 

 

Fig.  3 Response from sensing device 1.A of LOTUS sensor "chip 141" from 

Sense-city. The reference chlorine sensor only operates under flow, so it 

features 0mg/L when the flow is OFF irrespective of the actual chlorine 

level. 

 
Fig.  4 Artefacts in a sensor response during testing in Sense-city 

 
Fig.  5 . Processing the raw response to get the relative response, which is 

used in the model development and estimation 



To assess sensing performances, relevant dataset was randomly 

divided into 70:30. The calibration model for the target 

parameters were estimated over the 70% of the data and tested 

over the remaining 30%. Several data splits (10 to 20) were 

studied, and the mean value of the MAE over the splits is 

indicated here. However, it was not possible to apply a real-life 

calibration approach, where calibration is done on the first 

acquired data and then applied to the following data, as the 

dataset did not provide sufficient data.   

V. SENSING PERFORMANCES 

A. Temperature and Conductivity  

For temperature and conductivity, models could be built with 

and without flow to assess the effect on performances. The 

calibration model for the temperature sensor is linear as 

expected from the device physics: Tpred = a0+ a1 Ti, where Tpred 

is the predicted temperature, Ti refers to the T1, T2 sensor 

outputs, and a0 and a1 are the coefficient of the calibration 

models (identified on the training datasets).    

For the conductivity sensors, the calibration model is linear in 

both temperature Tpred and conductivity Cpred: Ci = b0 + b1Tref 

+ b2Cref. It is worth mentioning that the device physics 

predicts a model inversely proportional to conductivity over 

the full range of water conductivity (from deionized water to 

seawater). However, the range of conductivity considered here 

being small in comparison, a linear model is suitable. The 

average MAE of the selected sensors are listed in Table 1. While 

the MAE with and without flow are acceptable for water 

quality monitoring applications, one observes that the 

presence of flow increases the MAE by a factor 2 to 3.  

TABLE 1. TEMPERATURE AND CONDUCTIVITY SENSOR PERFORMANCE 

Parameter Flow Sensor MAE Range 

Temperature 
 

Unit: °C 

On S1 T1: 0.43 
T2: 0.34 

17°C – 20°C 

Off S1 T1: 0.09 

T2: 0.09 

14°C – 18°C 

Conductivity 
 

Unit: µS/cm 

On S2 C1: 204 
C2: 73  

C3: 128  

750 – 1270 

Off S2 C1: 31  
C2: 154  

C3: 657  

750 – 1220 

B. Chlorine and pH estimation 

In water, chlorine is present as HClO (active chlorine) and ClO-

. The active chlorine concentration (CHClO) can be estimated 

from the total chlorine concentration (CCl) added, pH, and 

temperature (T) of the sample[8] by the formulae: 

CHClO = CCl (1 + 0.98 x 10pH-pKa(T))-1    (1) 

pKa(T) = 7.5 – 0.01 (T – 30)    (2) 

Unlike the physical sensors, the calibration model was not 

known before the experiment. Moreover, some devices may 

have different responses due to device variability. Fig.  6 

illustrates the method used for model identification: the 

correlation coefficient R² is evaluated for a panel of models and 

compared between different models and devices.  

 

The following models were found to have the best 

performances: 

• Si =  CHClO +  pH + ,  

• Si =  CHClO +  pH +  CClO
- +  and  

• Si =  CHClO +  pH + Temperature +   

where Si is the sensor response, and , , ,  are the 

coefficients and  is the residuals. As they had very similar 

performances, the model with the least parameters was retained 

to avoid overlearning: Si =  cHClO +  pH + . A set of 5 

chemistors (with higher R2) 1.A, 1.B, 1.C, 1.D, and 1.H was 

selected via exhaustive search, and the model was inverted. 

The MAE for the chlorine and pH estimation were 0.13 mg/L 

and 0.12 units, respectively. Fig.  7 shows the prediction as a 

function of time. Because of the high noise level, small jumps 

in chlorine and pH remain hard to track. Interestingly, the 

functionalized chemistors were found to have an average 

sensitivity of 0.81 %/pH unit and the non-functionalized with 

0.41 %/pH unit to pH, which shows the role of 

functionalization.  

 
Fig.  6. Correlation coefficient of Models on cHClO and pH for each 

chemistor 

Fig.  7. Time series prediction of active chlorine and pH from the selected 

chemistor 

VI. CONCLUSION AND FUTURE WORK 

The Sense-City deployment allows us to anticipate the future 

real-life performances of LOTUS multiparameter water 

quality sensors. Despite high noise levels and several artefacts, 

suitable calibration models for all the sensing devices in the 

sensor were developed, and the MAE values are compatible 

with the requirements of real-time applications. To make this 

technology more suitable for deployment, intense effort is 

presently ongoing to reduce its noise level.
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