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Abstract—Intersections have been known as hazardous points
of the road networks for over a century. A diversity of solutions
have been developed to reduce the number of accidents at
intersections, such as traffic lights, pedestrian crossings, as well
as roundabouts. In the past decade, many cities have had to
deal with a growing number of alternate means of transport
such as bicycles, powered two-wheelers and electric personal
transporters, which are both more mobile and more vulnerable.
As for the announced automated vehicles, they might be less
adaptive that human drivers. These changes again raise the
question of how accidents can be prevented at intersections
of roads, bus lanes, cycling lanes and walkways. In order to
improve the awareness of road users, we propose a cooperative
information system based on computer vision to monitor moving
obstacles and on communication to warn road users facing
imminent danger of collision. We have implemented and tested
this system on a roundabout with a high traffic volume, and we
report the difficulties that we experienced.

Index Terms—Smart Transportation, Smart Cities, Perception
System, Intersection

I. INTRODUCTION

Two decades ago, vehicle communication opened opportuni-
ties to develop information systems with various objectives [1],
[2]. Communication can be inside the vehicle, between vehi-
cles (V2V) and between vehicles and roadside units (V2I). It
is at the basis of the so-called Cooperative, Connected and
Automated Mobility (CCAM) strategy in Europe [3].

The first and foremost objective of these information sys-
tems is to improve driving safety. In general, the principle
of these information systems consists in sharing information
about current vehicle status, the environment and disrupting
events. Such collected information allow vehicles to have a
better knowledge of their environment, even beyond than a
driver can have, and thus can be used to take safer and more
efficient driving decisions. Some examples are the possibility
to better perceive vehicles in bad weather and bad visibility
conditions, the possibility to warn about a traffic accident
ahead or about an incoming emergency vehicle.

The second objective is for traffic control. Sharing informa-
tion about vehicle positions and speeds can be used to identify
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traffic congestion in real time on the entire road network. This
better knowledge of the traffic can be used to improve its
control or to faster send help in case of accident. A typical
local use case is to collect queue sizes at an intersection to
increase vehicle flow by optimizing red lights time periods.

Depending on the objectives, on the site, on the sensor tech-
nologies, several constrains apply to the information systems
such as high frequency, low message latency and low message
loss rate. A few camera-based systems have been proposed for
intersections, including roundabouts [4], [5] for the purpose of
traffic monitoring, without the time constrains of information
broadcasting.

In this paper, we focus on information systems about the
vehicle traffic at intersections, based on one or several cameras
linked with a communication unit able to deliver messages to
the connected vehicles. These messages contain rich informa-
tion about detected moving obstacles such as their type, their
footprint, their heading and their tracking index. In Sec. II,
related works are discussed. In Sec. III, the camera-based
information system is described and its characteristics are
discussed. Then Sec. IV describes the experiments performed
on a roundabout in the City of Rambouillet, France during the
project Tornado-Mobility, where estimation errors and system
latency were evaluated using several camera models.

II. RELATED WORKS

Studies over the past two decades have demonstrated the po-
tentials of cooperative driving systems in improving the safety
and efficiency of autonomous mobility [6]–[9]. Cooperative
perception systems leverage the information collected from
multiple sensors and vehicles to achieve a more accurate and
comprehensive understanding of the surrounding environment.
Different communication protocols have been proposed for
Cooperative Perception, including the Dedicated Short-Range
Communications (DSRC) and Cellular Vehicle-to-Everything
(C-V2X) technologies [10], [11]. Moreover V2X communi-
cation offers an attractive solution for sharing perception by
adding connectivity to vehicles using ETSI or SAE stan-
dards [12], [13]. For example, [14], [15] recently proposed
on-board cooperative perception systems using Vehicle-to-
Vehicle (V2V) communication and [16] designed a road-



side stereo-vision camera-based system with Infrastructure-
to-Vehicle (I2V) communication for a roadside cooperative
and collaborative perception system. Besides, in the context of
camera-based perception systems, several studies have investi-
gated the use of computer vision and deep learning techniques
for object detection [17]–[20] and Multiple Object Tracking
(MOT), with the DeepSort algorithm for instance [21], [22].
These methods can be used in the monitoring of road and
urban mobility as evidenced by the AI city challenges [23],
[24]. For instance, [5] proposed a solution to the 2021 Chal-
lenge Track 3: Multi-Camera Vehicle Tracking at City-Scale
with multi-cameras focused on crossroad zones where re-
identification methods are also needed. However, despite the
promising results obtained by previous works, several chal-
lenges need to be addressed for the widespread deployment of
cooperative perception systems. These challenges include the
development of robust, efficient and fast algorithms for object
detection and tracking, the optimization of the communication
protocols, the integration of different sensor modalities, not
to mention the need to evaluate and validate the system as a
whole (communication, sensors, perception, control algorithms
among others) with realistic use-cases in simulation but also
in real road situations as it is proposed in the following.

III. SYSTEM

The traffic is sometimes heavy at a suburban roundabout
and vehicles sometimes enter the roundabout at high speeds.
This leads to difficulties for the slower road users such as
agricultural vehicles, automated vehicles, trucks, cyclists and
pedestrians to safely cross the roundabout, in particular when
the visibility is reduced by bad weather conditions or by occul-
tation. We thus designed a roadside information system able
to track road users on every lanes entering the roundabout and
able to broadcast information to all users with a receiver. The
goal of this information system is to broadcast the following
features about the moving obstacles: accurate location on the
road, coarse footprint, speed vector and object class, at the
time of observation.

A. Camera-based roadside information system

As illustrated in Fig. 1, the roadside information system
consists in a RGB camera with HD resolution (1280 × 960)
in a waterproof case attached at 5 meters high on a pole, a
computer connected to the camera for video acquisition and
processing, a roadside unit (RSU) for sending messages about
the moving obstacles observed by the camera to the road
users with on-board units (OBU), i.e the receivers. The V2X
systems, RSU and OBU use the DSRC protocol, including
GPS for synchronization. The sooner the information about
obstacles is broadcasted, the lower the location uncertainty
due to motion. The time of observation is thus an important
information that must be broadcasted along with other mobile
features. The latency between the time of observation and the
time information is delivered to users is one of the critical
parameters of the system on which its usefulness depends.
Another critical parameter is the period of time at which the

Fig. 1. The information system with a camera attached to a public lighting
pole close to a roundabout in the City of Rambouillet, France. The camera is
connected to a computer for image processing. The computer is also connected
for communication to a roadside unit (inside the service vehicle in the topleft
picture).

information about moving obstacles is refreshed. This period
of time can be smaller than the previous latency when the
systems uses parallelism between the different tasks.

B. Video acquisition

A camera is installed on each road entering the roundabout.
The camera should be installed between 50 and 100 meters
from the roundabout along the roadside, at a minimum height
of 5 meters to avoid occultation by trucks or busses. In
addition, the camera should be tilted downwards to avoid
direct sunlight which has a negative effect on image quality.
Moreover, the camera should be looking at the roundabout
allowing to better see incoming vehicles while they are still
far from the roundabout. The camera lens should be of fixed
focal length, and its field of view should allow full view of the
road going through the roundabout. The camera should have
automatic iris and gain tuning to deal with various lighting
conditions. The camera can be connected to the computer
by an IP cable up to 100 meters long (possibly with a PoE
injector) or by a USB cable up to 5 meters long. Each
image must be time-stamped by the camera at the time of
acquisition, unless the transmission is fast enough (within a
few milliseconds) to allow a time-stamp by the connected
computer. The time between camera and computer must be
synchronized, using NTP or PTP for more accuracy. For
communication purposes, the computer time is synchronized
with the GPS time.

C. Detection and recognition in images

After video acquisition, images captured from the video
stream are sent on the fly to the computer to perform the first
step of the processing. Moving objects have to be detected in
each image. The recognition is used to approximately estimate
the width and length of the footprint of each moving object.
So rather than relying on moving object detection in image



Fig. 2. Detection results obtained using refined YOLOv3 for different cameras
at different positions.

sequences, we tested detection and recognition using the well-
known state-of-the-art convolutional neural network (CNN)
named YOLO (You Only Look Once) which has the advantage
of speed [17]. YOLO predicts a probabilty map of the presence
of the objects of interest, several possible bounding boxes and
possible classes. The learning consists in the optimization of
the sum of three loss functions: the class recognition loss, the
boundary box loss and the classification loss.

We experimented with two different versions: YOLOv3 [18]
from darknet and YOLOv5. The later is easier to interface
within the processing chain. We reduced the number of object
classes from the original 80 to six: person, car, bicycle,
motorbike, truck/tractor, and motor bus. With images such as
in Fig. 2, we performed a refinement of the learning on our
own labeled dataset to improve detection and recognition per-
formances on different camera locations. Our labeled dataset
is built from images extracted from a few videos captured with
cameras on different roundabouts. The images were selected
carefully so as to have various moving objects in various
classes at different positions on the road and in the roundabout.
These images were annotated using YOLO mark tool.

D. Detection tracking along images

The detection being performed on single images, speed
estimation required a fast tracking of detected objects between
frames. We have used Deep SORT [21] because it is fast and
reliable after fine tuning of the parameters to the camera view.
Deep SORT consists in two steps: a prediction step using a
linear Kalman filter, followed by an association step between
new detections and existing tracks using the Hungarian algo-
rithm. The association step takes into account the geometric
distance, the speed and the visual similarity of the YOLO
features. Each newly detected object is assigned with a new
index and keeps that index until it leaves the camera field of
view. However, objects sometimes lose their index when they
are masked for too long.

E. Camera calibration

To be able to backproject detected object onto the road
surface, the camera transformation between the road and the
image must be estimated which calls for intrinsic and extrinsic
camera calibration. The intrinsic camera calibration consists in
estimating the parameters of the camera model such as pixel
size, image center and distortions. We used the pinhole camera
model with three terms for radial distortions. The method
for the intrinsic calibration is based on [25]. This intrinsic
calibration needs only be performed once before the camera
is fixed in its waterproof case.

Fig. 3. The image coordinates of remarkable points are associated with their
3D coordinates to estimate the camera position and orientation.

The extrinsic camera calibration estimates the position and
the orientation of the camera with respect to a reference
coordinate system on the ground. Thus the extrinsic camera
calibration must be performed in situ each time the camera is
moved.

To be able to provide information about the whereabouts of
moving obstacles, a shared reference coordinate system should
be used for positioning. We used the Earth Centred, Earth
Fixed (ECEF) coordinate system which is used in GPS, and
the local tangent plane coordinates East-North-Up reference
(ENU). The extrinsic camera calibration consists in selecting
remarkable points in the imaged scene such as corners of
roadsigns, streetlamps and corners of lane markings. As shown
in Fig. 3, the image coordinates of these remarkable points
are associated to their 3D coordinates. Knowing the intrinsic
camera parameters, the position and orientation of the camera
can be estimated with in the ENU coordinate system by
minimizing the error between the 2D image coordinates and
the 3D coordinates projected into the image. The Nelder-Mead
method (a.k.a the downhill simplex method) [26] is used for
optimization.

F. Detected object localization

From the intrinsic and extrinsic camera calibration, it is
possible to backproject, for each detection, the corners of
the detected bounding box on the ground, which is assumed



Fig. 4. From the length and width of the rectangular footprint, the footprint
angle can be estimated by keeping E into [A,B], H into [A,D] and enforcing
F into [B,C]. Figure from [27].

locally flat. The size of the bounding box being related to
the height of the detected object, we decided to use the
backprojection of the mid point of the bottom segment of
the bounding box as the object location on the ground. This
location changes with the yaw angle of the detected object on
the road, but we found this choice to be relatively robust in
our experiments.

G. Detected object geometrical model

Besides the position of each detected objects, there are
far more information we would like to extract, like the size,
height, orientation and so on. So a geometrical model has to
be set up for each object, as it was proposed in [27]. Indeed, a
detector such as YOLO provides bounding boxes from which
only approximations of the geometrical information about the
object can be obtained, as opposed to information provided
by an actual sensor such as a LIDAR. The bounding box
backprojected on the ground is a too large because the object
is not flat. A better geometrical representation can be predicted
when the class of the detected object is recognized. Indeed, the
six classes selected in III-C can be represented by rectangles
with length and width that are directly related to the typical
length and width of the corresponding vehicles. Pedestrians
will be represented by a square. For instance, for cars in
France, the geometrical model is a rectangle with average
width 1.8 m and with average length 4.3 m. For motor buses
in France, the average width is 3 m and the average length
is 9 m. For vehicles, when an accurate map of the road
is available, the rectangular footprint may also be assumed
oriented along the road axis. With all these assumptions, we
improved the geometrical representation, or footprint, of the
detected objects, which helped us to improve the estimation
of the space they occupy on the roadway and their headings.

When an accurate map of the road is not available, and for
not too distant objects, we found a way to estimate the vehicle
footprint orientation (heading) assuming that its size is known.
When the vehicle is seen from the front/back or from the side,
the heading is easy to derive knowing the camera orientation.
In the case where the vehicle is seen at an intermediate angle as

Fig. 5. The two estimated speed components along the South-North and East-
West axes of the ENU reference system are filtered and compared with the
RTK GPS measurements.

depicted in Fig. 4, an approximate footprint orientation can be
estimated. The backprojection of the bounding box within the
image is a trapezoidal quadrilateral (ABCD). We assume that
the rectangular footprint (EFGH) of the vehicle is of length
l and width w. For a vehicle going right, the lower corner
E of the footprint should be in the segment [A,B], the left
corner H should be in the segment [A,D] and the right corner
F should be in the segment [B,C]. To achieve this, the idea
is to slide the corner E of the vehicle along [A,B] by varying
the parameter λ until f(λ) = 0. These three constraints lead
to a unique possible orientation for correct values of l and w,
as detailed in [27].

H. Detected object speed

A Kalman filter can be used to smooth the position of
tracked objects and to estimate their speed. The better the
dynamic model, the more accurate the speed estimation. We
consider a dynamic model with constant speed as in (1):

xt+dt = xt + ẋtdt
yt+dt = yt + ẏtdt
ẋt+dt = ẋt
ẏt+dt = ẏt

(1)

where (xt, yt) is the ground position at time t and (ẋt, ẏt) is
the ground speed vector. Compared to the difference between
two consecutive values, the Kalman filter provides smoother
results with less noise. In Fig. 5, the raw speed components are
compared with the ones obtained by Kalman filtering and the
reference measurement obtained with an RTK GPS onboard
the observed vehicle.

I. Message broadcast

Once the moving obstacles are detected and the required
features are estimated, a message is broadcasted about the
traffic information using the roadside unit (RSU). In order
to manage different kinds of information to be shared at a
high frequency (up to 10 Hz), the ETSI standard provides two
kinds of message format: the Cooperative Awareness Message
(CAM) and the Collective Perception Message (CPM) [12].
The CAM is broadcasted by a vehicle for sharing its own
information [28] and the CPM is broadcasted from the sur-
rounding environment. In the experimented system, we have
implemented a roadside unit from LACROIX City which



broadcasts information about up to 255 perceived objects using
CPM, at a maximum frequency of 10 Hz.

J. Latency and refreshing period

TABLE I
AVERAGE LATENCY (IN SECOND) BETWEEN ACQUISITION AND MESSAGE

CREATION FOR DIFFERENT YOLO VERSIONS AND CAMERA MODELS.

Camera YOLOv3 YOLOv5
Basler BIP2 1300C (10 Hz) 0.543 s 0.543 s
Basler BIP2 1300C (30 Hz) 0.206 s 0.207 s
Allied Vision Prosilica GT 1930 C Not tested 0.111 s
Allied Vision Mako G192C Not tested 0.095 s

Due to the maximum frequency of the roadside unit, the
refreshing period can not be lower than 0.1 s. Ideally, the
latency between acquisition and message creation should be
lower than 0.1 s. As shown in Tab. I, this is not always the case.
By using a Dell T7920 workstation with Nvidia GPU Quadro
RTX 5000, image processing time is around 0.008 s. The
latency is thus mainly due to the camera acquisition and image
transmission and thus depends on the implemented camera and
on its tuning. We have experimented with three camera models
with different tuning and with two YOLO versions. The ideal
latency of 0.1 s is not achieved, even if it is achieved in average
with the Allied Vision Mako G192C. Indeed, the latency is
subject to variations, usually with a standard deviation of 10
% of the average. The smallest latency is obtained with the
Allied Vision Mako G192C and the Allied Vision Prosilica GT
1920 C cameras. With both cameras, maximum frequency can
be achieved parallelizing the camera acquisition and the video
processing on the computer. With the Basler BIP2 1300C set
at 30 Hz, we only managed a refreshing frequency of 8 Hz.

IV. EXPERIMENTS

Onsite experiments of the described information system
were performed within the Tornado-Mobility FUI project. The
demonstration site is close to the Bel-air shopping center near
Rambouillet and has four roundabouts. The road infrastructure
in this area is too basic and the environment is too com-
plex to allow Connected and Autonomous Vehicles (CAV)
to move efficiently. One roundabout is large with a central
island diameter of 26.7 m with poor visibility due to dense
vegetation, as shown in Fig. 1. To cover this large roundabout,
we tested with two position of the information systems: the
first position is in the avenue entering from the North, 54
m from the center of the roundabout, and the second is in
the avenue entering from the South at 55 m. After intrinsic
and extrinsic camera calibration, the average backprojection
error was 2.5 pixels for the North camera and 3.2 pixels for
the South camera. These values are relatively high due to
the small number of used remarkable points. Nevertheless, it
leads to an accuracy of a few decimeter on the ground for
closer objects, which was deemed enough for our application.
The perception system validations consisted in detecting and
tracking a Target Instrumented Vehicle (TIV) among other
vehicles in a real road traffic situation. This target vehicle,

a Renault ZOE car, developed by Université Technologique
de Compiègne (UTC), is equipped with a NovAtel Span CPT
IMU/GNSS receiver, with Post Processed Kinematics (PPK)
corrections, for centimetric accuracy [27]. The GNSS receiver
was installed near the rear axle. The vehicle and the cameras
were synchronized with the same reference: the GPS time.
This instrumented vehicle provided accurate pose measure-
ments in the same ENU reference system and groundtruth
for the system evaluation. The grountruth consisted in: the
timestamp t, the TIV position (x, y) in the ENU reference, the
TIV speed (vx, vy), the TIV heading ϕ. The perception system
was evaluated in terms of position and orientation accuracy,
with Multiple Objet Tracking (MOT) tests and real-time tests.

A. Position and orientation accuracy

Fig. 6. The average South-North and East-West errors between the observed
and RTX GPS locations are shown in the first line where the scale is in
centimeter (cm). In the second line, the two components South-North and
East-West of the standard deviation of the observed location are shown, where
the scale is in decimeter (dm).

The tracks of the instrumented vehicle, detected from the
camera, were selected manually. There are several tracks
due to the different round trips. By comparing RTK GPS
measurements with the results from processing the images of
the camera, the location error is estimated. For these tests,



only the position of the system on the avenue entering from
the North was used. The instrumented vehicle made several
round trips in the roundabout and in the avenue which enters
the roundabout from the North.

The RTK GPS receiver is installed inside the instrumented
vehicle and thus it is not visible from the camera. It is
necessary to compensate for the positional difference between
the receiver location and the point used for vehicle location.
Along the trajectory, we computed local average errors and
standard deviation for every position (x, y), by averaging in
a centered squared windows of size 2d and thus with corner
coordinates (x−d, x+d) and (y−d, y+d). Fig. 6 shows the
average South-North and East-West errors between observed
and RTK GPS vehicle locations, in the first line. One may
notice that the average error is higher for the South-North
component, which is along the camera axis. The East-West
component of the location error is around 15 cm but can reach
up to 1 m in the worst cases due to the occultation by tree
foliage. For the South-North component, the location error is
closer to 30 cm, but can be larger in case of occultation of
the instrumented car by another vehicle. The two components
South-North and East-West of the standard deviation of the
observed location are shown on the second line of Fig. 6.
Again, the error along the axis of the camera is higher than
along the perpendicular direction due to the perspective effect.

Fig. 7 shows the result of the comparison between yaw angle
estimated from the camera and estimated from the RTK GPS
successive positions of the instrumented vehicle. The error on
the yaw angle is around 0.4 rad in most cases except in a
few localized spots near the trees or near the roundabout exit
where other vehicles are often slowing down.

B. Multiple Object Tracking test

The Multiple Object Tracking (MOT), described in the
section III-D, was tested in real road traffic conditions with the
TIV as the only reference vehicle. To measure the performance
of the tracker, we used the two MOT metrics proposed in [29]:
the Mutliple Object Tracking Precision (MOTP) MOTP =∑

i,t d
i
t∑

t Ct
and the Mutliple Object Tracking Accuracy (MOTA)

MOTA = 1 −
∑

t(mt+fpt+mmet)∑
t gt

, where dit is the distance
between the ground truth and the estimated position at time t
for each track i, Ct is the number of matches found for times
t, fpt is the false positive at time t, mt is the missed target at
time t, mmet is the mismatch at time t ang gt is the number
of objects at time t. As the TIV position is known, the MOTP
is only computed for the TIV. The MOTA can be computed
for every visible vehicle in the images. To measure the MOTA
of our tracker we used 200 images of our database (images
and groundtruth). The results provided in Table II are quite
honorable.

C. Real-time tests

During the Tornado-Mobility FUI project, a real-time test
was organized at the beginning of 2021 in the area of the
Bel-air shopping center near Rambouillet. The TIV was the

Fig. 7. Errors between the yaw angle estimated from RTK GPS positions
and from the camera, in radian.

TABLE II
RESULTS OF THE MOT TEST.

MOTP m rate fp rate mme rate MOTA
375 mm 1.5% 0.2% 1.3% 90.1%

prototype of the Université Technologique de Compiègne
(UTC) which is able to receive the information broadcast by
the roadside camera-based system and able to use the received
information in the driving control algorithm [27]. During this
test, it was demonstrated that the camera-based system was
able to broadcast useful information to help the CAV to enter
smoothly into the roundabout. We observed that the processing
time was not constant but depended on traffic density. Indeed,
the processing time from detection to CPM message was 0.077
s in average (i.e 13 Hz) when only a few vehicles were seen
by the camera, but when the traffic was heavy, the processing
time increased up to 0.09 s (i.e 11 Hz). The processing time
is 10 times higher compared to the one obtained with the
Dell T7920 workstation due to the use of Dell G5 laptop with
a Nvidia GPU GeForce RTX 2060. Even with the use of a
more powerfull computer and GPU, the objective of a global
processing time most of the time lower than 0.1 s implies that



the image acquisition and transmission time should be much
lower than 0.1 s. From Tab. I, it appears that even the use of
IP cameras does not allow to achieve such reduced values of
acquisition and transmission delay.

This kind of real-time tests were also performed in a very
large roundabout close to the UTC, in the city of Compiègne,
where traffic is heavy, with similar results.

V. CONCLUSION

We have described a camera-based system able to broadcast
traffic information to connected vehicles that may help cross-
ing road intersection or entering roundabout when visibility is
reduced or when traffic is heavy. The proposed system consists
in a video camera, a computer for the video processing and
a roadside unit able to broadcast messages about the detected
traffic. The different steps of the image and video processing
are described and discussed, in particular the difficulty to
achieve low latency and low refreshing time. The proposed
system was evaluated in terms of accuracy and was tested on
suburban sites with success to help a CAV enter two large
roundabouts in the cities of Rambouillet and Compiègne in
France.
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