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ABSTRACT

From an analysis of the priors used in previous algorithms for
single image defogging, a new prior is proposed to obtain a
better atmospheric veil removal. The Naka-Rushton function
is used to modulate the atmospheric veil according to empir-
ical observations on synthetic foggy images. The parame-
ters of this function are set from features of the input image.
The algorithm is able to take into account different kinds of
airborne particles and different illumination conditions. The
proposed method is extended to nighttime and underwater im-
ages by computing the atmospheric veil on each color chan-
nel. Qualitative and quantitative evaluations show the benefit
of the proposed algorithm.

Index Terms— Visibility Restoration, Single Image De-
fogging, Bad Weather conditions, Atmospheric Veil, Naka-
Rushton.

1. INTRODUCTION

Visibility restoration of outdoor images is a well-known
problem in both computer vision applications and digital
photography, particularly in adverse weather conditions such
as fog, haze, rain and snow. Such weather conditions cause
visual artifacts in the images such as loss of contrast and
color shift, which contributes to reduce scene visibility. The
lack of visibility can be detrimental for the performance of
automated systems based on image segmentation [1] and ob-
ject detection [2], and thus requires visibility restoration as
a pre-processing [3] step. With fog or haze, contrast reduc-
tion is caused by the atmospheric veil. With rain or snow,
it is caused by the occlusion of the distant background by
raindrops or snowflakes.

This paper proposes two contributions: the first one is the
use of the Naka-Rushton function in the inference of the at-
mospheric veil. The parameters of this function are estimated
from the characteristics of the input foggy image. The sec-
ond contribution is the restoration of images with other kinds
of airborne particles and heterogeneous illumination, such as
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nighttime and underwater images, by processing each color
channel separately. Some of these contributions have been
proposed in [4]. The paper is organized as follows: Sec-
tion 2 introduces the problem and related works. Section 3
presents the proposed visibility restoration method and Sec-
tion 4 shows experimental results with qualitative and quanti-
tative evaluations and comparisons.

2. RELATED WORKS

2.1. Fog Visual Effect

Koschmieder’s law is a straightforward optical model which
describes the visual effects of the scattering of daylight by the
particles fog is made of [3]. When fog and illumination are
homogeneous along a light path going through x, the model
is:

I(x) = J(x)t(x) +A(1 − t(x)) (1)

where I(x) is the foggy image, J(x) the fog-free image, A
the sky intensity, x = (u, v) denotes the pixel coordinates.
The transmittance t(x) = e−kd(x) describes the percentage
of light which is not scattered, where k is the extinction coef-
ficient, which is related to the density of fog, and d(x) is the
distance between the camera and the objects in the scene. The
atmospheric veil is the last term in Eq. (1).

2.2. Daytime Image Defogging

Single image defogging algorithms can be divided into two
categories. Image enhancement algorithms use ad-hoc tech-
niques to improve the image contrast such as histogram equal-
isation and retinex, but they do not account for scene depth.
Visibility restoration, on which we focus, are model-based
and use Koschmieder’s law. Since depth is unknown, the
problem is an ill-posed inverse problem that requires priors
to be solved. Priors may be introduced as constrains or using
a learning dataset.

In [3], geometric priors are introduced. He et al. [5, 6]
introduced the Dark Channel Prior (DCP) as a method dedi-
cated to color images. The idea is that fog-free outdoor im-
ages contain pixels with very low intensity in at least one of
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the three color channels in any pixel neighborhood. Variants
and extensions were proposed such as [7, 8, 9].

In the last five years, learning-based methods have been
proposed for defogging, usually based on Convolutional Neu-
ral Networks (CNN) with supervised training [10, 11, 12, 13,
14]. Fog is a rather unpredictable phenomenon, so building a
large and representative training dataset with pairs of images
with and without fog is very difficult. This leads to general-
ization problems. More recently, GAN networks have been
used [15], with partially supervised training databases, but
the learning control is complicated. Fog removal being a pre-
processing, fast and computationally inexpensive algorithms
are usually required. We thus focus here on algorithms with
very few parameters to be learned.

2.3. Hidden Priors in the DCP Method

In DCP [5, 6], a widely used parameter called ω was clearly
introduced in the transmission map computation:

t(x) = 1 − ωmin
c

(
min
y∈Ω(x)

(
Ic(y)

Ac

))
(2)

were Ω(x) is the local patch centered on x, c the color chan-
nel, A the sky intensity, and I the image intensity. This pa-
rameter was introduced to mitigate over-restoration, and it is
usually set to ω = 0.95. According to [5], it maintains a
small amount of haze in the distance, producing more natural
results.

This parameter is actually a prior and needs to be ex-
plicited. First, let us propose a different interpretation of
ω. The term minc(miny∈Ω(x)(I

c(y))) in the transmittance
Eq. (2) is a first estimation of the atmospheric veil, based on
the white fog and the locally smooth fog priors. The result is
a mixture between the actual atmospheric veil and the lumi-
nance of objects in the scene. Let us name it the ”pre-veil”.
The percentage of the pre-veil which corresponds to the real
atmospheric veil is unknown, it is assumed to be constant and
equal to ω across the image. Therefore, ω can be explicitly
described as a prior parameter: it is the assumed constant per-
centage of atmospheric veil in the pre-veil map.

We test the validity of this prior in the next section.

3. SINGLE IMAGE ATMOSPHERIC VEIL REMOVAL

3.1. Is the use of ω a valid prior?

The usual way to compute the atmospheric veil from the pre-
veil is to apply the parameter ω. To test the validity of this
prior, we have to look at the link between the intensities in the
true veil and in the pre-veil images. This can only be achieved
with a synthetic image database, so we used the generator
of the FRIDA dataset [8]. In this synthetic images, the veil
is computed using Koschmieder’s law from the scene depth
map. Thus, the atmospheric veil map can be computed for

Fig. 1: Foggy pixels and veil pixels intensities: (a) histogram
showing the link between pre-veil and veil pixel intensities
(Mean of fifty images from the FRIDA dataset [8]), (b) input
foggy image.

Fig. 2: Left: the Naka-Rushton function with parameters
Rmax, K and n. Right: the modulation function, shaped like
the lefthand side of the Naka-Rushton function, showing pa-
rameters Is, I0 and ε.

each generated foggy image. Fig. 1 (a) shows the histogram
of fifty foggy images, with the pre-veil image intensities on
the horizontal axis and the intensities of the ground truth at-
mospheric veil on the vertical axis.

Fig. 1(a) shows that the link between foggy pixel inten-
sities and associated veil intensities is roughly affine. The
intensity of the atmospheric veil is high in the sky region, and
it is low in the ground region which is closer to the camera.
Since the variation is affine, it can not be modeled well with
a constant parameter such as ω. A function would be more
relevant.

3.2. Modulation function as a prior

To avoid over-restoration at the bottom of the image but to en-
sure that the restoration is maximum at the top of the image,
a modulation function f is necessary to compute the atmo-
spheric veil from the pre-veil. This function should be smooth
to avoid visual artefacts in the restored image.

From Fig. 1(a), the following constraints are proposed to
chose a function f which will appropriately modulate the pre-
veil:

1. The function f should be roughly linear on a large
range of intensities. This range is denoted [I0, Is]. We
introduce here the slope a of f at Is, i.e. f ′(Is) = a.
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Fig. 3: Atmospheric veil estimation from the morphologically filtered pre-veil using Naka-Rushton as a modulation function.

2. The function is close to zero on the intensity range
[0, I0], i.e. for the intensities of pixels looking at ob-
jects which are close to the camera where fog cannot
be seen.

3. The function and the restored image must not be nega-
tive.

4. Is is the intensity of the clearest (sky) region. To
avoid too dark values in the corresponding areas, f(Is)
should be a little lower than Is. We thus introduce a pa-
rameter ε such that f(Is) = Is − ε in order to preserve
the sky. ε is smoothly estimated as a function of Is.

Among the different functions we tested, the Naka-
Rushton [16] function was the easier to tune. This function
was first introduced to describe the biological response of a
neuron, and was further used in computer graphics for the
tone-mapping problem. It is defined as:

R(x) = Rmax
xn

xn +Kn
(3)

where Rmax is its upper-bound, K is the horizontal position
of the inflection point and n is related to the slope at the in-
flection point (see Fig. 2). The shape of the first part of the
curve in Fig. 2 (left) fits our needs, as shown in Fig. 2 (right).
The inflexion point with coordinates (K, Rmax

2 ) should cor-
respond to the modulation function f at Is.

3.3. Naka-Rushton function parameters

Rmax,K and n are the parameters of the Naka-Rushton func-
tion, whereas the parameters of the modulation function f are
I0, Is, and ε. In the previous section, K was set to Is. Fol-
lowing constraint 4. in Sec. 3.2, f(Is) is set to Is − ε. Thus,
Rmax = 2(Is − ε). The slope at Is is set to a. This slope
in the Naka-Rushton function being nRmax

4K (obtained by de-
riving the Naka-Rushton function), we have n = 2Isa

Is−ε . It
follows that a = Is−ε

Is−I0 . The parameter a was calculated as
the slope between the points of coordinates (I0, 0) and (Is,
Is − ε) (see the right image in Fig. 2).

Finally, the proposed modulation function f is:

f(x) = f0
xn

xn + kn
(4)

where f0 = 2(Is−ε), k = Is, n = 2Isa
Is−ε and a = Is−ε

Is−I0 . This
modulation function has only three parameters: I0, Is, and ε.
The last one must be set to a small value, the other two can be
computed from the input image.

In Fig. 1(b), Is is the intensity of the sky and I0 is the
intensity of the ground close to the camera. We have investi-
gated how I0 and Is can be best estimated. Taking the maxi-
mum of the image intensities for Is and the minimum for I0 is
too sensitive to noise. Therefore, I0 and Is are computed by
taking, respectively, the minimum and the maximum of the
input foggy image after using a morphological closing fol-
lowed by a morphological opening. The veil processing is
shown in Fig. 3.

3.4. Beyond the White Fog Prior

In order to better handle colored atmospheric veil, we pro-
pose a simple method: processing each color channel sepa-
rately with our algorithm. This is possible only because the
proposed atmospheric veil removal method is able to process
gray-level images thanks to the use of the modulation func-
tion prior. By processing each color channel separately, Is
is estimated on each channel and thus the color of the veil is
inferred.

4. EXPERIMENTAL RESULTS

The proposed algorithm is compared with six state-of-the-
art algorithms included three prior-based methods and three
learning-based methods: DCP [6], NBPC [7], Zhu et al [9],
AOD-Net [13], Dehaze-Net [10] and GCA-Net [14]. We se-
lected algorithms whose codes were publicly available. For
each algorithm, we optimized all the input parameters, except
the ω parameter in the DCP which is set to 0.95 in the orig-
inal paper. We tested different values of each parameter on
four datasets using SSIM [17] and PSNR as comparison cri-
teria. We first present a quantitative comparison on synthetic
images from the public FRIDA dataset [8], the Synthetic Ob-
jective Testing Set (SOTS) from the RESIDE dataset [18],
NTIRE20 dataset and O-HAZE dataset [19]. Then we present
a qualitative comparison on real world images.

1721

Authorized licensed use limited to: IFSTTAR. Downloaded on February 01,2024 at 13:52:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Comparison of fog removal results on real world image: (a) input foggy images, (b) DCP, (c) NBPC, (d) Zhu et al., (e)
Dehaze Net, (f) AOD Net (g) GCA Net, (h) W and (i) C.

4.1. Quantitative Evaluation

SSIM/PSNR
Methods FRIDA SOTS NTIRE20 O-HAZE

DCP 0.70/12.26 0.89/18.91 0.44/12.77 0.66/16.95
NBPC 0.75/11.59 0.89/18.07 0.41/12.24 0.61/15.85
Zhu et al. 0.72/12.15 0.88/16.06 0.45/11.98 0.66/16.58
AOD-Net 0.73/10.73 0.85/19.39 0.41/11.98 0.54/15.04
Dehaze-Net 0.65/10.87 0.90/23.41 0.44/12.33 0.60/15.41
GCA-Net 0.70/12.79 0.91/22.68 0.47/12.82 0.61/16.43
W 0.81/12.62 0.85/17.23 0.51/13.16 0.65/17.02
C 0.81/12.27 0.82/16.77 0.51/13.90 0.67/18.32

Table 1: Comparison of the SSIM and PSNR indexes on four
datasets: fifty images from the FRIDA, SOTS datasets, forty-
five images from the NTIRE20 and O-HAZE datasets. W
corresponds to our main algorithm assuming white fog, and
C is the color version (see Sec. 3.4).

Results are shown in Tab. 1 and illustrate that all methods
are competitive, but our methods outperform the others with
both criteria on FRIDA, Ntire20 and O-HAZE datasets. The
results on the SOTS dataset show that the proposed algorithm
is less efficient on images where the veil is spatially close to
uniform.

4.2. Qualitative Evaluation

Real world images from previous works on fog removal have
been used for a qualitative comparison. On Fig. 4, DCP,
NBPC and Zhu et al. algorithms remove the fog with good re-
sults. However, DCP images are bright and contrasted, while
NBPC and Zhu et al.’s results are darker and more faded. The
learning-based method AOD-Net provides dark and faded re-

sults but with less halos. It appears in the tree and buildings
images that Dehaze-Net method retains far away haze. It bet-
ter works on images with colored sky regions by avoiding
artefacts and blue-shift distortions unlike most of other algo-
rithms. GCA-Net produces artefacts in sky region of the tree
image but provides good and colored results in others partic-
ularly in the last line image.

The first version of our algorithm (Fig. 4 (h)) provides
bright results and removes the haze over the entire images.
The color version (Fig. 4 (i)) allows reducing blue color dis-
tortions.

5. CONCLUSION

We have reinterpreted the DCP method in terms of three pri-
ors. We propose to improve the third prior, associated to ω,
with a smooth modulation function as a prior to estimate the
atmospheric veil from the pre-veil. The input parameters of
this function are automatically estimated according to the in-
put image pixel intensities in light (sky) and dark (ground)
regions. The proposed method provides good results on both
synthetic and real world images for objects at all distances.

To extend the proposed algorithm to rain, smoke, dust and
other colored airborne particles, we process each color chan-
nel separately, in order to remove colored components. This
allows to apply the algorithm to nighttime images as well as
underwater images. The proposed algorithm should be care-
fully evaluated on these diverse conditions. This is not easy
with real world images, as ground truth are very difficult to
build.

A few color artifacts have been observed when restoring
sky regions of objects at large distances. In the future, we
will thus investigate these limits, trying to avoid artifacts and
preserve a better color consistency.
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