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Abstract—Popularity has increased for semi-flexible transit
systems because they combine the flexibility of a Demand Re-
sponsive Transit with the affordable fare of Conventional Public
Transport. In this study, we investigate a Flex-Route Transit: a
shuttle performs several trips in a pre-defined service area; it
follows a main route between origin and destination terminals
and must pass through some mandatory checkpoints along this
route. Between any consecutive checkpoints, an available slack
time is available for shuttles to deviate from the main route to
pick-up and drop-off customers. We implement a Mixed-Integer
Linear Programming formulation from the literature with an
added shuttle capacity constraint. We use it to perform a sensi-
tivity analysis of the system using a full factorial experimental
design over three parameters, namely: shuttle capacity, level of
demand and available slack time. The combined influence of
the parameters is analyzed using the method called Analysis of
Variance.

Index Terms—Flex-Route Transit, On-demand transportation,
sensitivity analysis.

I. INTRODUCTION

Demand Responsive Transit (DRT) is intended for door-to-
door transport of individuals. DRT primary objective was to
provide a non-profit pick-up and drop-off service for elderly
and handicapped people [10]. DRT provides a high level of
service to its customers that includes: 1. door-to-door pick-up
and drop-off; 2. flexible service schedule; 3. short travel time.
Nevertheless, this service is often costly.

In contrast, Conventional Public Transportation (CPT)
works according to a predetermined timetables and picks-

up and drops-off customers at predetermined stations. Such
system is far less expensive than DRT, but it does not offer
the same quality of service in terms of flexibility. Due to the
rising awareness for global warming, demand and therefore
congestion, transport authorities are attempting to minimize
the use of private cars [11]. To do this, they aim to increase
the quality of service of shared alternatives, by offering cost-
effective, flexible public transportation. Flex-Route Transit
(FRT) has evolved in order to strike a compromise between
fare policy and perceived customer convenience. The FRT
system merges the flexibility of DRT with the affordability
of CPT. As in CPT, in FRT a shuttle performs several trips
between terminals, visiting intermediate stops checkpoints in
each trip (See Fig. 1).

Customers may use the FRT system as a regular CPT one,
by boarding and disembarking at checkpoints. However, if
there is sufficient slack time, the shuttle may deviate from
the base route to perform door-to-door pick-up and drop-
off services for clients within the predefined service area.
The shuttle is expected to always proceed ahead towards the
destination depot, unless approved to go back by a maximum
threshold distance known as backtracking. The FRT system
can accommodate four different client types depending on
their pick-up or drop-off location [4]: 1. PD (regular): pick-up
and drop-off are at checkpoints; 2. PND (hybrid): pick-up is
at checkpoint, drop-off is not at checkpoint; NPD (hybrid):
pick-up is not at checkpoint, drop-off is at checkpoint; NPND
(random): pick-up and drop-off are not at checkpoints. We
formally define a request as the following elements, pertaining
to a specific customer: a pick-up and a drop-off time, as well978-1-6654-5530-5/23/31.002023IEEE



Fig. 1. Explanation of how FRT works

as a pick-up and a drop-off point. For a better understanding
of the FRT system, an example is provided in Fig. 1, where all
the requests are known in advance (static environment). There
are two factors that impact whether a customer is picked-up
or not in the first trip after the request is issued: availability
of shuttle capacity and slack time. A lack of either of these
resources means that one or more customers will be assigned
to a later trip. Fig. 1 shows an example in which the shuttle
deviates from the base route to pick-up and drop off customers
at points ‘a’, ‘b’ and ‘d’. Nevertheless, due to the lack of
available slack time or capacity, customer ‘c’ will have to be
assigned to a later trip.

In the early 2000s, the Metropolitan Transit Authority
(MTA) in Los Angeles County adopts such a system for the
first time on line 646 [1]. This system operates during the day
shift as classic CPT, and during the night shift as FRT. This
shift from CPT to FRT happens during the night shift for two
reasons. On the one hand, nighttime demand is generally low,
and enabling shuttles to detour from the main route does not
increase the riding time of on-board customers significantly.
On the other hand, at night walking is often unsafe and few
transfer possibilities are available. The fact that inclement
weather makes walking to the closest checkpoint difficult is
a further factor that makes FRT appealing as testified by its
subsequent introduction in Canada and China [2], [3].

Several Mixed Integer Linear Programming (MILP) formu-
lations have been developed to tackle the vehicle scheduling
in FRT systems [1], [4], [5], [7], [8]. However, only limited
investigations on the sensitivity of the system to its parameters
have been carried out. Specifically, “One-Factor-at-a-Time”
(OFAT) is the sole approach used to perform sensitivity
analysis. In this approach, one parameter is allowed to vary
within a certain range while the others are held constant.
The parameter is then reset to its default value and another
parameter is varied.

In this study, we apply a more advanced statistical method
to achieve a clearer understanding of the sensitivity of the
FRT objective function when many parameters are simulta-
neously changed. Specifically, we apply Analysis of Variance
(ANOVA) to investigate the links and impacts shuttle capacity,
level of demand and available slack time, exploiting a full
factorial experimental design.

The remainder of the paper is organized as follows. We
review the literature in Section (II) and provide the MILP
formulation in Section (III). The methodology and the results

of our sensitivity analysis are presented in Sections IV and (V),
respectively. We conclude in Section (VI).

II. LITERATURE REVIEW

The FRT was first presented in the literature as Mobility Al-
lowance Shuttle Transit (MAST) [1] and afterwards renamed
to FRT [3]. To maintain consistency, FRT is used throughout
the article. The literature addresses the scheduling of vehicles
in FRT systems through exact, heuristic, and meta-heuristic
algorithms.

The first work on FRT in the literature was introduced by
[1] in 2004. The authors proposed the first MILP formulation
to address the problem while minimizing: 1. distance traveled
by a shuttle; 2. riding time of clients; 3. waiting time of
clients. A comparison is made between the FRT system and
CPT based on the following four criteria: 1. riding time; 2.
walking time; 3. waiting time; 4. shuttle distance traveled.
The measured performance indicates that FRT performs better
than CPT. In [4], the model of [1] is further developed by
adding three sets of valid inequalities to improve the linear
relaxation of the model. It is found that the valid inequalities
reduce the computation time by up to 90%. However, some
of the largest instances still cannot be solved in less than
10 hours. In [5], the authors seek to understand the critical
number of customers to switch from one to two shuttles. For
this purpose, two methodologies are employed to address the
problem: a MILP formulation extending the one of [4] to
handle a fleet of shuttles; and an approximate analytical model
to validate the results. The results of the MILP show that
with more than 14 customers/hour, it is beneficial to switch
to two shuttles. A sensitivity analysis is also performed over
the weight of shuttle travel time in the objective function.
It shows that if this weight increases, the threshold on the
number customers also increases. In [6], the authors consider
a maximum time (upper bound) at which a customer can
be picked-up: they add time windows constraints and shuttle
capacity constraints to the model of [1]. The provided system
is then compared with a CPT system in which customers use
a shared biking system to get to the closest checkpoint stop
to be picked-up. It is found that the two systems perform
similarly. Nevertheless, based on customers’ perspective, the
FRT system is considered to be a more convenient service.
A sensitivity analysis is performed over the level of demand
and number of checkpoints. The results show that for low
demand neighborhoods with a low number of checkpoints,
an FRT system performs better. In [7], the authors introduce
some Meeting Points (MPs) within the service area, so if the
pick-up or drop-off location of customers cannot be inserted
in the schedule, they can walk to or from the closest MP as
long as MPs are within an acceptable walking distance. A
MILP formulation extending the one of [1] is provided, and
the waiting time in the objective function is replaced by the
walking time. A Memetic Algorithm is developed to solve
the large scale instances. The results show that for more than
12 customers/hour the rejection rate is reduced up to 20%
by employing a MP strategy. A sensitivity analysis is also



References Year # of shuttles Capacity # of Customers
[1] 2004 1 × 25/hour
[4] 2008 1 × 17/hour
[5] 2011 1-2 × 14/hour
[7] 2019 1 × 25/trip
[6] 2021 1 50 50/trip
[8] 2021 10-30 10 45/trip

Current study 2023 1 15-20-25 40-60-80/hour
TABLE I

SUMMARY OF THE LITERATURE.

References RTW DL NC MP AWD ST SC
[5] !

[6] ! !

[7] ! !

Current study ! ! !

TABLE II
SUMMARY OF SENSITIVITY ANALYSIS IN THE LITERATURE.

RTW (RIDING TIME WEIGHT); DL (DEMAND LEVEL); NC (NUMBER OF
CHECKPOINTS); MEETING POINTS (MP); AWD (ACCEPTABLE WALKING

DISTANCE); ST (SLACK TIME); SC (SHUTTLE CAPACITY).

performed over the number of MPs and acceptable walking
distance for customers. It is found that by increasing them,
more customers can be served. In [8], the authors seek to
reduce shuttle operation costs by employing Modular Au-
tonomous Vehicles (MAVs), which are small vehicles that can
be assembled into larger ones. In FRT, MAVs can split between
any consecutive checkpoints to handle non-PD customers. A
MILP formulation is developed to address the problem, which
is intractable in practice. A customized dynamic programming
algorithm is developed to handle the route scheduling, and a
fast heuristic solves the customers’ assignment to each MAV.
Different scenarios including 10 to 30 vehicles and 15 to 45
customers are tested. It is found that using MAVs can reduce
the operational costs significantly.

We provide a summary of the literature in Table I. The
FRT system is designed to provide service in low demand
neighborhood, justifying the fact that few papers in the lit-
erature consider shuttle capacity constraints. Recently, two
papers [6], [8] take into account shuttle capacity of 50 and
10, respectively, when modeling the FRT. As shown in Table
II, the level of demand is only assessed in [6] when performing
a sensitivity analysis.

III. MATHEMATICAL MODELING

To study the impact of parameter variations on the FRT
performance, we implement the MILP formulation of [1]
with an added shuttle capacity constraint. The problem is
modeled on a graph G = (N,A), with N = {0, 1, 2, ..., n}
the set of nodes and A the set of arcs between pairs of nodes.
We have the following assumptions: 1. the shuttle starts and
ends each trip at depot; 2. the shuttle performs several trips;
3. customers are not rejected due to the lack of slack time
or shuttle capacity, but are assigned to a later trip(s). In the
MILP, we use the following notation:

• KPD/KPND/KNPD/KNPND = set of PD/ PND/ NPD/
NPND requests, with K = KPD ∪ KPND ∪ KNPD ∪
KNPND.

• KHYB = set of hybrid requests (PND and NPD types).
• ps(k) ∈ N = pick-up nodes of k, ∀k ∈ K \KPND.
• ds(k) ∈ N = drop-off nodes of k, ∀k ∈ K \KNPD.
• N0 = set of checkpoints stops.
• Nn = set of non-checkpoint stops.
• N = N0 ∪Nn.
• o and d: origin and destination depots.
• A = arcs.
• R = number of trips.
• C = number of checkpoints.
• TC = (C − 1) × R + 1 = total number of stops at

checkpoints in the schedule.
• TS = TC + |KPND|+ |KNPD|+ 2|KNPND— = total

number of stops.
• δi,j = rectilinear travel time between i and j, ∀i, j ∈ N .
• qi = the load picked-up (> 0) or dropped-off (< 0) at

each node ∀i ∈ N .
• Q = shuttle capacity.
• θi = scheduled departure time of checkpoint stop i,∀i ∈

N0, (θ1 = 0).
• τk = ready time of request k, ∀k ∈ K.
• bi = service time for stop i.
• w1/w2/w3 = objective function weights.

Variables
• xi,j = 1 if an arc (i, j) ∈ A is used by the shuttle.
• ti = departure time from stop i,∀i ∈ N .
• t̄i = arrival time at stop i,∀i ∈ N \ {1}.
• pk = pick-up time of request k, ∀k ∈ K.
• dk = drop-off time of request k, ∀k ∈ K.
• Qi = shuttle load when leaving node i ∈ N .

The objective function to minimize is modeled as:

w1

∑
(i,j)∈A

δi,jxij+w2

∑
k∈K

(t̄ds(k)−tps(k))+w3

∑
k∈K

(tps(k)−τk)

(1)
subject to the following constraints:

∑
i∈N

xi,j = 1, ∀j ∈ N \ {o} (2)∑
j∈N

xi,j = 1, ∀i ∈ N \ {d} (3)

ti = θi, ∀i ∈ N0 (4)
tps(k) ≥ τk, ∀k ∈ K (5)
t̄ds(k) ≥ tps(k), ∀k ∈ K (6)
t̄j ≥ ti + xi,jδi,j − (1− xi,j)M, ∀(i, j) ∈ A (7)
ti ≥ t̄i + bi, ∀i ∈ N \ {o, d} (8)
Qj ≥ Qi + qj − (1− xij)M, ∀(i, j) ∈ A (9)
max{0, qi} ≤ Qi ≤ min{Q,Q+ qi}, ∀i ∈ N (10)
xi,j ∈ {0, 1}, ∀(i, j) ∈ A (11)
ti, t̄i ≥ 0, ∀i ∈ N (12)



The objective function (1) is the weighted sum of three
different parts, namely the total shuttle time traveled, the total
travel time of all passengers and the total waiting time of all
passengers. Here waiting time is the time gap between the
passengers ready time and the actual pick-up time. Network
Constraints (2) and (3) allow each stop (except at node o and
d) to have exactly one incoming and one outgoing arc, so that
all stops will be performed. Constraints (4) force the departure
times from the checkpoints to be fixed, while Constraints
(5) prevent each pick-up stop from having its departure time
earlier than its ready time. Constraints (6) prevent the drop-
off stop to be scheduled earlier than the pick-up stop for each
request. Constraints (7) enforce that for each traversed arc
(i, j), the arrival time at node j should be no less than the
departure time from node i plus the time needed to travel
between i and j. The last term ensures that for any xij = 0
the constraint becomes trivially satisfied. These constraints
also guarantee that every feasible solution does not contain
inner loops, but a single route from node o to node d, visiting
all nodes in N only once. Constraints (8) link arrival and
departure times for each stop i in the graph. Constraints (9)
and (10) compute the load variables according to the arcs used
in the solution and ensure that the shuttle capacity is respected.

IV. METHODOLOGY

In the literature, a few studies have investigated the effect
of changing the value of a single parameter on the objective
function, by employing the OFAT method explained in the
Introduction ( [5], [6], [7]). In this paper, we aim at under-
standing the impact of the values of multiple parameters, both
in isolation and jointly. To do so, we exploit a full factorial
experimental design. Here, we consider various values for each
parameter (respectively called levels (values) and factor in the
ANOVA terminology), and we run the MILP with all their
combinations (which are called effects). For instance, with
three parameters and two values for each, this leads to perform
23 = 8 runs.

We assess the results of the full factorial experiments
design through ANOVA (Analysis of Variance). ANOVA is a
frequently used statistical approach for evaluating hypotheses
[9] that can accommodate a great number of experimental
designs. It considers the effects of qualitative variables (in our
case, the problem parameters), on one output. The main reason
why ANOVA is useful is that it can provide a comprehensive
understanding of the interaction impact between parameters
on the output. This helps us to understand if the impact of
one parameter changes depending on the value of the other
parameters.

ANOVA relies on a statistical model which compares
differences in means. In order to determine if the means
between different groups of data are significantly different
(which points to a significant effect on the output), it uses the
variance inside the different groups. A group corresponds to a
number of independent measures of the output of the system
under study, which corresponds for us to the solutions of the
MILP presented above for different FRT instances. To each

Parameters Values Units
Number of checkpoints 5 -

Service time 18 seconds
Service area length 10 km
Service area width 2 km

Vehicle speed 30 km/h
PD 10 %

PND 40 %
NPD 40 %

NPND 10 %
w1, w2, w3 1 -

TABLE III
DEFAULT PARAMETER SETTING

combination of parameters therefore corresponds a number of
solutions called repetitions.

The usual way to display the output of an ANOVA analysis
is through what we can call the ANOVA table. This table
lists a certain number of properties of the variation of the
system output (the objective function for our optimization
problem), depending on the combination of input parameters
considered. It has one row for each such combination, listed
in the column labeled Effect. Then, we have the Degree of
Freedom in the Numerator (DFn), which is the number of
independent factors (variables) in the ANOVA table minus one.
The Degree of Freedom in the Denominator (DFd) represents
the total number of observations minus the number of groups
being compared. The ’F ’ stands for the F -Statistic, which is
the ratio of two variances: between-group variance and the
within-group variance. The F -Statistic is used to test the null
hypothesis that the means of all groups are equal. The ’P ’
stands for the p-value and is a measure of the probability
of observing a test statistic as extreme as the one computed
from the sample data, assuming the null hypothesis is true.
If p-value is less than the significance level (less than 0.05),
then we reject the null hypothesis and conclude that there is a
significant difference between at least two of the group means.
The most important parameters for assessing the impact of the
different effects are the p−value (under the column labeled
P) and the generalized eta square (under the column ges).
The magnitude of the impact of the corresponding ‘Effect’ is
provided by the ‘ges’ column. If the value of ‘ges’ is less
than 0.02 the impact is small, if it is between 0.02 and 0.26,
the impact is moderate, whereas a value above 0.26 implies a
large impact [12]. The other columns of the table are provided
for re-production purposes and we refer the interested reader
to [12] for further details.

To perform our sensitivity analysis, we first choose a
default parameter setting (See Table III). The percentage of
the customers of each type are preserved identical to the
one of [1], which is based on the Los Angles case study.
The following studies on the FRT also use the same values
for establishing proportions of customers and for fixing the
remaining parameters. However, to expand a bit the system
size we increase the number of checkpoints to five. We
conduct a sensitivity analysis on three parameters: demand
level (uniformly distributed in time and space over a 5-



No. Slack time Demand Shuttle capacity
Scenario 1 5 200 15-20-25
Scenario 2 10 200 15-20-25
Scenario 3 15 200 15-20-25
Scenario 4 15 200-300-400 15
Scenario 5 15 200-300-400 20
Scenario 6 15 200-300-400 25

TABLE IV
SCENARIOS FOR ASSESSING OBJECTIVE FUNCTION VALUE AND SHUTTLE

CAPACITY THRESHOLD

Effect DFn DFd F P P < 0.05 ges
S 2 2673 30254.160 0.00e+00 * 0.958
D 2 2673 165552.544 0.00e+00 * 0.992
C 2 2673 3815.375 0.00e+00 * 0.741

SD 4 2673 4270.673 0.00e+00 * 0.865
SC 4 2673 1344.892 0.00e+00 * 0.668
DC 4 2673 422.110 3.42e-282 * 0.387

SDC 8 2673 180.318 5.50e-244 * 0.351
TABLE V

S (SLACK); D (DEMAND); C (CAPACITY); SD (SLACK:DEMAND); SC
(SLACK:CAPACITY); DC (DEMAND:CAPACITY); SDC

(SLACK:DEMAND:CAPACITY).

hour time horizon), slack time and shuttle capacity. Each of
these parameters has three possible values. Demand levels are
200, 300, and 400; slack times are: 5, 10, and 15 minutes;
shuttle capacities are 15, 20 and 25. A full factorial analysis
requires then 27 parameter combinations. To perform a robust
sensitivity analysis, we solve 100 instances for each parameter
combination in which the random demand realization varies.

Furthermore, the specificity of our method is the interaction
of any type of parameter combination, which implies that it is
not straightforward to generalize a conclusion drawn from an
OFAT analysis. We choose to illustrate this phenomenon on
combinations of capacity with the other parameters, since this
is the first sensitivity analysis including the study of the effect
of capacity. We highlight two sets of scenarios, set (a) and set
(b). In set (a), we discuss over the results of nine scenarios,
that are the combination of slack time and capacity with a
fixed level of demand of 200 customers and define three sets
of scenarios as outlined in Table IV (scenarios 1-3). We also
investigate the combination of demand and capacity in set (b),
along similar lines (scenarios 4-6).

V. DISCUSSION OF THE RESULTS

The results of the ANOVA are shown in Table V, where the
columns correspond to the quantities described in Section IV.

As expected, all three parameters have a pretty strong
impact on the FRT system. In particular, level of demand has
the most significant impact on the system output as shown
in Table V, followed by slack time and shuttle capacity,
respectively. As we discussed earlier in the previous section,
here we first discuss the results of scenarios in set (a).

Each scenario set considers a different value of the slack
time at checkpoints. It gathers the values of the objective
function for all three values of the shuttle capacity. The
average values of the objective function for the resulting nine
different combinations of slack time and capacity are displayed

Fig. 2. Total objective function value

in Fig. 2. The general trend is that the objective function
decreases as capacity increases. However, the specific behavior
depends on the specific slack time scenario considered. If we
compare scenarios 1 and 2, we can measure a difference of
528 hours of objective function with capacity 15 and 755
hours with capacity 25, which amounts to a 43% relative
increment. This illustrates how differently the system will react
to a change in capacity depending on the values of the other
system parameters, for example in terms of operating costs.

Moreover, the ratio of objective functions between scenarios
1 and 2 evolves from a value of 1.47 for capacity 15 to 1.88 for
capacity 25. As a consequence, it is very difficult to evaluate
the system behavior by changing only one parameter at a time,
for example starting from a base configuration with a slack
time of five minutes and a capacity of 15. In such a case, one
can first investigate the effect of a capacity of 25, and then of
a slack time of 10 minutes, however, neither the differences
nor the ratios are conserved when both parameters evolve. This
demonstrates the importance of performing sensitivity analyses
considering multiple parameters. The figure also illustrates that
the effect of slack time is not monotonic for a given level
of demand and that the variation in the system behavior will
change by a significantly larger or smaller amount depending
on the chosen shuttle capacity.

Next, we investigate the scenarios in set (b), each associated
to a different capacity value, as detailed in Table IV (scenarios
4-5-6). What we try to illustrate is a phenomenon already
encountered in the FRT literature where the system is said
to saturate when the demand reaches a critical level. With
this level, the shuttle cannot satisfy all the non-PD customer
requests as soon as possible. The result is that some requests
must be handled at later trips, which increases their waiting
time. The fact that non-PD customers tend to accumulate and
their waiting time tends to increase signals that the FRT system
is not well calibrated with respect to the expected level of
demand. We will therefore adopt a customer-oriented view
and display the average waiting time per customer, which is
only one part of the full objective function of the MILP. The
slack time value is fixed at 15 minutes in order to make sure
that the saturation phenomenon, if any, comes from a lack of
capacity. The results are plotted in Fig. 3 in a similar fashion



Fig. 3. Average waiting time per customer (minutes)

to Fig. 2.
While the waiting time per customer generally increases

with the level of demand (which signals that the system is
starting to saturate), we can see that the increment value
depends on the exact shuttle capacity. While the difference
between capacities 15 and 25 is around 2.5 minutes for a
demand of 200, it culminates at around 5 minutes for a demand
of 400, which represents a 100% relative variation. The
fact that we consider an average waiting time per customer,
as opposed to the total waiting time, rules out the natural
expectation that it would scale proportionnally to the demand
level.

The plot can reveal additional information to transport
operators on the conditions in which they can provide a
guaranteed average level of service to their customers, e.g., an
average waiting time of no more than 10 minutes. Interestingly,
if we plot instead the riding time per customer for the same
configurations of parameters, see Fig. 4, we see a slight
increase with respect to the shuttle capacity (as expected
since the shuttle can perform more detours to handle more
customers within a given trip) but no particular variation when
the demand increases. This is a hint that the FRT should also
be studied with respect to each of its objectives as an overall
variation of the total objective function can hide very different
variations of its components.

These results are interesting from a strategic perspective to
anticipate the impact of the choice of shuttle depending on the
different levels of demand, in order to weigh the investment
costs compared to the level of service provided for customers.

VI. CONCLUSION

In this study, we implemented the MILP formulation of
[1] for an FRT system and added a capacity constraint to
take into account a finite shuttle capacity. We performed a
sensitivity analysis with respect to the shuttle capacity, the
level of demand and the slack time at checkpoints, using a full
factorial experimental design. We analyzed it using ANOVA in
order to assess parameters interdependence on the FRT system
behavior.

Our statistical analysis showed that all three parameters have
a strong impact, including capacity. We also observed that
all parameter combinations have a clear interaction in their

Fig. 4. Average riding time per customer (minutes)

impact, such as the combination of slack time or demand level
with the shuttle capacity, and illustrated this effect on the full
objective function or some of its components.

In future research, we can refine ANOVA results with
more sophisticated sensitivity analysis methods such as Sobol
indices [13]. We will also investigate the impact and in-
teractions of a larger number of parameters, such as the
frequency departure at the depot when the system can use a
fleet of shuttles instead of a single shuttle. Moreover, Design
of Experiments (DOE) is a powerful statistical tool used to
systematically explore and optimize complex systems. They
can offer reduced testing costs, efficient parameter estimation,
improved understanding of the system, and robustness analy-
sis.
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