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Abstract 22 

Soil nonlinear behavior is often triggered in soft sedimentary deposits subjected to strong ground 23 

shaking and has led to catastrophic damage to civil infrastructure in many past earthquakes. 24 

Nonlinear behavior in soils is associated with large shear strains, increased material damping ratio 25 

and reduced stiffness. However, most investigations of the high-frequency spectral decay 26 

parameter k, which captures attenuation, have focused on low-intensity ground motions inducing 27 

only small shear strains. Because studies of the applicability of the k-model when larger 28 

deformations are induced are limited, this paper investigates the behavior of k (both kr per record 29 

and site-specific k0 estimates) beyond the linear-elastic regime. Twenty stations from the KiK-net 30 

database, with time-average shear wave velocities in the upper 30 m between 213 and 626 m/s, are 31 

used in this study. We find that the classification scheme used to identify ground motions that 32 

trigger soil nonlinear behavior biases estimates of k0 in the linear and nonlinear regimes. A hybrid 33 

method to overcome such bias is proposed considering proxies for in situ deformation (via the 34 

shear strain index) and ground shaking intensity (via peak ground acceleration). Our findings show 35 

that soil nonlinearity affects kr and k0 estimates, but this influence is station-dependent. Most k0 36 

at our sites had a 5-20% increase at the onset of soil nonlinear behavior. Velocity gradients and 37 

impedance contrasts influence the degree of soil nonlinearity and its effects on kr and k0.  Moreover, 38 

we observe that other complexities in the wave propagation phenomenon (e.g., scattering and 39 

amplifications in the high-frequency range) impose challenges to the application of the k0-model, 40 

including the estimation of negative values of kr. 41 

 42 
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Introduction 43 

The anelastic attenuation of seismic waves as they travel through sedimentary deposits is a 44 

function of the deformations induced, which in turn depend on the material properties (e.g., 45 

plasticity of the soil) and the intensity of the ground shaking. Material damping ratio, ξ, is 46 

commonly used in geotechnical earthquake engineering to quantify viscous and anelastic energy 47 

dissipation in soils subjected to dynamic loading. Empirical models of ξ often have a constant 48 

minimum value (known as the minimum shear-strain damping, ξmin) for small shear strains 49 

considered in the linear-elastic regime (e.g., Darendeli, 2001). Yet, values of ξ increase as larger 50 

shear strains are induced in soil deposits by stronger ground excitations (Idriss et al. 1978, Seed et 51 

al. 1986, Darendeli 2001). The characterization of ξ across a wide range of strains is essential to 52 

model the effects of local soil conditions on earthquake ground motions.  53 

 54 

The high-frequency spectral decay parameter k was introduced by Anderson and Hough (1984) 55 

based on the Fourier spectrum characteristics of a ground motion’s shear-wave window recorded 56 

directly in the field, which makes it an observable parameter that quantifies total attenuation (e.g., 57 

energy dissipation caused by scattering and anelasticity). Estimates of κ have proven useful in 58 

multiple applications, from stochastic modeling of ground motions (Boore 2003) to the 59 

development of host-to-target adjustments of ground motion models (e.g., Campbell 2003, Al Atik 60 

et al. 2014). The site-specific, distance-independent component of κ, known as κ0 (Anderson 1991), 61 

is defined as a site parameter that captures the attenuation due to the propagation of seismic waves 62 

through near-surface materials. The relationship between κ0 and ξmin has been investigated in 63 

previous studies (e.g., Cabas et al. 2017; Ktenidou et al. 2015; Xu et al. 2019) for weak motion 64 

data, but the quantification of κ and κ0 beyond the linear-elastic regime remains unsolved.  65 
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 66 

Most studies on individual estimates of κ (i.e., the value measured from the observed Fourier 67 

Amplitude Spectra (FAS) per record following the Anderson and Hough (1984) approach), 68 

hereafter referred to as kr, and its site-specific component κ0 have used ground motion records that 69 

do not trigger nonlinear behavior at the sites of interest or that are not considered influenced by 70 

the site’s nonlinear response (e.g., Ktenidou et al. 2013, Van Houtte et al. 2011, Laurendeau et al. 71 

2013, Edwards et al. 2015, Perron et al. 2017, Xu et al. 2019). However, nonlinear soil behavior 72 

has often been responsible for increasing the damage potential of strong ground motions in past 73 

earthquakes (e.g., Darragh and Shakal, 1991, Trifunac and Todorovska, 1994, Bonilla et al., 2011, 74 

Rong et al., 2016). Understanding near-surface attenuation effects in the nonlinear regime is then 75 

necessary for a thorough assessment of seismic hazards and risks imposed to civil infrastructure 76 

(Anderson and Hough 1984). Hence, this paper investigates the relationships among κ, shear 77 

strains and ground motion intensity to understand the behavior of κ at the onset of nonlinear soil 78 

behavior. 79 

 80 

Background 81 

The first paper that attempted to connect soils’ nonlinear response and kr was conducted by Yu et 82 

al. (1992), where the authors compared two simulated records: one from a linear site response 83 

analysis, and the other from a time-domain nonlinear site response analysis. Yu et al. (1992) 84 

observed that the value of kr estimated with the Anderson and Hough (1984) approach and 85 

corresponding to the motion affected by soil nonlinearity was smaller. However, later studies 86 

found a positive correlation between κr (and κ0), strain amplitudes and the intensity of ground 87 

shaking (e.g., Durward et al 1996; Lacave-Lachet et al 2000; Dimitriu et al. 2001). 88 
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 89 

Durward et al. (1996) found that kr values were a function of peak ground velocity (PGV, varying 90 

from 0.01 to 1 m/s), which was used as a proxy for deformation. Values of kr were computed for 91 

more than 60 records observed at 23 sites in the Imperial Valley, California based on the 92 

acceleration spectrum approach (Anderson and Hough, 1984). Durward et al. (1996) hypothesized 93 

that soil nonlinearity had affected kr because higher κr values correlated well with higher PGVs. 94 

Moreover, Lacave-Lachet et al. (2000) analyzed ground motions from the 1995 Kobe earthquake 95 

in Japan (i.e., the main shock and aftershocks), and found that kr values increased with increasing 96 

peak ground acceleration (PGA). Hence, Lacave-Lachet et al. (2000) proposed to use kr to detect 97 

the onset of soil nonlinearity. Dimitriu et al. (2001) investigated the dependency between site-98 

specific k0 and ground shaking intensity. Values of kr for 23 ground motions (i.e., 46 horizontal 99 

components with values of kr reported for each individual component) were computed at two 100 

adjacent sites in Lefkas, western Greece, based on the acceleration spectrum method. Dimitriu et 101 

al. (2001) provided evidence that k0 was a proxy for soil nonlinearity based on the observed 102 

dependency between k0 and ground shaking amplitudes, which were represented by mean 103 

horizontal acceleration in the S-wave window (MGA), PGA, and PGV. Positive correlations were 104 

found between the 46 k0 values and MGA, PGA, and PGV in log-scale, while a negative 105 

correlation was observed between k0 and the site dominant-resonance frequency. However, Van 106 

Houtte et al. (2014) identified an opposite correlation between estimates of k0 (computed as the 107 

individual measured kr with epicentral distance less than 30 m) and PGA at hard sites (i.e., with 108 

Vs30 varying from 422 to 1073 m/s) using ground motions from the 2010-2011 Canterbury 109 

earthquake sequence in New Zealand. The authors suggested further investigations to understand 110 

the associated physical mechanism. 111 
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 112 

There are still few and contradicting observations of the effects of nonlinearity on kr and k0 113 

estimates (Ktenidou et al. 2015). Previous studies only considered a very limited database of 114 

ground motions. This paper takes advantage of the unique Japanese Kiban-Kyoshin network (KiK-115 

net), which is rich in high-quality ground motions, to further investigate the effects of soil 116 

nonlinearity on kr and k0. More specifically, we explore the dependence of kr and k0 on ground 117 

shaking intensity (i.e., weak, moderate or strong ground motions as parameterized by PGA), and 118 

on the level of shear strains induced in near-surface materials at 20 KiK-net stations. First, we 119 

present the conceptual basis for the relationship between κ, shear strains and ground motion 120 

intensity. Then, we describe our database and methods, starting with the identification of an 121 

appropriate classification scheme for linear and nonlinear ground motions. The analysis of the 122 

effects of ground shaking amplitudes on kr at each study site follows. Lastly, we compare the ratio 123 

of nonlinear and linear site-specific k0 across all selected stations to assess the variation of near-124 

surface attenuation estimates from the linear-elastic to the nonlinear regime.  125 

 126 

Conceptual basis for the interpretation of κ beyond the linear-elastic regime 127 

The induced strain level in a given soil layer is a function of the material properties, and the 128 

amplitude and frequency content of the incoming wavefield at the site. Stronger ground shaking 129 

results in larger-strain responses, which produce an increase in material damping ratio (in 130 

combination with a reduction of shear modulus). The short wavelength of high frequency waves 131 

allows for multiple cycles of shearing in near-surface sedimentary layers, which makes them more 132 

sensitive to the effects of a higher material damping ratio. Thus, we hypothesize that stronger 133 
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ground shaking inducing larger deformations in sedimentary deposits will affect estimates of the 134 

high-frequency spectral decay parameter κ.   135 

 136 

Figure 1 serves as an example to illustrate this hypothesis. The acceleration FAS and empirical 137 

transfer function (ETF) corresponding to a pair of ground motions recorded at depth and at the 138 

ground surface at FKSH14 are shown. FKSH14 is one of the 20 KiK-net station analyzed in this 139 

work (see Database description). One of the ground motion pairs has a low ground shaking 140 

intensity (with a surface PGA of less than 0.1 m/s2 for both horizontal components), while the 141 

other one has a higher ground shaking intensity (with a surface PGA of 0.71 m/s2 and 0.25 m/s2 142 

for the H1 and H2 components, respectively). Values of κr per record are also estimated for both 143 

pairs. To minimize the bias from path effects and isolate local site effects on kr values per record, 144 

the selected weak and strong ground motions in Figure 1 correspond to events with similar focal 145 

depths, azimuths and epicentral distances (i.e., the focal depths, azimuths and epicentral distances 146 

are 5 km, 319o, and 15.04 km, respectively for the low-intensity event, and 5 km, 323o, and 15.79 147 

km, respectively for the high-intensity event). The moment magnitudes of the events associated 148 

with the weak and strong ground motions in Figure 1 are 4.0 and 5.1, respectively. To reduce the 149 

variability associated with the calculation of kr from the acceleration spectrum method, we use the 150 

same frequency window for all ground motions (Edwards et al. 2011).  151 

 152 

Larger values of kr at the ground surface (e.g., 0.071 s for the horizontal component H1) are 153 

obtained for the high-intensity ground motion compared to the corresponding kr values for the 154 

low-intensity ground motion (e.g., 0.057 s for H1). Likewise, the high-intensity ground motion 155 

results in a larger κTF (Drouet et al. 2010), which is computed on the decaying portion of the 156 
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empirical transfer function at high frequencies and is equivalent to Dk (i.e., kr_sur - kr_bor) estimates 157 

when using the same frequency band for calculation purposes. The value of kTF corresponding to 158 

the high-intensity and low-intensity motions are 0.026 s and 0.019 s, respectively. Meanwhile, the 159 

ETF corresponding to the high-intensity event shows lower amplifications at higher frequencies 160 

(e.g., amplification ranges from 1 to 2 between 15 and 30 Hz for H1 approximately) than its 161 

counterpart for the low-intensity ground motion (i.e., amplification ranges from 2 to 3 between 15 162 

and 30 Hz for H1 approximately), which reflects the stronger influence of increased material 163 

damping ratio on high frequencies.  164 

 165 

Values of kr and Dk (or κTF in Figure 1) are identical for the high- and low-intensity records for 166 

the H2 component. It must be noted that the difference in PGA between the low- and high- intensity 167 

surface ground motions is less significant for the H2 components than that for the H1 components, 168 

while the PGAs at depth are very similar (i.e., the borehole PGAs for the high-intensity motion are 169 

0.06 and 0.07 m/s2 for H1 and H2 components, respectively; the borehole PGAs for the low-170 

intensity motion are 0.01 m/s2 for both H1 and H2 components). This may explain why Dk values 171 

are the same for the low and high intensity motions in the H2 component direction. Additionally, 172 

this observation also hints that the near-surface attenuation and site effects may be affected by the 173 

ground motion directionality as shown by Ji et al. (2020). Finally, soil nonlinearity is commonly 174 

observed at shallower layers (Régnier et al. 2013), and their effects on kr at borehole are smaller 175 

than at surface. Thus, the kr at borehole should be less affected by soil nonlinearity because it 176 

nonlinear soil behavior is less likely to be triggered at depth (e.g., the borehole Vs at FKSH14 is 177 

1210 m/s with borehole sensor depth of 147 m). In Figure 1, values of kr at borehole are similar 178 

for the high- and low-intensity motions. The changes in kr shown in Figure 1 exemplify the need 179 
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to further investigate the influence of the onset of soil nonlinearity on kr as well as the potential 180 

implications on k0 values at a specific site.  181 

 182 

Database description 183 

In this study, we use ground motions from the KiK-net database, which provides high quality 184 

strong ground motions recorded at more than 600 stations installed uniformly across Japan. Each 185 

station possesses a pair of sensors, one at the surface and another one at depth that is typically 186 

between 100 to 200 m deep. The sampling frequency of the observed acceleration series is either 187 

100 or 200 Hz. The P- and S-wave velocity profiles are measured by downhole PS logging and 188 

available at the KiK-net website (see Resources and Data). The earthquake information, including 189 

the seismic moment magnitude Mw, focal depth and epicenter location are provided by the 190 

broadband seismography network (F-net) catalog. The dataset used in this work was processed by 191 

Bahrampouri et al. (2020) with an automated protocol, which corrects the baseline and removes 192 

the background noise with a bandpass/high-pass acausal filter. The low-frequency filter corner 193 

frequency is determined based on a required value of the (signal+noise)/noise equal to 3, 194 

corresponding to a signal-to-noise ratio (SNR) of 2.0 (Boore and Bommer, 2005); this frequency 195 

ranges between predetermined minimum and maximum values of 0.05 and 0.5 Hz, respectively. 196 

The minimum high-frequency filter corner frequency is determined for a SNR of 1.0 (Douglas and 197 

Boore 2011). The minimum bandpass width is 60% of the range defined from zero to the Nyquist 198 

frequency. Further detailed descriptions on the ground motion processing are available in 199 

Bahrampouri et al. (2020).  200 

 201 
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We use surface and borehole records (only horizontal components) in this paper. The criteria 202 

applied to select records are as follows: (1) epicentral distance is less than 150 km, (2) the SNR 203 

ratio is larger than 3.0 at each frequency from 1.0 to 30 Hz, (3) focal depth is less than 35 km (Ji 204 

et al. 2020), and (4) the seismic wave path does not cross the Japanese volcanic belt (Nakano et al. 205 

2015). Thus, twenty stations with more than five nonlinear ground motions (the definition of 206 

nonlinear ground motions is described next in the Methods section) are used in this work (with 18 207 

stations having more than 10 nonlinear records and 8 stations having more than 15 nonlinear 208 

records, see Table 1). Table 1 provides local soil conditions and the number of ground motions at 209 

each selected site. The locations of selected stations are shown in Figure 2a, while the magnitude 210 

and distance distribution of selected ground motions is provided in Figure 2b.  211 

 212 

Method 213 

Identification of the onset of nonlinearity 214 

Identifying ground motions that trigger soil nonlinear behavior is key to evaluate k estimates 215 

beyond the linear-elastic regime empirically. The shear-strain index (Ig = PGV/Vs), which is a 216 

proxy for the in-situ deformation, and PGA, which describes the peak amplitude of the ground 217 

motion, are commonly used to differentiate linear from nonlinear ground motions (e.g., Xu et al. 218 

2019, Cabas et al. 2017, Wang et al. 2019). Moreover, the correlation between PGA and Ig has 219 

been shown to be an effective proxy to capture in-situ stress-strain relationships. This correlation 220 

has been characterized via the classic hyperbolic model, which fits empirical observations 221 

(Chandra et al. 2014, 2015, Guéguen et al. 2018). However, there is lack of consensus regarding 222 

the sufficiency and efficiency of existing proxies associated with the onset of nonlinear behavior. 223 

For example, Xu et al. (2019) assumed that records with Ig less than 0.01% are linear ground 224 
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motions, while Cabas et al. (2017) adopted 0.1%. On the other hand, Ktenidou et al. (2013) chose 225 

a PGA of 0.1 m/s2 as the threshold for linear ground motions. Régnier et al. (2013) conducted a 226 

statistical analysis on the KiK-net dataset to understand nonlinear site response at their stations. 227 

They characterized linear soil behavior as that associated with motions with a PGA at depth less 228 

than 0.1 m/s2.  229 

 230 

We develop appropriate criteria to identify nonlinear ground motions based on PGA and Ig. In this 231 

paper, the shear-strain index at the surface (Ig,0) is defined as follows:  232 

   (1) 233 

where Vs,0 is the shear-wave velocity at the ground surface, and PGVrotD50 is the median PGV for 234 

all rotated surface ground motions following the approach of Boore (2010). The use of PGVrotD50 235 

rather than the PGV from recorded ground motion horizontal components can minimize 236 

directionality effects. The use of Ig,0 (Equation 1) as an indicator of the onset of soil nonlinearity 237 

has some limitations though. First, the selection of single Vs and PGV values to capture the depth-238 

dependent deformation in the profile may underestimate or overestimate the level of nonlinearity 239 

experienced across the whole column. Thus, Ig,0, as defined in Equation 1, serves simply as a proxy 240 

for a representative shear strain to take place in the sedimentary deposit of interest. Notably, there 241 

is no consensus regarding the most appropriate choice of Vs for Ig estimates. For example, Vs30 is 242 

a commonly used site proxy and hence often selected to compute Ig (e.g., Kim et al. 2016, Guéguen 243 

et al. 2018). The equivalent Vs measured between two successive sensors with seismic 244 

interferometry by deconvolution has also been adopted for Ig estimates (e.g., Chandra et al. 2015, 245 

2016, Wang et al. 2019). Second, values of Ig,0 are not directly comparable to shear strains 246 

measured in the laboratory, not only because Ig is a proxy and not a measured value, but also 247 

, 0 50 , 0/rotD sI PGV Vg =
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because the dissipation of seismic energy as captured in the laboratory may not fully represent the 248 

attenuation mechanisms taking place in the field (Cabas et al. 2017).  249 

 250 

By applying the classic hyperbolic model to describe the correlation between PGArotD50 and Ig,0, 251 

we find that there is no unique threshold to identify nonlinear ground motions across all study sites. 252 

Figure 3 provides examples of theoretical hyperbolic fitting curves at four stations (i.e., IBRH16, 253 

IBRH17, IBRH20 and IWTH21) with varying Vs30 values (from 244 to 626 m/s) to demonstrate 254 

the limitations associated with using a single parameter to identify nonlinear ground motions at 255 

multiple sites. Scatter points represent PGArotD50 and Ig,0 pairs from recorded ground motions at 256 

the sites of interest, while the lines correspond to the fitting curves from the hyperbolic model. It 257 

is observed that the same deformation at various sites would be triggered by different levels of 258 

ground shaking (e.g., Ig,0 of 0.05% will be caused by a PGArotD50 around 1 m/s2 at a NEHRP D site, 259 

such as IBRH20 with Vs30 of 244 m/s, and by a PGArotD50 of 2 m/s2 at a NEHRP C site, such as 260 

IBRH16 with Vs30 of 626 m/s). On the other hand, if nonlinearity is assumed to be triggered when 261 

the PGArotD50 is larger than a predetermined threshold, different levels of Ig,0 will be associated 262 

with the onset of soil nonlinearity. Hence, in this work, we propose a hybrid method (further 263 

described in the next section) based on both, the intensity of the excitation and in-situ deformation 264 

to classify ground motions. 265 

 266 

Linear, transitional, and nonlinear datasets 267 

Surface and borehole ground motions are considered separately herein. Régnier et al. (2013) 268 

considered that records with borehole PGA less than 0.1 m/s2 cannot trigger nonlinear site response 269 

at the ground surface. They also observed that soil nonlinearity is mainly triggered at superficial 270 
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layers. In this study, there are only 3% records with borehole PGA larger than 0.1 m/s2. Therefore 271 

the borehole records are assumed to remain in the linear-elastic regime (i.e., they do not trigger 272 

nonlinear behavior at depth). Surface records are separated into three sub-datasets, namely linear, 273 

transitional (i.e., soil’s behavior is between the linear-elastic and nonlinear regimes), and nonlinear 274 

ground motions. First, we define a threshold based on Ig,0 to differentiate linear from transitional 275 

records, which is hereafter referred to as Ig,0,l. Likewise, a transitional threshold, Ig,0,t, is defined to 276 

separate transitional and nonlinear ground motions. The linear Ig,0,l threshold is defined as the onset 277 

of soil nonlinearity by visual inspections of the corresponding PGArotD50 versus Ig,0 curve, and 278 

corresponds to the point where PGArotD50 values begin to increase at a higher rate with increasing 279 

Ig,0. The transitional Ig,0,t threshold captures when the soil nonlinearity becomes more apparent, 280 

which corresponds to the point where the second change in slope of the PGArotD50 versus Ig,0 curve 281 

takes place. Figure 4 provides an example of the selection of Ig,0,t and Ig,0,l at station MYGH10. The 282 

threshold separating the linear and transitional ground motions is Ig,0,l = 0.001%, while the 283 

threshold separating transitional and nonlinear ground motions is Ig,0,t = 0.007%. 284 

 285 

A maximum PGArotD50 of 0.25 m/s2, which is the value adopted by Régnier et al. (2016) to define 286 

low-amplitude motions, is chosen as an additional constraint to avoid linear ground motions being 287 

erroneously included into the nonlinear dataset. Thus, linear, transitional, and nonlinear datasets 288 

are defined as follows: 289 

o Linear ground motions: records with Ig,0 less than the Ig,0,l threshold. 290 

o Nonlinear ground motions: records with (a) Ig,0 larger than the Ig,0,t threshold and (b) 291 

PGArotD50 larger than 0.25 m/s2. 292 

o Transitional ground motions: records not classified as either linear or nonlinear. 293 
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 294 

The validity of the proposed linear, transitional, and nonlinear datasets is tested by examining the 295 

behavior of the shear modulus, G against Ig,0 at the study sites. The reduction of G for empirical 296 

ground motions is estimated as follows (after Guéguen et al., 2019): 297 

   (2) 298 

The term  is computed from the corresponding average ratio of records with 299 

Ig,0 less than 0.001%, which is the predetermined threshold of Ig,0,l for the linear-elastic deformation 300 

limit in this work. Figure 5 shows the G/Gmax versus Ig,0 curves at all study sites. Even though 301 

Figure 5 does not directly correspond to laboratory-based curves, it serves as a first order 302 

verification of the distinct behavior corresponding to the linear, transitional, and nonlinear ground 303 

motions identified with the categorization scheme proposed herein. One challenge when 304 

interpreting these data is the characterization of the soil volume being sampled when using Ig, 305 

which is related to the frequency band that PGV is acting on. Identified linear ground motions 306 

mainly have G/Gmax values around 1 (G/Gmax values higher than 1 result from using mean G values 307 

as a proxy for Gmax), while the ratios corresponding to the nonlinear dataset are generally less than 308 

1 due to the onset of soil nonlinearity. Notably, values of G/Gmax associated with the transitional 309 

dataset are between the linear and nonlinear datasets. It is not clear whether the site response 310 

associated with records identified as transitional could be equivalent to a linear-elastic or a 311 

nonlinear response, because associated G/Gmax values vary within a single station and across 312 

stations. Hence, the characterization as transitional is deemed appropriate herein. 313 
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 314 

kr_AS estimates 315 

We use the acceleration spectrum approach (Anderson and Hough, 1984) to estimate kr_AS. To 316 

minimize the variability introduced by the selection of the S-wave window, the entire time series 317 

is used. Because compatibility with engineering analysis such as geotechnical site response 318 

analysis and ground motion models is also desired, and such applications use complete time series, 319 

calculating kr_AS using the entire time series is convenient. Moreover, the differences of kr_AS 320 

values measured from S-wave window and the entire time series are not significant in most cases 321 

(Ji et al. 2020). In this study, a subset of randomly selected ground motions is used to further assess 322 

potential discrepancies between using the S-wave window relative to the entire time series, and no 323 

significant differences are observed. Hence, the entire time histories are used. 324 

 325 

The variability in estimates of kr_AS is a function of the selection of the frequency band (Edwards 326 

et al. 2015, Perron et al. 2017) among other factors (Ji et al. 2020, Ktenidou et al. 2013). Moreover, 327 

soil nonlinearity affects low and high frequencies differently. The onset of nonlinear soil behavior 328 

can influence high frequencies first (Bonilla et al. 2011, Bonilla and Ben-Zion, 2020) because 329 

larger shear strains are induced in softer, thinner layers located at shallower depths (i.e., in a profile 330 

with increasing stiffness with depth). Hence, we compute kr_AS based on a pre-determined fixed 331 

frequency window ([f1, f2]). The pre-determined f1 corresponds to the maximum value between 1.4 332 

fc (where fc is the earthquake source corner frequency of each record) and 1.4 f0 (where f0 is the 333 

site’s predominant frequency). Indeed, if f1 is lower than f0, the value of kr_AS will be biased by the 334 

site amplification in the high-frequency range (Parolai and Bindi 2004). On the other hand, the fc 335 

requirement is added to reduce the effects of the earthquake source. The value of f2 is set to be 25 336 
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Hz due to consideration of KiK-net instrument’s response (Aoi et al., 2004, Fujiwara et al. 2004, 337 

Oth et al. 2011, Laurendeau et al. 2013). These limits ensure a broad frequency bandwidth for k 338 

calculations of at least 10 Hz per record, which reduces potential bias from local amplification 339 

effects (Parolai and Bindi, 2004; Ktenidou et al. 2016). The arithmetic average of the resulting 340 

kr_AS estimated from two orthogonal horizontal components is used because it is not affected by 341 

the record azimuth and its implementation can reduce the variability in kr_AS caused by ground 342 

motion directionality (Ji et al. 2020). However, a prescribed, fixed-frequency band does not 343 

guarantee the most appropriate linear regression for the high-frequency spectral decay in all cases. 344 

Thus, we further investigate the performance of the fixed-frequency window and the effects of the 345 

frequency band selection for weak and strong ground motion records by comparing individual 346 

kr_AS values estimated from a pre-determined fixed frequency window with their counterparts, 347 

kr,auto, resulting from an automated algorithm which does account for the most appropriate linear 348 

regression.   349 

 350 

The automated procedure used in this paper follows a similar protocol as those presented in 351 

Sonnemann, and Halldorsson (2017) and Pilz et al. (2019), which focus on finding an appropriate 352 

frequency band ([f1, f2]) to describe the linear decay in the high frequency range over a relatively 353 

broad frequency window. As part of the automated protocol, the minimum f1 is selected as the 354 

maximum value between 1.4f0, and 1.4fc. To ensure a minimum frequency bandwidth of 10 Hz, 355 

the maximum value of f1 is 15 Hz and the minimum f2 corresponds to (f1 +10) Hz. With 0.5 Hz 356 

increments in f1 and f2, f1 is varied from the maximum value between 1.4f0 and 1.4fc to 15 Hz, while 357 

f2 changes from (f1+10) Hz to 25 Hz. Going through all the possible combinations of f1 and f2, the 358 

frequency range with the minimum root mean square error over the frequency bandwidth is set as 359 
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the optimal frequency band. The errors are computed with the following equation after Pilz et al. 360 

(2019): 361 

   (3) 362 

Where Δ" is the frequency bandwidth, and RMS is the root mean square error between the fitting 363 

line and smoothed FAS. The FAS is smoothed with the Konno-Ohmachi filter with a coefficient 364 

of 40 (Konno and Ohmachi, 1998). It should be noted that this automated procedure returns kr,auto 365 

values associated with an appropriate regression for a broad frequency band. However, the changes 366 

of the FAS shape in high frequencies caused by site effects or soil nonlinearity (e.g., bumps or 367 

multiple linear trends) may not be properly accounted for by the automated algorithm.  368 

 369 

Figure 6 compares kr_AS and kr, auto for all selected ground motions at FKSH14, where overall 370 

similar kr_AS and kr, auto estimates are observed and discrepancies are more significant at the ground 371 

surface than at depth. The remaining stations also show an acceptable agreement between the two 372 

methods at the surface and at depth. However, there are few records that show significant 373 

differences between kr_AS and kr, auto (e.g., one surface record has kr_AS of about 0.025 s, while kr, 374 

auto, auto is almost 0.05 s). This reflects the variability of kr as a function of the frequency band 375 

selected. For example, there are 13% of records at AICH17 showing clear variations with the 376 

frequency band selection based on the coefficient of variation (COV) obtained for all frequency 377 

windows evaluated by the automatic procedure (i.e., COV larger than 0.15). Differences between 378 

kr_AS and kr, auto are mainly caused by some empirical FAS shapes, for example, when multiple 379 

linear decaying trends are present in the high-frequency range. The latter cannot be captured by 380 

the single linear decay assumption within the k-model. More research is needed to study how more 381 

RMSP
f

=
D
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complex wave propagation effects in the high frequency range can be captured. Testing the 382 

appropriateness of the k-model as introduced by Anderson and Hough (1984) for these cases is 383 

outside the scope of this study, but it constitutes an area of relevant future research.  384 

 385 

Negative kr_AS values are excluded from this work. Overall, there are 14 of 20 stations with less 386 

than 20% negative kr_AS values (i.e., arithmetic means of two horizontal components), and 1 of 20 387 

stations with more than 50% negative kr_AS estimates. To further understand the observed negative 388 

kr_AS values, the corresponding FAS are reinspected. These FAS generally show bumps or multiple 389 

linear decays in high frequencies. The pre-determined frequency band used in this study is then 390 

not able to capture the linear decay appropriately and leads to negative kr_AS values. Moreover, 391 

amplifications at higher frequencies may also affect estimates of kr_AS and lead to negative values. 392 

The original kr model (i.e., the linear decay of FAS in log-linear scale for high frequency ranges 393 

per record proposed by Anderson and Hough, 1984), requires the site response at the site of interest 394 

to be almost flat in the high frequency range. Complex in-situ site conditions that lead to high 395 

frequency amplification (e.g., heterogeneities in the near-surface, and/or shallow impedance 396 

contrasts) can challenge this simple linear decay model. Our observations suggest the need to 397 

further explore the limitations and simplified assumptions of the Anderson and Hough (1984) kr 398 

model for it to be applicable or extended to more complex environments and stronger ground 399 

shaking. Accounting for the discrepancies between actual field conditions and assumptions 400 

suggested by the Anderson and Hough (1984) k model could reduce the large variability observed 401 

in k r_AS estimates. Further research should focus on evaluating the limitations of the Anderson and 402 

Hough (1984) model and its potential modification to capture more complex wave propagation 403 

patterns in heterogeneous media, especially near the surface. In this work, such an investigation is 404 
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not included, but future efforts of the authors envision the assessment of negative kr_AS estimates 405 

observed in this work as a first step to improve the existing k model. 406 

 407 

k0-model 408 

kr_AS is generally modeled with contributions from a site-specific component (k0), a path 409 

component (kR), and a source component (ks). The source component, ks, is often assumed to be 410 

negligible and its contribution is reduced by using a dataset with sufficient records (Van Houtte et 411 

al. 2011, Ktenidou et al. 2014). A linear distance-dependency model is commonly applied to 412 

capture the path component kR, which represents source-to-site effects or regional attenuation 413 

(Hough et al. 1988, Anderson, 1991, Ktenidou et al. 2013, Boore and Campbell, 2017). Thus, the 414 

most commonly accepted model is described below:  415 

   (4) 416 

where k0 and kr_AS are in units of time (s), kR is in units of second per kilometer (s/km) and Re 417 

refers to epicentral distance in km. This model is valid when a unique source-to-site path is 418 

assumed for each record along with a homogeneous and frequency-independent seismic quality 419 

factor Q (Knopoff 1964). In this paper, the assumption of a unique source-to-site path is supported 420 

by using ground motions with Re less than 150 km (e.g., Palmer and Atkinson 2020, Cabas et al. 421 

2017, Ktenidou et al. 2013). In addition, ground motions whose travel path crosses Japan’s 422 

volcanic belt are not included in our database to minimize the likelihood of seismic waves 423 

propagating through regions with varying Q values (Pei et al. 2009, Nakano et al. 2015). 424 

 425 

The model described by Equation (4) is straightforward to apply when only surface linear ground 426 

motion datasets are used. However, the incorporation of nonlinear and borehole ground motions 427 

_ 0r AS R eRk k k= + ´
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adds complexity to the estimation of regional attenuation as captured by kR. In this paper, we 428 

assume that soil nonlinearity is triggered near the surface, which is consistent with previous studies 429 

showing that nonlinear behavior occurs mostly in the superficial soil layers (i.e., Régnier et al., 430 

2013; Bonilla et al., 2019; Qin et al., 2020). Thus, nonlinear soil behavior is treated as a site 431 

contribution rather than a path contribution, and we assume the regional attenuation to be identical 432 

for linear and nonlinear ground motions recorded at the ground surface and at depth.  433 

 434 

Analogous to the formulation suggested by Douglas et al. (2010) for soil and rock sites, we propose 435 

a model based on Equation (4), which includes linear and nonlinear surface and borehole records: 436 

   (5) 437 

where k0_depth is the site-specific k0 at depth (i.e., depth of borehole sensor), and k0_lin_sur, k0_tran_sur 438 

and k0_nl_sur are the site-specific linear, transitional and nonlinear k0 at the surface. The coefficients 439 

N1, N2, N3, and N4 are defined as follows: 440 

#! = %10
"()	+,-,./-	,-	+/0-ℎ

(-ℎ/)23./  441 

#" = %10
"()	435/,)	+,-,./-	,-	.6)",7/

(-ℎ/)23./  442 

## = %10
"()	5(5435/,)	+,-,./-	,-	.6)",7/

(-ℎ/)23./  443 

#$ = %10
"()	-),5.3-3(5,4	+,-,./-	,-	.6)",7/

(-ℎ/)23./  444 

The parameter N4 in Equation (5) only takes a value of 1 when ground motions classified as 445 

transitional are considered independently and not as part of the linear or nonlinear datasets. That 446 

means that when transitional ground motions are excluded from analysis (i.e., AP1, see Table 2) 447 

or included into either the linear (i.e., AP2, see Table 2) or nonlinear (i.e., AP3, see Table 2) 448 

datasets, the coefficient N4 will be equal to zero.   449 
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 21 

 450 

Results and Discussion 451 

Effects of soil nonlinearity on empirical kr_AS 452 

First, we study the influence of soil nonlinearity on kr_AS estimates per record at each site. It should 453 

be noted that soil nonlinearity is commonly triggered at shallower soil layers (Régnier et al. 2013), 454 

so we only focus on surface records in this section. Figure 7 depicts calculated kr_AS values at the 455 

surface against the corresponding Ig,0 values at FKSH14 (Vs30 = 237 m/s) and MYGH10 (Vs30 = 456 

348 m/s). As described in Equation (4), kr_AS is affected by both local site conditions and path 457 

effects in the context of a linear-elastic deformation analysis. Hence, the colorbar in Figure 7 458 

represents varying epicentral distances, and the sizes of markers represent the corresponding 459 

PGArotD50. An overall increasing trend of kr_AS with increasing intensity of ground shaking (either 460 

evidenced by increased PGA or Ig,0 values) is observed at FKSH14 for events that share similar 461 

epicentral distances. A slightly decreasing trend is observed for short-distance records with Re less 462 

than about 50 km and high PGArotD50. However, kr_AS values corresponding to those shorter 463 

distance and higher PGArotD50 events (i.e., the largest circles in Figure 7a) are larger than their 464 

counterparts for low-intensity motions (i.e., the smallest circles in Figure 7a) regardless of the Re. 465 

To the best knowledge of the authors, this observation has not been reported before and could be 466 

associated with the depth of influence of κr. Variations in κ due to strong nonlinear effects may be 467 

a function of a more significant contribution of the site to the overall attenuation, which may not 468 

be necessarily the case for smaller amplitude events. There might be several mechanisms of 469 

attenuation combined, and their contributions as captured by κ need to be further investigated.   470 

Similar trends are observed at other seven sites with Vs30 less than 400 m/s, which include AICH17, 471 
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CHBH13, FKSH11, IBRH20, IWTH26, MYGH07, and TCGH16, and at KMMH12 with Vs30 472 

greater than 400 m/s.  473 

 474 

The increasing kr_AS trend with increasing PGArotD50 and Ig,0 is not as significant at MYGH10 475 

(Figure 7b), which has relatively stiffer site conditions than FKSH14. Either no correlation or a 476 

slightly decreasing trend is found at other stiff sites with Vs30 greater than 400 m/s (i.e., FKSH21, 477 

NIGH12, NGNH29, NIGH07, KMMH01, and IBRH16), and at four softer sites with Vs30 between 478 

300 and 400 m/s (i.e., IWTH21, FKSH18, FKSH19, and IBRH17). We note that the number of 479 

available nonlinear records for the Re ranges at the sites where the decreasing trend is observed is 480 

rather limited. Additional nonlinear records at those sites are necessary (i.e., stronger intensity 481 

ground motions) to further evaluate the contributing factors to a potential decreasing trend in kr_AS 482 

values. However, in general, we observe that positive correlations between kr_AS and the intensity 483 

of ground shaking are more significant at softer sites (e.g., TCGH16 with Vs30 of 213 m/s) than at 484 

stiffer sites (e.g., KMMH12 with Vs30 of 408 m/s). These data support that the onset of soil 485 

nonlinearity can affect kr_AS estimates, but such influence is station-dependent. The level of soil 486 

nonlinearity can be unique at each site (for a similar intensity of ground shaking) because of the 487 

characteristics of shallow geologic structures (e.g., differences in velocity gradients and seismic 488 

impedance contrasts) and the location of low shear-wave velocity layers. Thus, subsurface 489 

conditions can play a key role on the effects of nonlinearity on kr_AS. We observe the same patterns 490 

shown in Figure 7 when using our results from the automated procedure to compute kr,auto.  491 

 492 
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Effects of soil nonlinearity on the empirical k0-model  493 

Linear, transitional, and nonlinear ground motion datasets are used in this section to evaluate the 494 

κ0-model beyond the linear-elastic regime. We explore four approaches (i.e., AP1 to AP4) to 495 

incorporate records within the transitional dataset into the κ0-model presented in Equation (5). 496 

Table 2 summarizes how the identified linear, transitional, and nonlinear datasets are used to 497 

estimate k0_lin_sur and k0_nl_sur.  498 

 499 

Figures 8 and 9 present the resulting k0 models from each approach at FKSH14 and MYGH10, 500 

respectively. Figure 8 shows that kr_AS and k0 values corresponding to the nonlinear ground 501 

motions (regardless of the selected approach to construct the nonlinear dataset) are larger than their 502 

linear counterparts at FKSH14. However, results at the stiffer station presented in Figure 9 show 503 

little disagreement between kr_AS and k0 values corresponding to the linear and nonlinear motions 504 

(regardless of the approach to construct each dataset). 505 

 506 

Variations in k0_lin_sur estimates are observed as a function of the approach considered to construct 507 

the linear datasets (see specific values in Table 3 for FKSH14 and MYGH10, the results for other 508 

selected stations are available in the electronic supplement). Similarly, variations in k0_nl_sur values 509 

are also found across the different approaches to define the nonlinear datasets. At FKSH14 (Figure 510 

8), k0_lin_sur estimates are more variable as a function of the dataset definitions (with a maximum 511 

difference of 15.83% across approaches AP1 to AP4), compared to k0_nl_sur values (with a 512 

maximum difference of 5.10%). In addition, Figure 8 (d) shows that data points corresponding to 513 

the transitional dataset are more compatible with their counterparts within the nonlinear dataset, 514 

which may indicate that at FKSH14, the level of nonlinearity induced by the transitional dataset is 515 
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closer to that induced by the ground motions in the nonlinear dataset. Other study sites such as 516 

AICH17 (Vs30 = 314 m/s) and IWTH21 (Vs30 = 521 m/s) also show that k0_lin_sur estimates are more 517 

sensitive to dataset selections. In contrast, variations of k0_lin_sur and k0_nl_sur across datasets at 518 

MYGH10 (Figure 9) are small, with maximum differences of only 1.56% and 2.53%, respectively. 519 

Large differences in k0_nl_sur estimates across datasets are observed at eight sites, but the limited 520 

number of nonlinear records at some of those sites may be the main contributing factor (e.g., there 521 

are only six nonlinear records at IWTH21, which results in a maximum difference of 47.05% for 522 

k0_lin_sur and 11.17% for k0_nl_sur).  Adding transitional records to either the linear or the nonlinear 523 

dataset at such sites can bias the regression model. In general, differences in the k0–model as a 524 

function of the selected dataset are observed in 45% of our study sites (with differences in k0_lin_sur 525 

or k0_nl_sur values greater than 10%). This is a relevant observation because it demonstrates the 526 

importance of selecting appropriate ground motions even for typical k0 estimations (i.e., in the 527 

linear-elastic regime) at a given site. 528 

 529 

Our findings suggest that the development of a k0-model beyond the linear-elastic regime requires 530 

an evaluation of the definition of what constitutes linear and nonlinear ground motion datasets. 531 

The identification of transitional ground motion datasets in this study allows us to assess which 532 

records provide estimates of κr_AS that are closer to either the linear or the nonlinear behavior at 533 

different sites. Differences in behavior triggered by the records within the transitional database 534 

may be caused by unique local site conditions (i.e., the level of soil nonlinearity developed at each 535 

site) or by limitations of the simplified definition used herein to classify transitional records (i.e., 536 

as a function of PGA and Ig). Identifying appropriate linear and nonlinear datasets for κr_AS 537 

estimations requires further research to provide consistent models of near-surface attenuation that 538 
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can more effectively be implemented from small to large shear strains. However, the site-specific 539 

response at a site of interest may impose challenges in determining appropriate dataset 540 

classifications based on a simple, generalized criterion.  541 

 542 

Figure 10 provides ratios of k0_nl_sur/k0_lin_sur at the 20 study sites against the corresponding time-543 

average Vs value in the top 5 m (Vs5), 10 m (Vs10), and 30 m (VS30). The ratios are computed based 544 

on the AP3 and AP4 approaches to construct linear and nonlinear datasets (Table 2). Larger ratios 545 

are observed at softer sites regardless of the dataset chosen (i.e., AP3 and AP4) for the k0-model. 546 

Differences between k0 values in the linear and nonlinear regimes seem to be reconciled at sites 547 

with higher Vs5 (> 300 m/s), Vs10 (> 300 m/s) and Vs30 (> 400 m/s) values, where the ratios fluctuate 548 

more closely around unity particularly when using AP3. The trend of increasing ratios of 549 

k0_nl_sur/k0_lin_sur with softer site conditions is better captured by Vs5 and Vs10 than by Vs30, because 550 

soil nonlinearity is more likely triggered at shallower and softer layers (Régnier et al. 2013). Hence, 551 

lower Vs layers may dominate soil nonlinearity effects on k0. Thus, site proxies that can 552 

characterize such near-surface layers may be more informative when evaluating nonlinear soil 553 

effects on κ0.   554 

 555 

When grouping transitional and nonlinear ground motions (i.e., AP3), most stations result in ratios 556 

of k0_nl_sur/k0_lin_sur larger than one, which can be interpreted as the signature of soil nonlinearity 557 

on the near-surface attenuation estimates (i.e., near-surface attenuation increases with increasing 558 

deformations as soil nonlinearity is triggered). These findings are consistent with the behavior of 559 

material damping ratio observed in dynamic laboratory testing of soils (i.e., increased damping 560 

ratio with increasing shear strain; Darendeli 2001; Menq 2003; Ishibashi and Zhang 1993). When 561 
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treating linear, transitional, and nonlinear datasets independently (i.e., AP4), there are 12 sites with 562 

ratios larger than one. The instances where ratios of k0_nl_sur/k0_lin_sur are lower than one may result 563 

from the limited nonlinear records available at those sites coupled with the uncertainties associated 564 

with k0_lin_sur (e.g., Ji et al., 2020).  565 

 566 

Overall, the variations observed in the k0_nl_sur/k0_lin_sur ratio support our hypothesis that soil 567 

nonlinearity plays a role on the estimates of near-surface attenuation from recorded ground 568 

motions. This effect is station-dependent, and further research is needed to identify the most 569 

appropriate parameter or vector of parameters capable of capturing the influence of nonlinear soil 570 

behavior on near-surface attenuation. Moreover, the relatively weaker correlation between Vs30 571 

and the k0_nl_sur/k0_lin_sur ratio evidences the challenges in connecting site conditions and soil 572 

nonlinearity via a single site parameter. Multiple parameters that can describe attenuation and 573 

impedance effects from the shallow and deep geologic structures should be investigated. The 574 

k0_nl_sur/k0_lin_sur ratio corresponding to IWTH21 (Vs30 = 521 m/s) is not shown in Figure 10 because 575 

it is very large (i.e., approximately 1.8). This observation may result from uncertainties associated 576 

with kr_AS values propagating to estimates of k0 when the fixed frequency band approach is applied 577 

for all records without consideration of the optimal linear decay trend. In fact, the corresponding 578 

k0_nl_sur/k0_lin_sur ratio when implementing the automated procedure is approximately 0.90 for this 579 

station. Finally, Figure 10 shows less scatter in k0_nl_sur/k0_lin_sur ratios when using datasets defined 580 

by AP3. In addition, using AP3 results in ratios either larger than one or approaching one for most 581 

stations (i.e., only FKSH19 and KMMH01 results in a ratio lower than unity), which is consistent 582 

with our conceptual basis for increased attenuation with the onset of nonlinear soil behavior. 583 
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Therefore, we adopt the AP3 approach (which includes transitional records into nonlinear dataset) 584 

to evaluate predictions of near-surface attenuation in the next section of this paper.  585 

 586 

Effects of soil nonlinearity on predicted near-surface attenuation 587 

Site-specific k0_lin_sur or k0_nl_sur values from Equation (5) allow for the comparison of empirical 588 

estimates of near-surface attenuation, but these two parameters represent the average attenuation 589 

of all records in linear and nonlinear regimes. Thus, in this section, we introduce the predicted 590 

near-surface attenuation at zero-distance (k0_pred), which is expected to capture the attenuation 591 

contributed by the superficial soil layers per event by removing the path contributions from kr_sur. 592 

k0_pred is modeled as:  593 

   (6) 594 

where kr_AS_sur refers to the individual kr_AS value for a surface ground motion, and the path-595 

component, kR, corresponds to the values derived with Equation (5) at each site of interest. We 596 

assume that by removing the effect of the path-component kR from kr_AS_sur values per record, the 597 

remaining k0_pred becomes an approximation to the attenuation contributed by the shallower 598 

sedimentary deposits per event. Thus, we can explore how the near-surface attenuation changes 599 

with the various input ground motion amplitudes at the site of interest.  600 

 601 

Figure 11 provides comparisons between k0_pred, ground shaking intensity, and deformation as 602 

captured by PGArotD50 and Ig,0 at FKSH14 and MYGH10. Both colors and sizes of markers 603 

represent the PGArotD50 values per record. The red dashed-lines result from a local regression model 604 

characterizing the k0_pred versus Ig,0 data. Triangles and circles represent the linear and nonlinear 605 

0_ _ _pred r AS sur e RRk k k= - !
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ground motions (identified with AP3), respectively. Values of k0_pred first increase and then 606 

decrease with increasing PGArotD50 and Ig,0 at FKSH14. This behavior is also observed at other 7 607 

sites (i.e., AICH17, CHBH13, FKSH11, IWTH26, KMMH12, MYGH07, TCGH16). Even with 608 

the decreasing trend for large Ig,0, κ0_pred is still generally higher than its counterpart in the linear 609 

regime (i.e., the means of linear and nonlinear κ0_pred are 0.050 sec and 0.0605 sec, respectively). 610 

Overall, k0_pred values at FKSH14 corresponding to larger deformations and higher PGArotD50 are 611 

larger than those corresponding to weaker ground motions. In contrast, only a weak correlation to 612 

the intensity of ground shaking and deformation in situ is observed at MYGH10. These results are 613 

consistent with our estimations of kr shown in Figure 7. Soil nonlinear behavior can influence 614 

near-surface attenuation as captured by κr and κ0, and local site conditions may play a key role in 615 

this process. The remaining approaches explored in this study (i.e., AP1, AP2, and AP4) provide 616 

similar results as those shown in Figure 11. 617 

 618 

Figure 12 compares the probability distribution of k0_pred values from the linear and nonlinear 619 

datasets (AP3 case) at FKSH14 and MYGH10. The resulting k0_pred values are fitted with a 620 

Gaussian distribution and the corresponding probability density functions (PDFs) are represented 621 

by red lines. A shift to the right (i.e., toward larger k0_pred values) of the theoretical PDF is observed 622 

at FKSH14 as ground motions from the linear and nonlinear datasets are considered. The mean 623 

k0_pred estimates change from 0.05 s for the linear dataset to 0.0605 s for the nonlinear dataset at 624 

FKSH14 (i.e., a difference of 21%). In contrast, the variation of mean k0_pred between linear and 625 

nonlinear datasets at MYGH10 is 4%. Most of our study sites have either a significant increase in 626 

their mean k0_pred when using the nonlinear dataset (i.e., an increase of more than 20%) or only a 627 

slight increase. There are only 4 stations that show a decrease in their mean k0_pred values with 628 



 29 

respect to the linear dataset when using the nonlinear one (i.e., FKSH19, KMMH01, NIGH07, and 629 

NIGH12). Statistical hypothesis tests (i.e., t-test) are conducted to analyze whether there is a 630 

statistically significant difference between the means of linear and nonlinear k0_pred distributions. 631 

Considering a critical value of 5%, p-values at each station are shown in Table 4. Nine out of 20 632 

stations display statistically significant differences between their mean k0_pred corresponding to the 633 

linear and nonlinear datasets. Table 4, Figures 11 and 12 show that soil nonlinear behavior can 634 

affect k0_pred at the sites selected in this study, although this influence is station-dependent. At the 635 

stations that display apparent effects of nonlinearity on k, an increasing trend in predicted near-636 

surface attenuation with increasing ground shaking intensity and/or increasing deformation is 637 

observed.  638 

Conclusions 639 

In this work, we investigated the influence of soil nonlinear behavior on kr_AS values per record 640 

and site-specific k0 estimates at 20 stations selected from the KiK-net database. To avoid potential 641 

bias on our results due to the calculation process, we also examined the effects of the frequency 642 

band selection on kr_AS estimates, and the differences between using the S-wave window or the 643 

entire time series FAS. We compared results from a predetermined fixed-frequency window 644 

approach with an automated procedure that considers multiple frequency windows. The latter is 645 

capable of finding the optimal frequency band per record for all records at each site. The selection 646 

of a common, fixed and broader frequency band for kr_AS estimations reduced the scatter and bias 647 

in the data, while providing reasonable estimations of kr_AS. On the other hand, values of kr_AS 648 

computed from the S-wave window FAS were reasonably similar to their counterparts based on 649 

the entire time series FAS. Hence, the analyses presented in this paper were conducted with kr 650 
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values estimated by the fixed-frequency band approach and the FAS corresponding to the entire 651 

time series.  652 

 653 

A consistent identification of ground motions that trigger nonlinear behavior in sedimentary 654 

deposits is also necessary to quantify near-surface attenuation beyond the linear-elastic regime. 655 

Based on the examination of an in-situ stress-strain proxy, namely the correlation between 656 

PGArotD50 and Ig,0, we found that the variation of shear strains with ground shaking intensity at the 657 

onset of nonlinear soil behavior is site-specific. A unique threshold for a single parameter, whether 658 

it is PGArotD50 or Ig,0, was not able to capture the onset of soil nonlinearity at our study sites in a 659 

consistent manner across all sites. Hence, we proposed a hybrid method to classify linear and 660 

nonlinear ground motions considering both, PGArotD50 and Ig,0, which resulted in linear, transitional, 661 

and nonlinear datasets at each site.  662 

 663 

Increasing kr_AS values with increasing PGArotD50 or Ig,0 for ground motions with similar epicentral 664 

distances were observed at about half of our study sites. This trend was more consistently observed 665 

at softer sites. Additionally, we found that k0-models could be biased by the definition of linear 666 

and nonlinear ground motion datasets. Hence, we studied the effects of ground motion 667 

categorization and proposed a hybrid classification scheme for linear and nonlinear records. We 668 

defined transitional ground motions as those associated with soil behavior between the linear-669 

elastic and nonlinear regimes. Even though more research is necessary to define robust 670 

classification schemes for linear and nonlinear ground motions, we observed that including the 671 

transitional motions into the nonlinear dataset reduced the variability associated with κ estimations 672 

at our study sites.  673 
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 674 

Our results also revealed differences between k0_lin_sur (i.e., k0 corresponding to the linear-elastic 675 

regime) and k0_nl_sur (i.e., k0 for the nonlinear regime) at most sites when implementing the κ0-676 

model using ground motions classified by AP3 (which includes transitional records into the 677 

nonlinear dataset). Such differences were more prevalent among softer sites. Site parameters such 678 

as Vs5, Vs10, and Vs30 were used in this study to investigate the influence of soil conditions on the 679 

effects of nonlinearity on k0. Considering that high frequencies have short wavelengths, and that 680 

nonlinear soil behavior is triggered in low velocity layers more often located at a shallow depth, 681 

site proxies such as Vs5 and Vs10 may be more informative than Vs30 when assessing effects of 682 

nonlinearity on κ. For instance, large Vs30 values do not imply that all near-surface layers have a 683 

large Vs. The ratio of k0_nl_sur and k0_lin_sur decreases and approaches one for increasing Vs5, Vs10, 684 

and Vs30, when using the AP3 method to define nonlinear ground motion datasets. 685 

 686 

The hypothesis posed and tested in this paper focused on the effects of ground shaking intensity 687 

on induced shear strains in sedimentary deposits and associated consequences on the attenuation 688 

experienced by seismic waves (particularly in the high frequency range). In general, we find that 689 

soil nonlinear behavior can affect estimates of kr_AS and k0, but our results show that this influence 690 

is station-dependent. This is reasonable because the wave propagation of short wavelength waves 691 

is highly affected by heterogeneities in the soil or rock, local geologic structures, and topography. 692 

Moreover, the level of soil nonlinearity can be distinct at a given site (even when site 693 

parameterizations such as Vs30 are similar and the considered intensity of ground shaking is also 694 

similar) because of the complexities of the in situ subsurface conditions (e.g., differences in 695 

velocity gradients and seismic impedance contrasts). We note that 2D/3D site effects may affect 696 
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ground motions recorded at six of our stations. The influence of soil nonlinearity on k values 697 

computed at these stations (i.e., AICH17, CHBH13, FKSH21, IBRH20, KMMH01, KMMH12; 698 

based on the classification of Thompson et al. 2012 and Pilz and Cotton 2019) may be masked by 699 

the combined effects of wave scattering and topographic effects. Further research is necessary to 700 

evaluate the contributions of the aforementioned mechanisms on k estimates at stations subjected 701 

to 2D/3D site effects. Likewise, future work should focus on collecting and analyzing additional 702 

strong ground motion data to identify local site conditions more conducive to generate significant 703 

changes in near-surface attenuation as captured by κ0 when nonlinear soil behavior is triggered. 704 

 705 

Complexities in the wave propagation phenomenon driven by scattering effects and amplification 706 

in the high-frequency range can result in negative estimates of kr. In this study, we obtained 707 

negative κr_AS estimates when multiple linear decaying trends, bumps, and high frequency 708 

amplifications affected the corresponding FAS spectral shape. The identification of multiple linear 709 

decays in the high-frequency range supports previous work on the bias in κr_AS associated with the 710 

selection of the frequency band. The bumps and amplifications in the high frequencies present in 711 

the FAS of some of the ground motions in our database hint that the site response may not be 712 

approximately flat within the frequency range of interest for κr_AS calculation. Considering that a 713 

flat site response is one of the assumptions of the Anderson and Hough (1984) κ-model, further 714 

research is needed to overcome this limitation at sites where this is not the case. This work not 715 

only provides evidence of the need to understand and quantify κ in both, the linear and nonlinear 716 

regimes, but it also presents the limitations of the current κ-model when it comes to characterizing 717 

attenuation when conditions deviate from the original assumptions embedded in the Anderson and 718 

Hough (1984) model. 719 
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Data and Resources 720 

Accelerograms and geotechnical data are downloaded from the KiK-net network at 721 

http://www.kyoshin.bosai.go.jp (last accessed May 2020). The earthquake information is available 722 

from F-net network at http://www.fnet.bosai.go.jp/top.php (last accessed May 2020). The 723 

supplemental material to this article includes two tables and three figures. The tables provide the 724 

k0-model results when using the datasets defined by AP1, AP2, AP3, and AP4, and the k0_pred 725 

results estimated with datasets defined by AP3. The three sets of figures presented depict the results 726 

corresponding to our 20 stations as follows:  727 

• Surface PGArotD50 against Ig,0 (i.e., results analogous to those presented in Figure 4 for 728 

MYGH10). 729 

• Surface kr_AS estimates and their corresponding PGArotD50, Ig,0 and Re values for selected 730 

ground motions at each study site (i.e., results analogous to those presented in Figure 7 for 731 

FKSH14 and MYGH10). 732 

• Estimated surface k0_pred and their corresponding ground shaking intensity and in situ 733 

deformation characterized by PGArotD50 against Ig,0, respectively (i.e., results analogous to 734 

those presented in Figure 11 for FKSH14 and MYGH10). 735 
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Table 1. Local soil conditions, number of ground motions per dataset, predetermined fixed-frequency bandwidth and thresholds for 939 
shear strain index, Iγ at all study sites. 940 

Station Vs30
1 

(m/s) 
Vs0

2 
(m/s) 

Vs,depth
3

 

(m/s) 

Hole 
Depth 
(m) 

Number 
of 

linear 
records 

Number of 
transitional 

records 

Number 
of 

nonlinear 
records 

1st 
resonant 

frequency 
(Hz) 

Predominant 
frequency 

(Hz) 

f14 
(Hz) 

f25 
(Hz) 

Ig,0,l6 
(%) 

Ig,0,t7 
(%) 

AICH17 314 150 2200 101 23 27 12 4.07 4.07 12.65 25.00 0.001 0.003 
CHBH13 235 220 2920 1300 139 49 11 1.78 1.78 8.95 25.00 0.001 0.003 
FKSH11 240 110 700 115 148 140 26 1.51 9.98 13.97 25.00 0.001 0.003 
FKSH14 237 120 1210 147 114 221 28 1.12 4.15 10.05 25.00 0.001 0.007 
FKSH18 307 140 2250 100 158 103 16 2.59 5.69 8.95 25.00 0.001 0.003 
FKSH19 338 170 3060 100 185 95 21 3.27 3.27 10.05 25.00 0.001 0.003 
FKSH21 365 200 1600 200 60 17 8 3.90 3.90 12.65 25.00 0.001 0.003 
IBRH16 626 140 2050 300 137 81 15 1.71 7.08 10.05 25.00 0.001 0.003 
IBRH17 301 90 2300 510 117 177 18 0.93 9.30 13.01 25.00 0.001 0.007 
IBRH20 244 180 1200 923 133 86 11 0.27 0.27 8.95 25.00 0.001 0.007 
IWTH21 521 150 2460 100 39 24 6 5.27 5.27 7.38 25.00 0.001 0.003 
IWTH26 371 130 680 108 79 32 11 2.12 10.17 14.24 25.00 0.001 0.003 

KMMH01 575 150 1900 100 94 24 15 4.03 9.98 13.97 25.00 0.001 0.003 
KMMH12 410 210 1000 123 134 34 11 3.27 8.17 11.44 25.00 0.001 0.003 
MYGH07 366 130 740 142 59 39 11 0.93 8.61 12.06 25.00 0.001 0.003 
MYGH10 348 110 770 205 229 132 16 0.95 10.66 14.93 25.00 0.001 0.007 
NGNH29 465 150 1040 110 81 38 16 1.95 6.93 10.05 25.00 0.001 0.003 
NIGH07 528 200 1600 106 29 10 11 4.12 7.08 10.05 25.00 0.001 0.003 
NIGH12 553 240 780 110 29 9 11 2.00 5.00 12.65 25.00 0.001 0.003 
TCGH16 213 80 680 112 112 334 35 1.27 4.81 11.27 25.00 0.001 0.007 

1 Vs30: time averaged shear-wave velocity in the top 30 m of the soil profile 941 
2Vs0: shear-wave at the ground surface 942 
3Vs,depth: shear-wave velocity at the depth of the borehole sensor 943 
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4f1: the lower frequency limit to estimate individual kr  944 
5f2: the upper frequency limit to estimate individual kr  945 
6Ig,0,l: the shear-strain index threshold to separate linear and transitional datasets 946 
7Ig,0,t: the shear-strain index threshold to separate transitional and nonlinear datasets 947 
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 948 

Table 2. Ground motion datasets constructed via alternative approaches (AP1 to AP4) explored 949 
in this study to implement the k0-model. 950 

Approach k0_lin_sur k0_nl_sur k0_tran_sur  k0_depth k0-model 
AP1 Linear dataset Nonlinear dataset -- Borehole dataset Equation (5) 

AP2 
Linear and 

transitional datasets 
Nonlinear dataset -- Borehole dataset Equation (5) 

AP3 Linear dataset 
Nonlinear and 

transitional datasets 
-- Borehole dataset Equation (5) 

AP4 Linear dataset Nonlinear dataset  Transitional datasets Borehole dataset Equation (5) 

 951 

Table 3. Site-specific k0 values obtained from different dataset definitions at stations FKSH14 952 
and MYGH10. 953 

  Approach k0_lin_sur (s) k0_nl_sur (s) k0_tran_sur (s) 

FK
SH

14
 AP1 0.0488 0.0633 -- 

AP2 0.0565 0.0638 -- 

AP3 0.0500 0.0607 -- 

AP4 0.0499 0.0638 0.0602  

Maximum difference 15.83% 5.10%   

M
Y

G
H

10
 AP1 0.0567 0.0563 -- 

AP2 0.0568 0.0560 -- 

AP3 0.0559 0.0572 -- 

AP4 0.0560 0.0558 0.0575 

Maximum difference 1.56% 2.53%   

 954 

 955 

 956 

 957 

 958 
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Table 4. T-test results for k0_pred values estimated with linear and nonlinear datasets defined by 959 

AP3 (which includes records categorized as transitional into the nonlinear dataset). 960 

Station Vs30 (m/s) 

p-value  
Statistically 

different Linear k0_pred vs. nonlinear 

k0_pred* 

AICH17 314 10.37% -- 

CHBH13 235 <0.01% Yes 

FKSH11 240 1.07% Yes 

FKSH14 237 <0.01% Yes 

FKSH18 307 2.36% Yes 

FKSH19 338 57.66% -- 

FKSH21 365 47.12% -- 

IBRH16 626 13.80% -- 

IBRH17 301 55.92% -- 

IBRH20 244 5.97% -- 

IWTH21 521 9.23% -- 

IWTH26 371 0.62% Yes 

KMMH01 575 0.32% Yes 

KMMH12 410 3.38% Yes 

MYGH07 366 0.04% Yes 

MYGH10 348 7.45% -- 

NGNH29 465 72.74% -- 

NIGH07 528 88.97% -- 

NIGH12 553 66.61% -- 

TCGH16 213 <0.01% Yes 

 961 

*The transitional dataset is included into the nonlinear dataset (i.e., datasets following the criteria of AP3). 962 
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List of Figure Captions: 963 

Figure 1. Comparisons between a weak and a strong ground motion recorded at FKSH14 (Vs30 = 964 

237 m/s). The Mw and Re are 4 and 15 km for the low-intensity ground motion, while 5.1 and 15 965 

km for the high-intensity ground motion. The frequency window ([10.05, 30] Hz) applied in this 966 

plot is picked manually. The left and right columns correspond to analyses conducted on the 967 

horizontal components H1 and H2, respectively. The color version of this figure is available only 968 

in the electronic version of this article. 969 

Figure 2. (a) Locations of selected Japanese recording stations in this study, and (b) magnitude 970 

and distance distribution of selected ground motions.  971 

Figure 3. Hyperbolic models fitted to observed PGArotD50 and Ig,0 data at four study sites. The Vs30 972 

for IBRH16, IBRH17, IBRH20, and IWTH21 are 626, 301, 244, and 521 m/s, respectively.  973 

Figure 4. Surface PGArotD50 against Ig,0 at MYGH10 (Vs30 = 348 m/s). The red dot-dashed lines 974 

present the linear (Ig,0,l) and transitional (Ig,0,t) thresholds for Ig,0. The color version of this figure is 975 

available only in the electronic version of this article. 976 

Figure 5. G/Gmax versus Ig,0 at study sites. The Gmax is computed from the average values of 977 

for records with Ig,0 less than 0.001%. The colors represent PGArotD50 values. The 978 

color version of this figure is only available in the electronic version of this article. The color 979 

version of this figure is available only in the electronic version of this article. 980 

Figure 6. Comparisons of individual kr estimates from our automated algorithm, kr,auto, and the 981 

fixed-frequency band method, kr_AS at FKSH14 (Vs30 = 237 m/s) for surface (left) and borehole 982 

(right) records. The color version of this figure is available only in the electronic version of this 983 

article. 984 
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Figure 7. Surface kr_AS estimates and their corresponding PGArotD50, Iγ,0 and Re values for selected 985 

ground motions recorded at (a) FKSH14 (Vs30 = 237 m/s) and (b) MYGH10 (Vs30 = 348 m/s). 986 

Different colors represent varying epicentral distances per record, and the size of markers indicate 987 

the corresponding PGArotD50. The color version of this figure is only available in the electronic 988 

version of this article. The color version of this figure is available only in the electronic version of 989 

this article. 990 

Figure 8. k0-model at FKSH14 (Vs30 = 237 m/s) from datasets defined by (a) AP1, which only 991 

considers the linear and nonlinear datasets, (b) AP2, where transitional records are included as part 992 

of the linear dataset, (c) AP3, where transitional records are included as part of the nonlinear 993 

dataset, and (d) AP4, where the linear, transitional, and nonlinear datasets are considered 994 

separately. The color version of this figure is available only in the electronic version of this article. 995 

Figure 9. k0-model at MYGH10 (Vs30 = 348 m/s) with datasets defined by (a) AP1, which only 996 

considers the linear and nonlinear datasets, (b) AP2, where transitional records are included as part 997 

of the linear dataset, (c) AP3, where transitional records are included as part of the nonlinear 998 

dataset, and (d) AP4, where the linear, transitional, and nonlinear datasets are considered 999 

separately. The color version of this figure is only available in the electronic version of this article. 1000 

The color version of this figure is available only in the electronic version of this article. 1001 

Figure 10. Ratio of k0_nl_sur/k0_lin_sur at study sites estimated using the dataset definitions based on 1002 

AP3 (left panel) and AP4 (right panel) against to Vs5, Vs10, and Vs30. The color version of this 1003 

figure is available only in the electronic version of this article. 1004 

Figure 11. Estimated surface k0_pred and their corresponding ground shaking intensity and in situ 1005 

deformation characterized by PGArotD50 and Iγ,0, respectively at (a) FKSH14 (Vs30 = 237 m/s) and 1006 

(b) MYGH10 (Vs30 = 348 m/s). Both, the color and the size of markers represent varying PGArotD50 1007 



 50 

values. Triangles and circles represent the linear and nonlinear datasets defined by AP3. The red 1008 

dashed lines depict the local regression model based on the k0_pred and Ig,0 data. The color version 1009 

of this figure is only available in the electronic version of this article. The color version of this 1010 

figure is available only in the electronic version of this article. 1011 

Figure 12. Observed distribution of k0_pred at (a) FKSH14 (Vs30 = 237 m/s) and (b) MYGH10 (Vs30 1012 

= 348 m/s) for the linear and nonlinear datasets. The red lines depict the theoretical probability 1013 

density function (PDF) fitted with a Gaussian distribution. The color version of this figure is 1014 

available only in the electronic version of this article. 1015 

 1016 
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 1017 

 1018 

Figure 1. Comparisons between a weak and a strong ground motion recorded at FKSH14 1019 

(Vs30 = 237 m/s). The Mw and Re are 4 and 15 km for the low-intensity ground motion, 1020 



 52 

while 5.1 and 15 km for the high-intensity ground motion. The frequency window ([10.05, 1021 

30] Hz) applied in this plot is picked manually. The left and right columns correspond to 1022 

analyses conducted on the horizontal components H1 and H2, respectively. The color 1023 

version of this figure is available only in the electronic version of this article. 1024 

 1025 

 1026 

 1027 
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 1028 

Figure 2. (a) Locations of selected Japanese recording stations in this study, and (b) magnitude 1029 

and distance distribution of selected ground motions. 1030 

 1031 

 1032 

 1033 

Figure 3. Hyperbolic models fitted to observed PGArotD50 and Ig,0 data at four study sites. The 1034 

Vs30 for IBRH16, IBRH17, IBRH20, and IWTH21 are 626, 301, 244, and 521 m/s, respectively.  1035 

 1036 
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 1037 

Figure 4. Surface PGArotD50 against Ig,0 at MYGH10 (Vs30 = 348 m/s). The red dot-dashed lines 1038 

present the linear (Ig,0,l) and transitional (Ig,0,t) thresholds for Ig,0. The color version of this figure 1039 

is available only in the electronic version of this article. 1040 

 1041 
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 1042 

Figure 5. G/Gmax versus Ig,0 at study sites. The Gmax is computed from the average values of 1043 

for records with Ig,0 less than 0.001%. The colors represent PGArotD50 values (in 1044 

units of m/s2). The color version of this figure is only available in the electronic version of this 1045 

article. The color version of this figure is available only in the electronic version of this article. 1046 
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 1047 

 1048 

Figure 6. Comparisons of individual kr estimates from our automated algorithm, kr,auto, and the 1049 

fixed frequency band method, kr_AS at FKSH14 (Vs30 = 237 m/s) for surface (left) and borehole 1050 

(right) records. The color version of this figure is available only in the electronic version of this 1051 

article. 1052 

 1053 



 57 

1054 

 1055 

Figure 7. Surface kr_AS estimates and their corresponding PGArotD50, Iγ,0 and Re values for 1056 

selected ground motions recorded at (a) FKSH14 (Vs30 = 237 m/s) and (b) MYGH10 (Vs30 = 348 1057 

m/s). Different colors represent varying epicentral distances per record, and the size of markers 1058 

indicate the corresponding PGArotD50. The color version of this figure is only available in the 1059 

electronic version of this article. The color version of this figure is available only in the 1060 

electronic version of this article. 1061 
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Figure 8. k0-model at FKSH14 (Vs30 = 237 m/s) from datasets defined by (a) AP1, which only 1069 

considers the linear and nonlinear datasets, (b) AP2, where transitional records are included as 1070 

part of the linear dataset, (c) AP3, where transitional records are included as part of the nonlinear 1071 

dataset, and (d) AP4, where the linear, transitional, and nonlinear datasets are considered 1072 

separately. The color version of this figure is only available in the electronic version of this 1073 

article. 1074 
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1079 

 1080 

Figure 9. k0-model at MYGH10 (Vs30 = 348 m/s)  with datasets defined by: (a) AP1, which only 1081 

considers the linear and nonlinear datasets, (b) AP2, where transitional records are included as 1082 

part of the linear dataset, (c) AP3, where transitional records are included as part of the nonlinear 1083 

dataset, and (d) AP4, where the linear, transitional, and nonlinear datasets are considered 1084 

separately. The color version of this figure is available only in the electronic version of this 1085 

article. 1086 
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1088 

Figure 10 Ratio of k0_nl_sur/k0_lin_sur at study sites estimated using the dataset definitions based on 1089 

AP3 (left panel) and AP4 (right panel) against to Vs5, Vs10, and Vs30. The color version of this 1090 

figure is available only in the electronic version of this article. 1091 

 1092 

 1093 

 1094 
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1095 

 1096 

Figure 11. Estimated surface k0_pred and their corresponding ground shaking intensity and in situ 1097 

deformation characterized by PGArotD50 and Iγ,0, respectively at (a) FKSH14 (Vs30 = 237 m/s) and 1098 

(b) MYGH10 (Vs30 = 348 m/s). Both, the color and the size of markers represent varying 1099 

PGArotD50 values. Triangles and circles represent the linear and nonlinear datasets defined by 1100 

AP3. The red dashed lines depict the local regression model based on the k0_pred and Ig,0 data. The 1101 

color version of this figure is only available in the electronic version of this article. The color 1102 

version of this figure is available only in the electronic version of this article. 1103 
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 1106 

 1107 

Figure 12. Observed distribution of k0_pred at (a) FKSH14 (Vs30 = 237 m/s) and (b) MYGH10 1108 

(Vs30 = 348 m/s) for the linear and nonlinear datasets. The red lines depict the theoretical 1109 

probability density function (PDF) fitted with a Gaussian distribution. The color version of this 1110 

figure is available only in the electronic version of this article. 1111 
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