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In this work we discuss a scaling law for wall friction weakening in three-dimensional,
dense, fully confined granular flows made of shape anisotropic particles. Using particle-
based simulations, we observe a rich variety of kinematics and wall stress profiles by
varying the particle-wall friction coefficient and the cell width. We show that in this
peculiar flow configuration: (i) particle shape has a negligible influence on translational
velocity and granular temperature profiles while the angular motion is strongly hampered
for elongated particles and (ii) the mobilization of friction at the sidewalls is affected
by both particle shape and flow pattern. Associating data on wall stress and particles
kinematics, we find that wall friction mobilization is well described by a scaling law based
on a balance between sliding and rolling motion of the grains. We show that the proposed
scaling law seems to be very robust, being independent of the main system parameters,
e.g., particle-particle friction, particle-wall friction, channel width, vertical confinement,
particle elongation, and flow configuration (shear driven or gravity driven). This result
highlights the importance of angular motion of the particles for the understanding of the
behavior at flat boundaries and may reignite the debate about the relevant variables in
theories for dense granular flows.

DOI: 10.1103/PhysRevFluids.8.084302

I. INTRODUCTION

The interaction of flowing granular media with flat frictional interfaces is extremely frequent
both in geophysical phenomena (e.g., flows in canyons and grain transport in channels) and in
industrial applications (e.g., silos, hoppers, and mixers). These interfaces may introduce nonlocal
effects that strongly affect the flow properties over distances of the order of several grain diameters
[1,2]. Moreover, high flow heterogeneity may develop with the coexistence of static, creeplike,
and shear localization regions [3]. The understanding of the behavior at interfaces is therefore a
preeminent scientific challenge and is fundamental for a full three-dimensional (3D) rheological
model of granular flows. In terms of continuum modeling, walls are interfaces to which appropriate
boundary conditions have to be assigned. Such boundary conditions therefore have to take into
account the phenomenology of the interaction between the granular material and the wall and have
to consider at least the wall forces (wall friction) and velocities (wall slip). Previous works have
shed light on the collective particle-wall interaction, by highlighting the existence of wall friction
weakening [3–5], which is related to the incomplete mobilization of friction in slowly moving zones.
Boundary conditions in the form of scaling laws for effective wall friction have also been discussed,
invoking different weakening mechanisms, associated with either velocity fluctuations or particle
angular motion. In Refs. [3,6] the ratio vx/

√
Tx (where vx is the streamwise average sliding velocity

and Tx represents the streamwise velocity fluctuations) was used to define a scaling law for the

*riccardo.artoni@univ-eiffel.fr

2469-990X/2023/8(8)/084302(12) 084302-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6368-7194
https://orcid.org/0000-0001-9757-4489
https://orcid.org/0000-0003-2380-6552
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.084302&domain=pdf&date_stamp=2023-08-14
https://doi.org/10.1103/PhysRevFluids.8.084302


POL, ARTONI, AND RICHARD

effective friction at smooth interfaces, thus associating the weakening of the effective friction with
the random oscillatory motion of the particles in the flow direction. Differently, in Ref. [7] the
degradation of wall friction was related to a rotational index based on the relative importance of
rotation-induced and sliding velocity. Those scalings showed fair agreement with the data, but they
were only applied to the case of spherical particles. Recently, Pol et al. showed that the balance
between sliding and angular motion at the wall is affected by particle shape [8], and therefore
one may speculate that the wall friction weakening mechanisms can also be affected by particle
anisotropy.

In this paper we study, by means of an extensive campaign of discrete element simulations,
the effective friction at lateral flat frictional walls in a fully confined and shear-driven dense
granular flow composed of shape anisotropic particles. Such a numerical setup and its experimental
counterpart have proven to be useful in the past to finely characterize wall friction weakening in
confined flows of spherical particles [3,5,6,9,10]. We show that wall stresses, and thus effective wall
friction, are affected by particle shape through both the average and the fluctuating components of
the angular motion. This indicates that the angular dynamics is a crucial mechanism and supports
the idea that particle rotations should be included in theories aiming to describe the behavior of
dense granular flows in the vicinity of an interface. We first briefly describe the numerical method
in Sec. II and then analyze the translational and rotational kinematics of the particles in Sec. III.
In Sec. IV we show how wall friction weakening is affected by the particle shape and deduce an
alternative scaling law for lateral wall friction, which is verified against a gravity-driven confined
flow configuration. Finally, a summary, conclusions, and perspectives for future work are presented
in Sec. V.

II. NUMERICAL SIMULATIONS

Using the open-source molecular-dynamics code LIGGGHTS [11], we perform 3D discrete ele-
ment simulations of dense and fully confined granular flows. The flow configuration (Fig. 1) is a
rectangular cuboid (Lx = 20a and Ly = 10d , with a and d the maximum and the minimum axis of
a particle, respectively, and Lz the variable height) with periodic boundary conditions in the flow
direction, i.e., x direction. The flow is confined by two flat but frictional sidewalls and by a top and
a bottom bumpy wall (regular triangular mesh of spheres of diameter d with a spacing of 1.5d)
vertically. The flow is driven by the motion of the bottom wall at a fixed velocity V and the system
is submitted to gravity g. In the following we call x the flow (streamwise) direction, y the direction
normal to the sidewalls, and z the transverse (vertical) direction. The top wall is fixed in the x and
y directions but can freely move in the z direction according to the balance between its weight

FIG. 1. Typical geometry of the discrete element simulations and of the particle shapes characterized by
their aspect ratio R = a/d . The flow configuration is a shear cell made of a bumpy bottom (dimensions Lx ×
Ly), a bumpy top, and two sidewalls separated by a gap Ly. The shear is ensured by the bumpy bottom, which
moves at a constant velocity V in the x direction. The top flow is a bumpy horizontal wall submitted to a force
Mwg.
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FIG. 2. Vertical profiles of (a) translational velocity vx , (b) rescaled velocity v∗, and (c) granular tempera-
ture Tg. Cases characterized by μpw = 0.3 (μpw = 0.05) are represented with a solid (dashed) line. The legend
in (b) applies to all figures.

Mwg and the force exerted by the grains. The bottom wall velocity and top wall mass are made
dimensionless by considering Ṽ = V/

√
gd and the ratio of the wall mass over the total mass of the

grains M̃ = Mw/Mg, respectively. Simulations are carried out with N ∼ 4000–5000 particles with
diameter d and a variable length to diameter (aspect) ratio R = a/d (1.2 � R � 4). In this context,
clumps of spheres with an overlap of d/2 (overlap is larger for R < 2) and ±5% radius variation
are used (Fig. 1). Preliminary analyses show that larger overlaps between the clump’s members give
equivalent results. Spheres (R = 1) are also considered for comparison with the shape isotropic
case. Particle density is set equal to ρ = 6/π in order to have a unitary mass for spherical particles.

The particles’ interaction is ruled by a spring-dashpot model in the normal direction Fn = knδn −
γnδ̇n, with kn and γn the stiffness of the spring and the viscosity of the dashpot, respectively, δn the
overlap, and δ̇n the normal component of the relative velocity of the particles. The stiffness kn is
taken equal to 5 × 106mg/d (with m the mass of a spherical particle) and γn is set in order to have
a normal restitution coefficient of 0.7. The adopted value of kn ensures having deformations much
lower than the grain size. From a simple dimensional analysis one can estimate that the pressure
acting on a grain located at the bottom of the cell is P∗ ∼ ρgLz(M̃ + 1) and therefore the grain’s
deformation is of the order of P∗d/kn (approximately 5 × 10−5, with M̃ = 4.8, which is the largest
value used in this study). In the simulations, the grains’ overlap may be slightly larger than our
estimated value due to dynamics effects; however, this is always below approximately 5 × 10−4d .
The tangential force is ruled by a spring model (Ft = ktδt and kt = 2kn/7) and the deformation δt

(i.e., elastic tangential displacement between the particles) is limited by a Coulomb plastic condition
with a friction coefficient μpp. The contact between a particle and the sidewalls is treated in the same
manner but with a friction coefficient μpw. The time step adopted in the numerical simulations is
dt = 2 × 10−5√d/g, which corresponds to 1

50 of the typical collision duration.
In the remainder of the paper Ṽ = 1, M̃ = 1.2, and μpp = 0.3 are used, unless specified other-

wise. In order for the material to lose memory of the initial structure, the medium is allowed to
flow during a time �t until reaching a minimal local shear deformation γ = γ̇ (z)�t > 5 [γ̇ (z) =
∂vx/∂z], which ensures reaching a stationary state [12]. In this paper, unless stated otherwise, we
present average quantities computed by performing time averages on slices of thickness 2d in the z
direction and considering only the particles that are interacting with the sidewalls (vertical regions
characterized by y � 1.05 a

2 and y � Ly − a
2 ). This choice is motivated by the fact that the scaling

laws for the boundary behavior are expected to hold locally at the wall.

III. KINEMATICS

A. Particle shape: Aspect ratio R
Translational velocity profiles obtained for different aspect ratios and two values of the particle-

wall friction coefficient μpw = 0.05 (dashed line) and μpw = 0.3 (solid line) are shown in Fig. 2(a).
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The flow displays a clear shear localization, the flow regime being strongly affected by the wall
friction: As previously observed for spheres [3], shear localizes in the bottom region of the flow
for the larger value of μpw, while it localizes near the top wall for the lower μpw value. In both
cases, an exponential decay of the velocity is observed in the shear region. This is a known feature
of fully confined flows made of shape isotropic particles [3,6] and has also been observed recently
in granular flows made of shape anisotropic particles [8]. Note that, for R �= 1, the shapes of the
translational velocity profiles are nearly the same independently of R, which is consistent with the
experimental observations presented in Ref. [8] for spherocylindrical particles. When increasing
the particle elongation, a higher slip velocity at the wall is observed in both cases, which can
be reasonably associated with the lower relative dimension of the wall asperities with respect to
the major axis of the particles. We recall that the bumpiness of the top and bottom walls is kept
the same for all the simulations, so the ratio between particle size and asperity size increases
with the aspect ratio of the particles. To gain insight into the effect of the particle elongation
on the shear localization, we rescale the velocity profile by considering the localization of shear
(i.e., top or bottom) and subtracting the slip contribution. This is displayed in Fig. 2(b), where
v∗ = vx/(V − vw ) and z∗ = z/d for μpw = 0.3, and v∗ = (V − vx )/(V − vw ) and z∗ = (Lz − z)/d
for μpw = 0.05, with vw the slip velocity at the wall. It is clear that the decay length in the shear
region is mostly unaffected by the particle shape and seems to be independent of the particles’
R. A slight deviation is observed for isotropic particles for the lowest value of the wall friction
(μpw = 0.05); however, in this case there is not a clear localization of the shear in the top region
of the flow. A mild but systematic tendency of having an increase of the decay length in the creep
region for larger R is observed.

We display in Fig. 2(c) the granular temperature Tg profile, which is calculated as Tg = (Tx + Ty +
Tz )/3 with Ti = 〈(vi − 〈vi〉)2〉, where fluctuations are computed with respect to the average velocity
extrapolated at the particle center [13]. The granular temperature follows the velocity profile with
higher fluctuations in the region where the shear localizes, independently of the flow pattern and
the particle shape. In our flow configuration, the particle shape seems to have a negligible impact
on the granular temperature profiles with only some minor differences far from the zones of shear
localization.

Time-averaged angular velocity profiles are displayed in Figs. 3(a)–3(d) considering rotations
with respect to the y axis, i.e., ωy (spinning motion), and to the z axis, i.e., ωz (rolling motion).
We analyze these two components because they are related to the streamwise particle motion at the
sidewalls (discussed below).

Figures 3(a) and 3(b) show that the mean angular velocity ωy systematically decreases with
increasing particle elongation. For spheres in homogeneous flow conditions the angular velocity is
enslaved by the flow vorticity and, on an average basis, is linked to the shear rate (ωy = −γ̇ /2)
[14–16]; hence, to understand if the shape has an effect on the inclination of a particle to rotate,
in the inset of Fig. 3(a) we display the mean value, over the entire flow height, of ωy rescaled
by the local shear rate (10−4 � γ̇ � 10−1 for bottom localization and 10−3 � γ̇ � 10−1 for top
localization, independently of R). A systematic inhibition of the particle rotation is observed with
increasing R (−ωy/γ̇ is very close to 0.5 for spheres), underlining the existence of a geometrical
frustration to the inclination of a particle to rotate. This behavior is consistent with the experimental
results obtained in Ref. [8] and is observed independently of the flow pattern, confirming that this
frustration is strongly related to the anisotropy of the particle shape. Moreover, Figs. 3(c) and 3(d)
show that the frustration of particle rotations by particle shape is even stronger for rotations around
the z axis (rolling component with respect to the wall). In particular, there is a marked difference
between the shape isotropic and anisotropic cases. This clearly evidences that shape anisotropy
hinders rolling. Note that the fact that on average motion around the z axis is damped does not mean
that there are no rotations at all around that axis. In fact, it is interesting to note that the ratio of the
angular velocity fluctuations

√
〈ω′

z
2〉 =

√〈(ωz − 〈ωz〉)2〉 to the mean angular velocity ωz strongly
differs for shape isotropic and anisotropic particles and is increasing with R [Figs. 3(e) and 3(f)].
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FIG. 3. Vertical profiles of (a) and (b) angular velocity ωy, (c) and (d) angular velocity ωz (x axis is in
logarithmic scale in the insets), and (e) and (f) ratio of angular velocity fluctuations

√〈ω′
z
2〉 over ωz. Cases

characterized by μpw = 0.3 (μpw = 0.05) are represented with a solid (dashed) line. The inset in (a) shows the
mean angular velocity rescaled with the local shear rate μpw = 0.3 (◦) and μpw = 0.05 (�).

This suggests that isotropic particles are prone to roll on the sidewalls, while elongated particles
tend to have a fluctuating rolling motion near the sidewalls.

B. Cell width Ly

In our system the interaction with the sidewalls plays a preeminent role in the behavior of the
granular medium. We can imagine that the farther the walls are from each other, the less of an
effect they have on the system. It is therefore interesting to study the effect of the distance Ly

between the walls on the flow kinematics and on wall stresses. First, we report in Figs. 4(a)–4(c)
the time-averaged vertical profiles of the translational velocity vx and of the angular velocities ωy

and ωz, obtained with different cell widths Ly (=5d, 10d, 20d, 40d), for the case of R = 2, Ṽ = 1,
M̃ = 1.2, μpp = 0.3, and μpw = 0.3. Granular temperature profiles are displayed in Fig. 4(d). It
is notable that the shear localization at the base of the flow fades when increasing the cell width

FIG. 4. Vertical profiles of (a) translational velocity v, (b) angular velocity ωy, (c) angular velocity ωz, and
(d) granular temperature Tg for different cell widths Ly. The inset in (a) shows the translational velocity profile
at the center of the cell [(Ly − a)/2 � y � (Ly + a)/2]. The legend in (b) applies to all figures. Profiles refer
to the case of R = 2, Ṽ = 1, M̃ = 1.2, μpp = 0.3, and μpw = 0.3.
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FIG. 5. Profiles, normal to the sidewalls, of (a) and (d) translational velocity vx , (b) and (e) angular velocity
ωy, and (c) and (f) angular velocity ωz for different cell widths Ly, for [(a)–(c)] the upper region of the flow
(z > 10d) and [(d)–(f)] the bottom region of the flow (z � 10d). Profiles refer to the case of R = 2, Ṽ = 1,
M̃ = 1.2, μpp = 0.3, and μpw = 0.3. The meaning of colors is the same as in Fig. 4(b).

[see Fig. 4(a)]. For the case Ly = 40d , at the sidewalls we observe an almost linear velocity profile,
while in the center of the cell the shear tends to localize in the top region of the flow [see the
inset in Fig. 4(a)]. Based on the different flow regimes observed in Fig. 4(a), it seems evident that
increasing the wall separation reduces the importance of wall friction with respect to bulk friction
and this favors a velocity profile with top localization. We therefore expect to observe a shear top
localization also at the sidewalls for large cells. For narrower cells instead the shear localization is
always observed in the bottom region of the flow without significant differences moving from the
sidewalls to the center of the cell. The modification of the flow pattern reflects also on the angular
velocity profiles with the case Ly = 40d that strongly differs from the others. In this case we observe
an almost constant value of the angular (spinning) velocity ωy [Fig. 4(b)] and a linear decrease
of the angular (rolling) velocity ωz with the flow height [Fig. 4(c)]. Granular temperature profiles
[Fig. 4(d)] follow the velocity ones with higher fluctuations in the region where the shear localizes
(cases with Ly = 5d, 10d, 20d), while for the case Ly = 40d , for which γ̇ is approximately the
same over the entire flow height, we observe an almost constant value of Tg.

In order to understand the effect of lateral walls it is also evidently interesting to study the trans-
verse profiles of the kinematic variables. Normal to the sidewall profiles of the relative translational
and angular velocities are displayed in Fig. 5. It should be pointed out that we display quantities
rescaled on their averaged value in the y direction. These are reported with reference to the bottom
region z � 10d [Figs. 5(d)–5(f)] and to the top region of the flow z > 10d [Figs. 5(a)–5(c)] due to
the possible heterogeneity along the flow height.
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We note that variations of the relative velocity vx/〈vx〉 are much more pronounced in the bottom
region for the cases characterized by a shear localization at the base of the flow [see Fig. 5(d)].
This is consistent with previous results on spherical particles [6]. For the case Ly = 40d , in which
the shear rate is almost constant along the flow height, the opposite behavior is observed with the
most important variations of the relative velocity (up to 60%) in the upper region of the flow [see
Fig. 5(a)].

We also observe an interesting difference in the normal to the sidewall profile of the relative
spinning velocity ωy/〈ωy〉 in the bottom region of the flow. This has an opposite trend whether
or not shear localizes [see Fig. 5(e)]. In the former case ωy is maximum (and almost constant) in
the bulk region and minimum at sidewalls, while in the latter case ωy is minimum in the bulk and
progressively increases moving towards the sidewalls. This behavior is due to the fact that when
bottom localization is not observed (case Ly = 40d) the shear rate is higher near the sidewalls than
in the center of the cell in the bottom region of the flow, while when the flow localizes the shear rate
is larger in the bulk of the material along the entire flow height. In the upper region of the system no
significant differences are observed when changing the cell width [see Fig. 5(b)] and ωy is always
higher in the bulk region. The profiles of the relative rolling velocity ωz/〈ωz〉 present, globally, a
linear variation in the y direction. In the bottom region of the flow, the interactions with the sidewalls
have a mild effect on the rolling motion of the particles when shear localization is observed (cases
with Ly � 20d), while a very sharp variation of the rolling velocity is observed in the case in which
the flow is not localized (case with Ly = 40d), as displayed in Fig. 5(f).

The results presented in this section show that, by changing the particles’ aspect ratio, the
particle-wall friction coefficient, and the distance between the sidewalls, the confined flow geometry
displays a variety of flow profiles. In the following we will see how these flow patterns influence the
effective friction at sidewalls.

IV. EFFECTIVE WALL FRICTION

In this section we characterize the effective friction between the streaming particles and the
lateral walls. We estimate the streamwise effective friction at the wall by computing the ratio of
the average force in the flow direction to the average force in the direction normal to the sidewalls,
i.e., μx

w = 〈Fx〉/〈Fy〉 [3], exchanged between the particles and the sidewalls. Similarly, we estimate
the transverse (vertical) friction coefficient as μz

w = 〈Fz〉/〈Fy〉. We first discuss how wall friction
mobilization is affected by the particle shape and by the cell width. Then we present an alternative
scaling law for the streamwise wall friction, which takes into account the local kinematics close to
the wall. Finally, we test the scaling law in a gravity-driven flow configuration.

A. Particle shape: Aspect ratio R
Profiles of μx

w are shown in Figs. 6(a) and 6(b) for different aspect ratios. Similarly to previous
results on spherical particles [3,5,6,10], the streamwise effective wall friction displays a different
behavior according to the flow pattern. When the shear localizes at the bottom, the wall friction
is only partially mobilized (μx

w < μpw) in the flow direction. The effective friction μx
w is higher

in the shear region and it decreases systematically with z. This degradation of the wall friction is
consistent with experimental observations [5,9]. In contrast, when top localization is observed μx

w is
minimum in the shear region; then it rapidly increases and a nearly full mobilization of wall friction
is observed in the bottom zone of the flow (μx

w ≈ μpw), which moves as a plug.
Interestingly, we observe that the streamwise effective wall friction is also affected by the shape

anisotropy of the particles. The lowest values of μx
w are obtained for isotropic particles and a

systematic increase of μx
w with R is observed, independently of the flow pattern. Referring to the

case of bottom localization [Fig. 6(a)], the larger differences are observed for low R: The effective
friction μx

w increases in the range 1 � R � 2 and then it seems to saturate for R > 2. A similar
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FIG. 6. Vertical profiles of the streamwise effective wall friction μx
w for (a) μpw = 0.3 (shear is localized

at the bottom) and (b) μpw = 0.05 (shear is localized at the top) for different aspect ratios R. (c) Profiles of
the streamwise effective wall friction μx

w with R = 2 for different cell widths Ly (shear is localized at the
bottom for Ly � 20d and is almost uniform along the flow height for the case Ly = 40d .). Effective friction μw

is rescaled on the particle-wall friction coefficient μpw . The insets in (a) and (b) show vertical profiles of the
ratio of the transverse effective friction over the streamwise effective friction μz

w/μx
w . The meaning of colors

in (a) and (b) is the same as in Fig. 3.

behavior is observed when shear localizes at the top of the flow [Fig. 6(b)] but with a marked
difference also for the larger R.

We note that the transverse wall friction μz
w [see the insets in Figs. 6(a) and 6(b)] is nearly always

smaller than the streamwise one. This is because the medium is globally characterized by a dominant
horizontal flow. The only exception is observed in creeplike regions, i.e., the upper region of the flow
when shear localizes at the bottom [see the inset in Fig. 6(a)], where μz

w becomes of the same order
and even larger than μx

w. The equivalence of streamwise and transverse wall friction in creep zones
was already observed for isotropic particles, both experimentally and numerically [4,5]. In fact,
in these regions the particles’ motion is characterized by a transverse (vertical) fluctuating motion
rather than by a streamwise one (Tz > Tx, result not shown here). We observe a higher ratio μz

w/μx
w

for shorter particles, which is mainly due to the higher mobilization of the streamwise wall friction
for longer particles (for R �= 1 the transverse wall friction μz

w is nearly the same for all cases).
Always concerning μz

w, an interesting difference is observed in the upper region of the flow when
shear localizes at the top. Even if the transverse friction is only slightly mobilized, we note that the
sidewalls seem to act in an opposite way for shape isotropic and anisotropic particles. For the former
the sidewalls exert, on average, a downward force on the grains, while for the latter the sidewalls
tend to sustain the medium. This small but systematic effect could be due to some secondary motion
(e.g., convective rolls) superposed on the shear flow and coupling to the rotational dynamics of the
grains. The behavior of wall friction in the presence of secondary flows is an interesting subject
which we leave for future study.

B. Cell width Ly

In order to study the influence of the cell width Ly on the streamwise wall friction, we present in
Fig. 6(c) the vertical profiles of μx

w for different cell widths. Interestingly, we observe a systematic
higher mobilization of the effective wall friction when increasing the width Ly of the cell. For the
narrower cells (Ly = 5d, 10d), μx

w has a maximum at the base of the flow, where shear localizes, and
progressively decreases with z. A further increase of cell width (Ly = 20d) determines a significant
increase and an almost constant value of the mobilized friction in the bottom region of the flow
(shear region), while a strong degradation of μx

w with z is still observed in the top (creeplike) region.
Finally, for the largest cell (Ly = 40d) the effective friction is almost completely mobilized in the
bottom region (μx

w ≈ μpw) and shows only a mild degradation in the top region of the flow. It is
notable that the effect of increasing the width of the cell acts in the same direction as a decreasing
of the particle-wall friction coefficient. The increase of friction mobilization with Ly is evidently
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related to the progressive reduction of the slowly (creeplike) moving zone, which disappears for the
case Ly = 40d and leads to the development of a nearly linear velocity profile. This is further proof
that wall friction weakening is maximum in slowly (creeplike) moving zones.

C. Streamwise effective wall friction scaling

From the preceding text it is evident that the effective wall friction has a nontrivial behavior and
we observe a dependence on both the flow pattern and the particle shape. Our geometry is therefore
a good benchmark for boundary conditions because flow profiles change significantly when varying
parameters such as the particle-wall friction coefficient and the distance between the sidewalls.
In what follows, we propose and discuss a scaling law for streamwise wall friction based on the
kinematic properties of the particles. Recent works have related the degradation of wall friction
to translational velocity fluctuations or particle rotation [3,6,7,9,10]. The scaling laws proposed in
those works have shown, to a certain extent, fair agreement with the data but have been applied for
the case of spherical particles only. We tested these scalings and found that, though qualitatively
describing wall friction weakening also for elongated particles, they fail to correctly describe the
different mobilization of the effective wall friction with particle shape.

Due to the effect of particle shape on the frustration of particle rotations (see Fig. 3) and
considering that the effective wall friction also seems to depend on particle anisotropy, it is tempting
to associate the mobilization of wall friction with a balance between slip velocity and rolling motion.
It should be noted that spinning motion may also cause a degradation of wall effective friction.
Nevertheless, in our system vx � ωya; hence we assume that the effect of particle spinning motion
on μx

w can be neglected [17]. On the other hand, we have seen that the rolling component of
the angular velocity may be characterized by strong fluctuations. Therefore, we introduce here a
scaling parameter for effective wall slip that is based on the average kinetic energy of the rolling
motion, κ = vx/a

√〈ω2
z 〉, where ωz is the instantaneous (rolling) angular velocity. We recall that

we refer to average quantities at the sidewalls since we focus on the interaction behavior of
the granular medium with such flat interfaces. Figure 7(a) displays the rescaled effective friction
coefficient μx

w/μpw as a function of the parameter κ . The scaling performs well for several orders
of magnitude and over a large range of particle aspect ratios. For the intermediate case of R = 2,
we display also data obtained in a wider range of parameters: μpp = 0.1–1 (�), μpw = 0.05–0.3
(�), M̃ = 0.2–4.8 (∇), Ṽ = 1–10 (�), and Ly = 5–40 (♦). The scaling seems therefore very robust
since it is also independent of the driving velocity, the applied pressure, the width of the channel,
and the wall-particle and particle-particle frictional properties.

In order to gain insight into this scaling law it is useful to first describe qualitatively the behavior
of the effective friction as a function of the scaling parameter κ . The parameter κ permits identi-
fication of three particle kinematic regimes which directly link to the mobilized friction: two limit
regimes, i.e., a no-slip–pure rolling regime, for κ � 0.1 (i.e., vx  a

√〈ω2
z 〉), in which the effective

wall friction is negligible (μx
w ≈ 0), and a pure sliding regime, for κ � 10 (i.e., vx � a

√〈ω2
z 〉), in

which the effective friction is almost completely mobilized (μx
w ≈ μpw), and a third, intermediate

regime encountered for 0.1 < κ < 10. In this regime neither of the two mentioned mechanisms
is dominant, sliding and rolling motion coexist, and the wall friction is mobilized according to
the relative magnitude of these two contributions (0 < μx

w/μpw < 1). We observe a remarkable
variation of μx

w for relatively small variations of the parameter κ , which indicates a strong coupling
between sliding and rolling motion in this intermediate regime. Finally, the introduction of the
characteristic length a in the scaling parameter κ makes the data collapse on a master curve.
Nevertheless, the effect of particle shape is reasonably also hidden in ωz.

To explain why this scaling describes so well the effective wall friction behavior for a large range
of particle elongations, we decompose the instantaneous angular velocity ωz into a mean (ωz) and a
fluctuating (ω′

z) component. The former is an average rolling motion with a given rotation direction
that in our flow configuration may be related to the existence of a slight velocity gradient normal
to the wall, i.e., ∂vx/∂y. The latter accounts for an intermittent fluctuating rolling motion of the
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FIG. 7. (a) Rescaled effective friction coefficient at the wall versus the parameter κ = vx/a
√〈ω2

z 〉 (for
Ṽ = 1, M̃ = 1.2, and μpp = 0.3): μpw = 0.3 (◦) and μpw = 0.05 (�). Different colors correspond to different
values of R. For R = 2 the symbols represent variation of several parameters, demonstrating the robustness
of the scaling: μpp = 0.1–1 (�), μpw = 0.075–0.2 (�), M̃ = 0.2–4.8 (∇), Ṽ = 1–10 (�), and Ly = 5d–40d
(♦). Star markers correspond to data obtained from gravity-driven flow simulation (see the text for details)
at different angles β of the inclined plane. (b) Typical geometry of the gravity-driven flow simulation.
(c) Translational velocity profiles obtained in the gravity-driven flow configuration (β = 42◦, 47◦, 52◦, 55◦).
The inset in (a) shows that the fluctuating rolling motion globally scales with the square root of Tx .

particles. We observe that this fluctuating motion globally scales with the square root of the stream-
wise velocity fluctuations [inset in Fig. 7(a)] and may be associated with the particles’ agitation.
This fluctuating component is dominant for sufficiently elongated particles (i.e., R � 2), while for
almost isotropic particles the average rolling motion is also contributing to the degradation of a pure
sliding regime at the wall. The observed scaling of wall friction with the parameter κ involving the
average rolling kinetic energy can be seen as comprising and unifying the previous ones [3,6,7],
because it takes into account the average rolling motion as well as the fluctuating motion.

With particular regard to the scaling proposed in Ref. [3] and based on the root mean square
of the streamwise velocity fluctuations, given that

√
Tx ∝ a

√
〈ω′

z
2〉 and since

√
〈ω′

z
2〉 is generally

larger than ωz in our flows [see Figs. 3(e) and 3(f)] means that, for a given particle shape, the
effective wall friction scales, globally, with the slip parameter vx/

√
Tx. However, the scaling based

on vx/
√

Tx does not rescale well data from different aspect ratios. Deviations from a master curve
are observed especially in the zone for which sliding and rolling motion are correlated. The best
collapse to a master curve is therefore obtained with the parameter κ discussed above.

In order to test the generality of the proposed scaling law, we also perform numerical simulations
in a free-surface gravity-driven flow configuration. The cell [see Fig. 7(b)] has the same dimension
as the one used for the confined flow in the x and y directions (Lx = 20a and Ly = 10d). The same
bottom wall as in the confined configuration is used, while the flow is not bounded at the top.
An intermediate aspect ratio R = 2 is considered and the granular sample is composed of 3200
particles. The contact parameters are the same as those used in the confined flow simulations (see
Sec. II). The angle between the horizontal and the main flow direction β is set to a high value at
first (β = 60◦) and then is reduced to the desired value. This initial condition permits the material
to lose memory of the initial structure. This flow configuration leads to the so-called superstable
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heap (SSH) regime [1,6,18–20]. In this type of flow, both stresses and shear rate vary with z. The
inertial number I (z) = γ̇ d/

√
p/ρ, with γ̇ (z) = ∂vx/∂z, ρ the mass density of the system, and p the

local pressure, a dimensionless number commonly used to characterize granular flow regimes, is
thus not uniform. We compute the effective wall friction coefficient only in the zones corresponding
to a dense flow, i.e., 10−4 < I (z) < 10−1, disregarding the stable heap beneath and the grains in the
collisional regime above [velocity profiles are displayed in Fig. 7(c)]. Note that the confined shear
flows presented in the paper have a typical range 10−4 � I (z) � 10−2, which corresponds to dense
slow flows. The data from the SSH configuration collapse on the same master curve obtained for the
confined flows [star markers in Fig. 7(a)], showing that our scaling well describes the wall friction
mobilization in a totally different flow configuration. As a last comment, we note that the relation
between effective wall friction and dilatancy has often been neglected in the literature. In our stress-
controlled system, the solid volume fraction is not homogeneous and its average value depends on
system parameters such as the vertical confinement. While we do not address this in detail here, the
fact that the scaling law is verified in both the confined and the free-surface configurations seems to
suggest that the dilatancy does not play a major role in the effective wall friction scaling.

V. CONCLUSION

In this work we have discussed, by means of discrete numerical simulations, the kinematics and
the wall stresses in a 3D, dense, fully confined granular flow of anisotropic particles. We have shown
that a variety of kinematic profiles can be obtained when varying the particle-wall friction coefficient
and the distance between the sidewalls. In our peculiar flow configuration, the effect of particle shape
affects mainly the angular velocity profiles: As one may expect, both spinning and rolling motions
are frustrated. On the other hand, apart from the effect of the different relative bumpiness on the
slip velocity at bumpy walls, the translational velocity and granular temperature profiles are similar
between different particle elongations. Particle elongation also affects the wall stresses, which we
have studied through the concept of effective wall friction. In particular, elongated particles show
less friction weakening at the wall than more isotropic particles. Due to its rich flow and stress
profiles, our flow configuration is an ideal benchmark for boundary conditions. Combining wall
stress and kinematics data, we have shown that in dense granular flows the effective friction at flat
interfaces scales according to a balance between sliding and angular motion of the particles. We
have proposed a scaling law for 3D bounded granular flows based on the average kinetic energy of
the rolling motion, which relates the particle kinematics regime to the friction mobilization. Three
regimes have been identified: pure sliding (μx

w ≈ μpw), no-slip–pure rolling (μx
w ≈ 0), and sliding

and rolling coupling (0 < μx
w/μpw < 1). This description is relevant both for shape isotropic and

elongated particles and in different flow configurations (i.e., shear driven and gravity driven). The
proposed scaling law unifies the previous frameworks associating wall friction degradation with
particle agitation [3,6] and with absolute particle rotation [7]. The former can in fact be associated
with the fluctuating angular motion of the grains, while the latter is straightforwardly related to the
root mean square of the rolling velocity.

The results reported here advance our understanding of the friction mobilization at flat interfaces,
providing evidence that particle shape affects effective wall friction via the angular dynamics. This
is particularly meaningful for the application of rheological laws to real materials, which are often
composed of anisotropic particles, and may revive the debate about the relevant variables to be
included in high-order continuum modeling of dense granular flows, with a point in favor of particle
rotations. It would also be interesting to understand the effect of more complex contact models
(e.g., static or dynamic friction and cohesion) on the proposed scaling. It should be noted that the
scaling has been defined for sidewall friction, i.e., the wall in the direction parallel to gravity. In the
future, the universality of the proposed scaling and of the associated mechanisms should be tested
in other flow configurations, with a primary objective to understand if it may apply also for basal
friction [21,22].
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