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Abstract :

Fracture of viscoelastic materials is considered to be a complex phenomenon due to their highly rate
sensitive behavior. In this context, we are interested in the quasi-static response of a viscoelastic solid
subjected to damage. This paper outlines a new incremental variational based approach and its com-
putational implementation to model damage in viscoelastic solids. The variational formalism allows us
to embed the local constitutive equations into a global incremental potential, the minimization of which
provides the solution to the mechanical problem. Softening damage models in their local form are known
to result in spurious mesh-sensitive results, and hence non-locality (or regularization) has to be intro-
duced to preserve the mathematical relevance of the problem. In the present paper, we consider two
different regularization techniques for the viscoelastic damage model : a particular phase-field and a
lip-field approach. The model parameters are calibrated to obtain some equivalence between both these
approaches. Numerical results are then presented for the bidimensional case and both these approaches
compare well. Numerical results also demonstrate the ability of the model to qualitatively represent the
typical rate-dependent behaviour of the viscoelastic materials. Besides, the novelty of the present work
lies in the use of lip-field approach for the first time in a viscoelastic context.

Key words : damage, viscoelasticity, lip-field, phase-field, variational approach

1 Introduction
Viscoelastic materials like asphalt, biological tissues, wood and polymers have numerous applications
in engineering. The properties of these materials are highly rate and temperature dependent, therefore,
greatly affecting their failure behavior [1, 2]. Designing for the mitigation of fractures in viscoelastic
materials is an important problem, for example, in the case of asphalt and pavement construction [3].

Fracture mechanics commenced with the earlier work of Griffith [4]. Based on this theory, the stress
at the crack tip becomes infinite. Fracture mechanics is used to characterise the loads on crack using
a single parameter. A number of different parameters have been developed and used. When the non-
linear zone also called the Fracture Process Zone (FPZ) (which involves cavity formation, stringing,
chain pull-outs for polymers, and bond breaking) is relatively small compared to the crack size, the
cracking can then be described by the elastic forces within the bulk of the material and is termed as
Linear Elastic Fracture Mechanics (LEFM). The stress state at the crack tip can then be characterised by
the Stress Intensity Factor (SIF). The analytical expression for SIF for several configurations is available
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in the literature [5]. The crack is considered to grow rapidly when the SIF reaches the critical SIF (or
fracture toughness), which is usually determined from experiments. However, since all the materials
available in nature contain FPZ of finite width, the SIF approach cannot be used in most cases, as the
crack growth is significantly affected by the non-linear process occurring in the vicinity of the crack
tip. Hence, a different parameter used for characterising crack growth is based on the energy, called the
energy release rate G. This approach is called the energy approach and crack growth is considered to
occur when the energy available for crack growth is sufficient to overcome the resistance to fracture of
the material. Griffith was the first to propose the energy criterion for fracture [4] . The criterion for crack
propagation is given as follows :G ≥ Gc.Gc is the critical energy release rate. This energy criterion was
ignored for a long period until the early 1950s, since the Griffith derivation for the analytical expression
of G was available only for the linear elastic fracture case (or brittle fracture). Irwin was the pioneer in
developing the present version of this approach through a modified energy criterion that accounts for
the non-linear effects in the FPZ through the inclusion of the other (usually plastic) dissipation term [6].
Several approaches have been introduced since then to compute the energy release rate. J-integral is the
most common way to compute the energy release rate [7].

Methods developed for the linear elastic and elastic-plastic fracture cannot be used for the time dependent
viscoelastic fracture mainly due to the viscous dissipation in the bulk causing time dependent fracture.
Knauss [8] presents a detailed review on time-dependent viscoelastic fracture. For viscoelastic problems
without fracture, it is usually common practice to find the solution by use of the correspondence principle
[9]. This principle allows to find the viscoelastic solution by solving for an associated elastic problem
in the transform domain (using Laplace Transform) followed by inverting the elastic solution back to
the time domain. For fracture in non-linear viscoelastic material under large strain, Schapery makes
use of the correspondence principle to define a generalized time-dependent J-integral analogous to the
non-linear elastic case [10] [11]. Based on this theory, a new model to study viscoelastic fracture under
creep loading has been proposed in [12]. This model extends the initial Griffith energy balancefor linear
elastic solids to viscoelasticity by inclusion of the viscous dissipation term, and crack growth is driven
only by the free energy. In the mean time, X-FEM [13, 14] has gained a lot of attention. X-FEM approach
was used in [15, 16] to address linear viscoelasticity problems with inclusions and cracks. However, the
Griffith-type models have certain drawbacks. a) They are not able to predict crack initiation and can
only be dealt in the case of pre-existing cracks (initial cracks). b) They are not able to predict crack
branching. The Griffith type models were later enhanced with damage mechanics based approaches.
This can be broadly categorised as Cohesive Zone Model (CZM) [17, 18] and Continuum Damage
Mechanics (CDM) [19, 20]. Both approaches introduce a length scale into the model accounting for the
micro-damage before fracture that can be associated to the nucleation, coalescence and growth of voids
to form macro-cracks. Some works on the use of CZM to model viscoelastic fracture can be found in
[21, 22, 23]. In the later, a bilinear CZM is used to simulate the viscoelastic fracture behavior of asphalt
concrete. However it was also reported that the numerical simulations were found to diverge when the
orientation of cohesive elements is not tailored to the crack path observed from experiments. CDM is
yet another popular approach to model damage in viscoelastic materials. Some of the commonly used
CDM approaches are non-local integral damage models [25, 24], kinematic [26] and damage based
[27, 28] gradient models, phase-field damage models [30, 33] and Thick Level Set(TLS) approach [35].
For example, Shiferaw et al. [36] used the TLS approach to model damage in viscoelastic materials
for a wide range of temperatures. In the later, the authors also demonstrated the ability of the model
to represent experimental results for the uni-axial tension test under monotonous loading rate. Phase-



Draft 3

field models have also been used to model cracks in viscoelasticity [37, 38, 39]. For e.g. in [38] both free
energy and a part of viscous dissipation is used to drive the phase damage. Another class of methods that
was recently developed under the formalism of CDMwas the Lip-field approach [40, 41] to fracture. The
main difference of this approach from the phase-field approach lies in the fact that the damage dissipation
potential is not a function of the damage gradient.

Fracture behavior of viscoelastic materials is a complex phenomenon due to their highly rate-sensitive
behavior. This is mainly attributed to the viscoelastic dissipation in the bulk material around the crack tip
and inertia effects (for high speed cracks) contributing to the fracture toughness. Modeling such fracture
behavior can still be considered to be a relatively open area. This sets the objective of the present paper.
In the present work, we limit ourselves the quasi-static crack growth. We consider the formalism of ge-
neralized standard materials [44, 45], where we define the free energy potential, the viscous dissipation
potential, and the damage dissipation potential (all convex). The constitutive laws (or evolution equa-
tions) are then prescribed using the relation between the driving forces (thermodynamic forces), free
energies, and dissipation potentials. An incremental potential is then defined in line with the works of
[46, 47, 48] on variationally consistent incremental principles for dissipative systems. By variationally
consistent, we mean that the problem can be formulated as an optimisation problem with respect to the
fields of state variables. They also posses attractive features that they offer the possibilities for extensive
mathematical and numerical analysis [49]. This incremental formalism also embodies in itself the fully
implicit time discretisation. The formalism of generalized standard materials ensures that incremental
potential is convex with respect to each state variable separately. Hence, the classical alternate minimi-
sation, where minimization over each state variable while freezing other variables could be used to find
the solution. Moreover, in the present work, only the free energy is used to drive damage growth. This
helps in preserving energy conservation in the bulk. Variational consistency also allows one to state the
problem in an elegant and compact format.

The undamaged free energy and viscous dissipation potentials corresponding to the Generalized Kelvin-
Voigt (GKV) model [9] have been considered to represent the viscoelastic behavior. We are also inter-
ested in comparing the results for the lip-field and phase-field regularization techniques. The difference
lies in the definitions for the damage dissipation potential : a local damage dissipation potential cor-
responding to lip-field and a non-local (gradient damage type) corresponding to phase-field. The local
expression of dissipation potentials is well known to trigger spurious localization [50]. Hence in case of
lip-field, an external regularization is introduced through the addition of a new space called the Lipschitz
space (a non-local space) and the search for damage field is constrained to lie in this space. This helps
in preserving the ellipticity of the problem. The bounds estimate proved in [40] also helps to greatly
simplify the computational process of constraining the damage field to lie in Lipschitz space. Besides,
in order to aid the comparison of the results corresponding to lip-field and phase-field approaches, some
equivalence is derived between the respective model parameters by equating the fracture energies.

The paper is structured as follows. Initially, the variational framework for damage in viscoelasticity
(quasi-static case) is discussed in the following section. In this section, the damage dissipation poten-
tials of both phase-field and lip-field approaches are considered. In section 3, an equivalence is derived
between phase-field and lip-field approaches to aid in their comparison. Following the theory, the de-
tails of the implementation are presented in Section 4. Section 5 presents the results of the finite element
analysis carried out on some benchmark tests. Finally, section 6 concludes the paper.
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2 The viscoelastic damage model : variational framework
In this section, the fully implicit time discretized incremental potential for rate-dependent systems, as-
sociated to the problem of damage in viscoelasticity is derived. This allows to reformulate the problem
as an optimisation problem.

Consider the deformation of a body initially occupying a domain Ω through a displacement field u. We
assume small, isotropic and quasi-static deformations under isothermal conditions. The Cauchy stress
and small strain tensor is denoted as σ and ε.

ε(u) =
1

2
(∇u +∇Tu) (1)

Regarding boundary conditions, displacement is applied to a part of the boundary Γu. We assume zero
traction forces on the rest of the boundary ΓN and that there is no body force (without loss of generality).
To be kinematically admissible at any given time t, the displacement field u must belong to U(t) :

U(t) = {u ∈ H1(Ω) : u = ud(t) on Γu} (2)

The equilibrium condition then reads∫
Ω
σ : ε(u∗) dΩ = 0, ∀ u∗ ∈ U∗ U∗ = {u ∈ H1(Ω) : u = 0 on Γu} (3)

The equilibrium and the kinematic equations Eq. (3) and (2) must be complemented by the constitutive
equations.

A spectral approach is used to describe the viscoelastic behaviour where the set of internal variables
are strain based. The internal state of the viscoelastic material is then described by the following state
variables : ε, ε1, ..., εn and d, where ε1, .., εn are the internal (or viscous) strains and d is the scalar
damage variable. In the rest of the work εi will be used to indicate the set of internal strains {ε1, .., εn}.
The formalism of generalized standard materials is followed, where we consider two convex thermody-
namic potentials : the free energy potential ψ and the dissipation potential φ.

ψ = ψ(ε, εi, d) (4)

φ = φv(ε̇i) + φd(d, ḋ) (5)

where the additive decomposition of the dissipation potential φ into the viscous dissipation potential φv
and the damage dissipation potential φd (both convex) has been used. The viscous dissipation potential
is not considered a function of the scalar damage variable. The consequence is that only free energy is
used to drive damage and also helps in preserving energy conservation.

The driving forces conjugate to state variables are then given by

σ =
∂ψ

∂ε
ση,i = − ∂ψ

∂εi
=
∂φv
∂ε̇i

Y = −∂ψ
∂d

=
∂φd

∂ḋ
when {ḋ > 0 & d < 1} (6)

where σ is the stress, ση,i is the viscous stress conjugate to viscous strain εi and Y is the local energy
release rate conjugate to d. The negative sign in viscous stress and local energy release rate indicates the
dissipative nature of the respective driving forces. In Eq. (6.3) , equality is guaranteed when the ḋ > 0

and d < 1 (damage criterion in strict sense).
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The time domain of study [0, T ] is discretized into time intervals t0, t1, ..., tm, tm+1, ...tM = T , where
tm+1− tm = t− tm = ∆t, where we drop them+ 1 index for simplicity and the same will be adopted
for all the state variables for the rest of the paper. Hence {εm, εi,m, d} and {ε, εi, d} are used to indicate
the state of the material at time steps tm and tm+1 = t. An implicit Euler time discretisation has been
used to discretize the time derivative of internal strains (ε̇i,m+1 = ε̇i = (εi−εi,m)/∆t ). Eq. (6) then
yields the following constitutive equation in differential form at the time step tm+1 = t

σ =
∂ψ

∂ε
(ε, εi, d)

∂ψ

∂εi
(ε, εi, d) +

∂φv
∂ε̇i

(
εi − εi,m

∆t

)
= 0 µ =

∂ψ

∂d
(ε, εi, d) +

∂φd

∂ḋ
(d, ḋ) (7)

where µ is a scalar variable associated to damage criterion given by the Karush-Kahn-Trucker (KKT)
conditions

µ− λ1 + λ2 = 0 (8)

λ1 ≥ 0, d− dm ≥ 0, λ1(d− dm) = 0 (9)

λ2 ≥ 0, 1− d ≥ 0, λ2(1− d) = 0 (10)

λ1 and λ2 are the Lagrange multipliers associated with irreversibility of the damage (ḋ ≥ 0) and the
bound constraints (d ≤ 1). Eq. (7) along with the KKT conditions ( Eq. (8-10)) are the constitutive
equations describing the material behaviour.

By defining a new potential φ̃d (also convex) associated to damage as follows,

∂φ̃d
∂d

=
∂φd

∂ḋ
(11)

It can be readily seen that the local evolution equations for internal strains and damage ( Eq. (7.2), (8))
are recovered as the stationarity conditions of the following variational problem.

max
λ1,λ2

min
εi,d

J such that λ1 ≥ 0, λ2 ≥ 0 (12)

J = ψ(ε, εi, d) + ∆tφv

(
εi − εi,m

∆t

)
+ φ̃d(d, ḋ)− λ1(d− dm)− λ2(1− d) (13)

The above potential also allows to rewrite Eq. (7.1) as

σ =
∂J

∂ε
(14)

To this end, the problem of finding the internal state of the material at a given time step t can be refor-
mulated into an optimisation problem as follows :

{u, εi, d} = arg min
u′∈Um

ε′i∈P
d′∈Am

F (u′, ε′i, d
′ ; um, εi,m, dm,∆t) (15)

where the global incremental potential F is given as follows

F =

∫
Ω
f dΩ =

∫
Ω
ψ(ε, εi, d) + ∆tφv(

εi − εi,m
∆t

) + φ̃d(d, ḋ)dΩ (16)
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J is the Lagrangian function associated with f . Note that the minimization of F w.r.t. u results in the
equilibrium equation Eq. (3). The admissible spaces for the state variables are given follows :

Um = U(tm+1) = U(t) (17)

P = {q : q ∈ L∞(Ω)} (18)

Am = {d ∈ L∞(Ω) : dm ≤ d ≤ 1} (19)

whereU(t) is given by Eq. (2) and the spaceAm ensures the damage irreversibility and bound constraints.

Having laid the basis for the variational framework, the equations can be closed by defining the free
energy potential ψ and the dissipation potential φ. In this work, we consider the Generalized Kelvin-
Voigt (GKV) model to describe the viscoelastic behavior. The schematic of GKV for one dimensional
case (without damage) is shown in Figure 1 .

(λ 0 ,μ 0)
(λ1 ,μ 1)(λ2 ,μ 2)(λ n ,μ n)

τ 1τ 2τ n

ε 2ε n ε 1

ε

ε 0

Figure 1 – Generalized Kelvin Voigt (GKV) model with n Kelvin Voigt (KV) units

{(λ0, µ0), .., (λn, µn)} and {τ1, .., τn} are the Lame’s constants and retardation times of each Kelvin-
Voigt (KV) unit respectively. The total strain can then be written as

ε =

n∑
i=0

εi (20)

where ε0 is the strain in the free spring. This model allows to define ψ and φv, while the choice of φd
depends on the choice of regularization (lip-field or phase-field). For the GKV model considered, the
free energy and viscous dissipation potential are given as follows :

ψ =

n∑
i=0

(
g(d)µi < εi >+ : < εi >+ +g(βd)µi < εi >− : < εi >− +g(d)

λi
2
Tr(εi)

2

)
(21)

φv =

n∑
i=1

τi

(
µiε̇i:ε̇i +

λi
2
Tr(ε̇i)

2

)
(22)

where the definitions < εi >+ and < εi >− are given in Appendix A. 0 ≤ β ≤ 1 is a user-defined
parameter that controls behavior in tension and compression. If β = 1, the behavior of the material is
symmetric in tension and compression. If β = 0, the material is asymmetric in the sense that it is able
to store some portion of free energy in compression (and hence recover some stiffness in compression).
In the present work, we use the following commonly used choice for g(d). (g(0) = 1 g(1) = 0 and g(d)
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convex on [0, 1]).

g(d) = (1− d)2 (23)

For the symmetrical case (β = 1), Eq. (21) becomes

ψ =
n∑
i=0

(
g(d)µiεi:εi + g(d)

λi
2
Tr(εi)

2

)
= g(d)ψ+ (24)

For the asymmetric case (β = 0), Eq. (21) becomes

ψ = g(d) ψ+ + ψ− (25)

where ψ+ is the part of the free energy that that drives damage growth and ψ− is the portion of free
energy not affected by damage.

The minimization of F w.r.t. d results in spurious mesh dependent results. This can be overcome by
regularization techniques that introduce length scale(s) into the model. In the next sections, we look
briefly at the phase-field and the lip-field regularization. It should be noted that both the phase-field and
lip-field damage fields are represented by the same scalar damage variable d and if any misconception
state is identified, it will be further clarified with more details.

2.1 Phase-field regularization
In this case, the introduction of regularizing length scale l1 is made through the definition of the following
dissipation potential.

φd =
Gc
4l1

δd(h(d) + 2l21|∇d|2) ḋ =⇒ φ̃d =
Gc
4l1

(h(d) + 2l21|∇d|2) = Gcγ(d,∇d) (26)

where δd is used to represent the functional derivative w.r.t damage variable d. The damage gradient
term ensures the non-locality of damage field. Gc is the fracture toughness in the sense of Griffith
(J/m2). h(d) is the damage softening function and γ(d,∇d) is called the crack surface functional in
the phase-field community and in the global sense, the later gives a measure of crack surface area in
three-dimensions (crack length in 2D). The relation between φd and φ̃d is given by Eq. (11). With the
definition of the non-local phase-field dissipation potential, the stationarity problem given by Eq. (15)
can be re-written as follows :

{u, εi, d} = arg min
u′∈Um

ε′i∈P
d′∈Rm

F (u′, ε′i, d
′ ; um, εi,m, dm,∆t) (27)

where Rm ⊂ Am is defined as

Rm = {d ∈ H1(Ω) : dm ≤ d ≤ 1} (28)

The increased regularity of the space Rm over which the phase-damage field is sought is due to the
presence of gradient term in damage dissipation potential.
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2.2 Lip-field regularization
In contrast to non-local dissipation potential considered for phase-field, the dissipation potential in local
form is considered for the lip-field approach as follows

φd = Ych
′(d)ḋ =⇒ φ̃d = Ych(d) (29)

Yc is the critical energy release rate per unit volume (J/m3). The non-locality is then through the intro-
duction of Lipschitz space LΩ and by constraining the damage field to lie in this non-local space.

LΩ =

{
d ∈ L∞(Ω) : |d(x)− d(y)| ≤ 1

l2
dist(x,y) ∀x,y ∈ Ω

}
(30)

where l2 is the lip-field regularizing length scale parameter. The bound 1/l2 for the magnitude of slope is
also called the Lipschitz constant. The introduction of new space allows us to reformulate the variational
problem given by Eq. (15) as follows.

{u, εi, d} = arg min
u′∈Um

ε′i∈P
d′∈Am∩LΩ

F (u′, ε′i, d
′ ; um, εi,m, dm,∆t) (31)

where d′ ∈ Am ∩ LΩ ensures irreversibility and non-locality of damage field.

3 Model parameters calibration
In order to aid the comparison of phase-field and lip-field approaches for viscoelastic fracture, some
equivalence between them are derived in this section. To be precise, the relation between the regularizing
length scales and fracture parameters of both the approaches are derived. For the rest of the study, we
consider the following damage softening function :

h(d) = 2d2 (32)

For the considered quadratic damage softening function, the damage starts to grow at the onset of loading
for both phase-field [29, 34] and lip-field [40] models. However, its often used in phase-field community
due to its relative ease of implementation [32]. In case of lip-field approach [41], a different (convex)
softening function doesn’t alter the numerical implementation.

3.0.1 Phase-field like damage shape function

The relation between the length scales l1 and l2 is derived in this section aiding to have a similar damage
shape function for both the phase-field and lip-field approaches. The damage profile of the phase-field
models is known a priori [30] and is given by Eq. (33) for the considered phase-field model with crack
located at centre x = 0 (1D).

d = e
− |x|

l1 (33)

In case of lip-field, the damage profile is not known a priori. But numerical results for brittle and quasi-
brittle fracture [40, 41] indicate that lip-field damage profile tries to saturate the Lipschitz constraint
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with the magnitude of the slope of damage reaching the upper bound given by the Lipschitz constant.
Hence we safely assume the damage profile to be linear in this case and is given by Eq. (34) for a crack
located at x = 0 (1D).

d =

{
1− |x|/l2 ∀ |x| ≤ l2
0 elsewhere

}
(34)

The exponential and the assumed linear damage profile for the phase-field and lip-field for l1 = l2 are
shown in Figures 2.a and 2.b. It can be seen that in case of phase-field, d→ 0 only when x→∞.

l1

1 1 1

l2=l1 l2=2 l1x x x

d>0

a ) b ) c )

Figure 2 – damage profiles of phase-damage (blue) and lip-damage (red) : a) phase-damage profile with
length scale l1 b) lip-damage profile with length scale l2 = l1 and c) phase-damage profile with length
l1 and lip-damage profile for l2 = 2l1 .

l1 = l2 is not considered as the best choice (see Figures 2.a and 2.b), as they result in different damage
distribution around the crack. The Lipschitz constant for the considered phase-field damage profile is
given by 1/l1. Due to the exponential profile of phase-field, the Lipschitz constant of lip-field is set
by averaging the maximum (Lipschitz constant of phase-field) and minimum (0 as x → ∞) slope of
phase-field.

1

l2
=

1
l1

+ 0

2
=⇒ l2 = 2l1 (35)

The damage profile in this case is plotted in Figure 2.c and the difference in distribution of phase-field
and lip-field damage profiles is observed to be relatively less.

3.0.2 Fracture energy

Having obtained some equivalence in damage profiles for phase-field and lip-field models, the relation
between the fracture energy parameters Yc andGc is sought in this section. In order for both the models
to be energetically equivalent, the damage energy per unit of crack advance has to be the same. In case of
phase-field, fracture energy per unit of crack advance is directly given by the parameterGc , while in case
of lip-field, for the considered damage profile Eq. (34), the fracture energy per unit of crack length for a
fully developed crack is given by

∫ l2
−l2 φ̃d(d(x))dx. For energetically equivalent, the following relation

holds ∫ l2

−l2
Ych(d(x))dx = Gc =⇒ Yc =

3Gc
4l2

(36)

The relations given by Eq.(35) and (36), allows us to compare both the regularization approaches, pro-
vided the fracture parameters for any one of these models are given.
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4 Computational aspects
The function F is convex w.r.t. {u, εi} and {d} separately and the admissible spaces for the state va-
riables are also convex. Hence an alternate minimization (or staggered scheme) is used, resulting in a
series of convex optimization problem. At time step tm+1 = t, the following iterations are repeated until
convergence.

1. Find {uk+1, εk+1
i } with fixed d = dk

2. Find dk+1 with fixed {uk+1, εk+1
i }

where k represents the alternate minimisation iteration number.

4.1 Finding displacements and internal strains
Case A : For the symmetric case (β = 1), the minimisation ofF w.r.t. {u, εi} results in a linear problem.
In this section, only the final equations are presented and the details could be found in the Appendix B.1.
The problem of finding displacements is given by the following weak form.∫

Ω
ε(u∗) : H : ε(u) dΩ =

∫
ω
σint : ε(u∗) dΩ ∀ u∗ ∈ U∗ ,u ∈ Um (37)

The space Um is given by Eq. (17) and the space for virtual displacements u∗ is given in Eq. (3). The
expressions for the tangent matrix H, internal stress σint are provided in the Appendix B.1. It should
be noted that, the weak form given by Eq. (37) is similar to elasticity with a modified tangent matrix
and an additional body force term (σint) accounting for viscoelasticity. The body force term depends
on damage at current time (dk) and internal strains from previous time step (εi,m).

Having found the displacements and strain, the internal strains are updated using Eq. (68) and Eq. (67).

Case B : For the asymmetrical case (β = 0). The minimization ofF w.r.t. {u, εi} results in the following
set of non-linear equations∫

Ω
σ(ε(u), εi, d) : ε(u∗) dΩ = 0 (38)∫

Ω

∂ψ

∂εi
(ε(u), εi, d) + ∆t

∂φv
∂εi

(εi, εi,m) dΩ = 0 ∀i ∈ {1, 2, .., n} (39)

where u∗ ∈ U∗,u ∈ Um and εi ∈ P (Ω). The non-linearity come from the eigen split used to express
the free energy. These n + 1 non-linear equations are solved using the Newton-Raphson method (see
Appendix B.2).

4.2 Phase-field damage solver
For the considered g(d) and h(d), we obtain the AT2 (Ambrosio-Tortorelli-2) implementation of the
phase-field model [29, 30, 31]. The damage is then given as follows :

d = arg min
d′∈Rm

F (u, εi, d
′,∇d′) (40)

Though the direct optimisation of Eq. (40) is possible over the entire domain Ω (for example, using
Matlab Optimization toolbox [51] or the active set Newton method [52] to impose the constraints), it is
considered very expensive because of the non-locality of d. Hence in this work, we employ the commonly
used local history field variable [30] to impose the irreversibility constraints.
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For the AT2 model, 0 ≤ d ≤ 1 is intrinsically guaranteed (see Eq. (33)). However, the irreversibility
constraint ḋ ≥ 0 (or d > dm) has to be enforced, so that d lies in the admissible space Rm. The
minimization problem could then be written through the set of Karush–Kuhn–Tucker (KKT) conditions

δF

δd
≥ 0 ḋ ≥ 0

δF

δd
ḋ = 0 (41)

where δF/δd is the variational derivative of F w.r.t. d. We follow the use of a local history variable [31]
to enforce irreversibility constraint. This allows us to replace the the variational inequality in Eq. (41)
by variational equality as follows.

δF

δd
= 0, F =

∫
Ω
g(d)H + ψ− + ∆tφv

(
εi − εi,m

∆t

)
+Gcγ(d,∇d) dΩ (42)

with H defined as follows

H(x, t) = max
s∈[0,t]

ψ+(x, s) (43)

In this case, Eq. (42) results in the following strong form for phase-damage d

Gc

(
1

l1
d− l1∆d

)
− 2(1− d)H = 0 ~∇d.~n = 0 on ∂Ω (44)

The associated weak from can be written as follows :∫
Ω
Gc

(
1

l1
d δd+ l1∇d.∇δd

)
− 2(1− d)δd H dΩ = 0 ∀ d, δd ∈ S(Ω) (45)

The space S(Ω) is given by

S(Ω) = {d : d ∈ H1(Ω)} (46)

The use of history variable allows one to search for damage field in S(Ω) ⊂ Rm(Ω). However, the
consequence is the loss in variational structure of the problem leading to damage bound constraint not
being enforced in a strong sense.

4.3 Lip-field damage solver
In contrast to the previous case, the direct optimization to find the lip-damage is considered to be relati-
vely efficient, thanks to the bounds estimation and its properties proposed in [40]. For any given damage
field d∗, the upper d(x) and lower d(x) bounds are defined as

d̄(x) = max
y∈Ω

(d∗(y)− 1

l2
dist(x,y)) d(x) = min

y∈Ω
(d∗(y) +

1

l2
dist(x,y)) ∀x ∈ Ω (47)

The steps involved in finding damage at any given alternateminimization iteration can be listed as follows

1. Find the local damage field dloc defined as follows

dloc(x) = arg min
d′∈Am

F (u, εi, d
′) ∀ x ∈ Ω (48)

2. Compute the bounds from Eq. (47) for d∗ = dloc. These bounds have been proved to satisfy the
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following properties.

dm(x) ≤ d(x) ≤ dloc(x) ≤ d̄(x) ≤ 1 (49)

d(x) ≤ d(x) ≤ d̄(x) (50)

d(x)− d(x) = 0 =⇒ dloc(x) = d(x) ∈ LΩ (51)

Hence in the region where the bounds are equal (also called the inactive zone), the local damage
solution dloc is same as the sought optimal (lip-)damage field d.

3. The problem yet to be solved is to find damage in the active zone Ω which is defined as follows :

Ω = {x ∈ Ω : d(x) 6= d(x)} (52)

The damage field in the active zone can then be found by the following optimisation

d = arg min
d′∈Am∩LΩ

F Ω(ε(u), εi, d
′), F Ω =

∫
Ω
fdΩ (53)

where the space Am is defined as follows.

Am = {d ∈ L∞(Ω) : d ≤ d ≤ d} (54)

The use of bounds to simplify the projection of a given damage field into Lipschitz space is demonstrated
with an example in the Appendix C.

4.4 Spatial discretisation and lip constraints
The domain Ω is discretized using (linear) triangular mesh elements denoted Ωh. The displacement field
is then discretized using classical finite element discrete space over Ωh. In that case, the displacement
field is continuous over Ωh and linear over each element. The strain is then piecewise constant over
each element. The internal strains εi are stored at element centroids and piecewise constant over each
element. Following the Galerkin method, the admissible spaces for the discretized displacements and
internal strains are

uh(t) ∈ Uhm(Ωh) ⊂ Um(Ω) εhi ∈ P h(Ωh) ⊂ P (Ω) (55)

where the spaces Uhm and P h are the finite-dimensional approximation to the function spaces Um and
P (for more details see [53]). In the case of phase-field, the damage field is discretized using classical
finite element space functions over Ωh, whereas for the lip-field, the damage field is stored at the element
centroid. The admissible space for phase-damage is then given by

dh(t) ∈ Sh(Ωh) ⊂ S(Ω) (56)

where Sh(Ωh) is a finite-dimensional space defined over Ωh using linear basis functions. For the lip-
damage, the admissible space is given by

dh(t) ∈ Wh(∆h) = Lh(∆h) ∩Ahm(∆h) (57)
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where ∆h denotes a dual (or lip-) mesh constructed by connecting the centroids of the base mesh Ωh.
Figure 3 displays the mesh Ωh (blue) and the corresponding lip-mesh ∆h (red) for a circular plate with
a hole at the centre. The vertices of lip-mesh are the element centroids of base mesh. The purpose of the
lip-mesh is to define the Lipschitz constraints. The lip-damage field is then piecewise constant over Ωh

and linear over ∆h. The space Lh(∆h) and Ahm(∆h) are given as follows :

Lh(∆h) = {d ∈ Sh(∆h) : ‖(∇d)t‖ ≤
1

l2
, ∀ t ∈ T (∆h)} (58)

Ahm(∆h) = {d ∈ Sh(∆h) : d ≤ d ≤ d} (59)

where Sh(∆h) is the finite-dimensional space defined over ∆h using linear basis functions. T (∆h)

is set of all elements in ∆h with (∇d)t = Btde. Bt and de are the elemental gradient operator and
elemental damage vector defined for an element t ∈ T (∆h). Spaces different from Lh(∆h) had also
been considered in [41] to impose the Lipschitz constraint in a discrete setting, but it was reported in the
later that the space defined by Eq. (58) was relatively less prone to mesh orientation and also benefits
from the least number of discrete Lipschitz constraints (equal to the number of elements in lip-mesh).

Figure 3 – Base mesh Ωh in blue and dual (lip) mesh ∆h in red colour

The step 1 to find the local damage field dhloc over the vertices of the lip-mesh ∆h (given by Eq .(48))
is performed using the open source scipy [54] package of python. The bounds estimate associated with
dhloc (given by Eq. (47)) is performed using a Dijkstra based fast marching algorithm explained in [41].
This allows to compute the bounds in O(r log(r)) computations, with r being the number of vertices
in Lip-mesh. The estimation of bounds allows us to define the active zone in ∆h over the lip-mesh as
per Eq. (52). In the inactive zone ∆h/∆h, the lip-damage field that minimizes the incremental potential
is same as dhloc (property Eq.(51)). The problem that remains to be solved is to find dh ∈ Wh(∆h) by
minimizing the incremental potential over the active zone ∆h. In contrast to the phase-field implemen-
tation considered, we follow a direct minimization using the cp solver of the open source cvxopt [55]
package of python. This package allows to impose the discrete constraints dh ∈ Wh(∆h) using the first
and second order cone constraints, while minimizing the incremental potential. A direct minimization
using an optimisation package in this case is possible (or handy), because the (non-local) minimization
is performed only over a small domain ∆h. This is an advantage of the lip-field approach, while if such
operation has to be performed for the available phase-field models (to preserve the variational structure)
results in quite expensive computational cost, as the minimization has to be performed over the entire
domain Ωh.
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5 Simulation results
In this section, numerical results are presented for the bidimensional studies, and we demonstrate the
capability of the two different regularization approaches to provide similar results. All the tests are
performed using the plane strain assumption with constant Poisson’s ratio under constant loading rates.
The above assumption allows us to use the following relation : λi = Eiν/(1 + ν)/(1 − 2ν) and µi =

Ei/2/(1 + ν) to find the Lame’s constants associated with each KV unit. In all the tests, the fracture
parameters are set using Eq. (35) and (36) to achieve some equivalence between both the lip-field and
phase-field approaches. As mentioned earlier, the damage initiation starts at the onset of loading. In
order to capture the crack properly, the mesh is refined in the critical zone where the crack is expected to
propagate. For the phase-field model considered, it was reported that the fracture resistance parameter
Gc is overestimated and hence an analogous parameter to nullify this issue have been used [29] . This
replaces Gc in phase-field models (in Eq. (45)) by Gc,eff = Gc/(1 + κ). The parameter κ = h/(4l1),
where h is the effective element size in the critical zone. The mesh is generated using gmsh software [42]
and the associated lip-mesh using the python triangle package [43]. The code to obtain the simulation
results can be downloaded from https://github.com/rajasekar2808/ve_fracture.

5.1 Test A :
Consider a Tapered Double Cantilever Beam (TDCB) with two symmetrical holes. The geometry and
loading conditions are shown in Figure 4. This geometry is a classical example used to study crack
propagation as the tapered beam offers a stable crack growth and the same has been used in [41] to
demonstrate the ability of the lip-field approach to simulate Griffith fracture. We set β = 1 (symmetric
tension / compression behavior) in this case. Here, the critical zone lies in the center strip. Regarding the
loading conditions, the bottom hole has its center fixed and is free to rotate around the z-axis, while the
top hole has it center fixed on x-axis and free to rotate around z-axis. The loading is imposed on the top
hole along the y-axis through constant loading rates. Three different loading rates are considered for this
study (v0, v1, v2) = (.01, .1, 1) mm/s. The time steps used for the respective cases are (.01, .005, .001)

s. The viscoelastic material is described with 10 KV units (see Table 1 ) with ν = .2 . The parameters
associated to fracture are shown in Table 2.

52470
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20

24

90

8

Figure 4 – Test A : Tapered Double Cantilever Beam (TDCB) Geometry specimen
(all dimensions inmm)
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KVunit (i) 0 1 2 3 4 5 6 7 8 9 10 11
Ei (MPa) 31770 87398 123414 65830 62457 62661 7305 12500 418 1743 79 39
τi,ref (s) N/A 1E-5 1E-4 1E-3 5E-3 1E-2 1E-1 1 10 1E2 5E2 1E3

Table 1 – Viscoelastic material parameters for Test A

Yc (J/m3) Gc (J/m2) l1 (mm) l2 (mm) h (mm)
14e3 46.667 1.25 2.5 .4

Table 2 – Fracture parameters for Test A

Figure 5 shows the load vs imposed displacement for different loading rates, obtained using both lip-field
and phase-field regularization. It is evident that both of these regularization techniques produce similar
results. This is indeed expected as a result of some equivalence derived in section 3.
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Figure 5 – Force vs imposed displacement plot for Test A at different loading rates :
PF and LF indicate Phase and Lip-Field

It can be observed that for all the loading rates considered, the respective reaction forces initially in-
creases until it reaches a critical displacement, after which the reaction force drops in a controlled man-
ner. The viscoelastic description of the material also induces some rate effects, with the stiffening of
material and simulating elastic behaviour at higher displacement rates. Moreover the material ruptures
relatively faster for higher imposed displacement rates, because of the material stiffening close to crack
and the available free energy being spent relatively more for damage dissipation compared to viscous
dissipation. The incremental energy balance between two consecutive time steps is also demonstrated
in Appendix D.

Figure 6 plots the contour profiles for both damage and stress in the y-direction for the imposed displace-
ment rate v1 at the anchor point indicated in Figure 5. The stress plot is superimposed over the deformed
mesh with the elements corresponding to d > .99 being removed.



Draft 16

σ
yy
(M
P
a)

d

σ
yy
(M
P
a
)

d

a ) b )

c ) d )

Figure 6 – Damage (left) and stress-y (right) contours for phase-field (top row) and Lip-field (bottom
row). Contour plotted for Test A with imposed displacement rate v1 at the anchor point indicated in

Figure 5. The stress is plotted over the deformed mesh with magnification factor = 2.

The crack can be observed in the center strip as a band of localized elements with damage extending to
1. Figure 7 plots the damage energy in bulk for both phase-field and lip-field as a function of imposed
displacement. The damage energy is calculated using the relation

∫
Ω φ̃d dΩ. It can be seen that the

damage dissipation is higher in the case of PF for a given imposed displacement. However, the crack
length in the case of PF is relatively little shorter (from Figure 6) compared to LF, despite the fact that
PF is more dissipative (see Figure 7). This can be explained by the exponential damage profile resulting
in damage diffusion happening perpendicular to the crack path for PF.
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Figure 7 – Phase-field (PF) and lip-field (LF) damage energies of the bulk as a function of the
imposed displacement for test A with the imposed displacement rate v1.

For the anchor point shown in Figure 5, the section profiles for damage and displacement in y-direction is
plotted on Figure 8. PF model results in some damage widening due to the diffusive nature as explained
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before. In case of LF, the displacement jump is also observed to be relatively more across the band of
localized elements because of the higher slope of the lip-damage field across the crack.

a ) b ) c )

Figure 8 – Damage profiles (b) and displacement in y-direction (c) along the black section in (a)

It can also be seen that the lip-damage profile is not exactly linear in this case. This is due to the da-
mage initiation at the onset of loading, which causes the lip-damage to spread initially before localizing.
However, the spread is minimal relative to the exponential damage profile of PF.

5.2 Test B
This test is made up of a three-point bending beam with a notch located at offset. The geometry and
loading conditions are represented in the Figure 9. This is considered as one of the classical test for
mixed mode fracture in case of viscoelasticity [23]. Since the beam is subjected to both tension and
compression, β = 0 is used to prevent damage growth in compression. The critical zone is denoted
in Figure 9 using a shaded area. To avoid damage concentration at the boundary conditions, boundary
conditions are applied over a strip of small thickness. Two different loading rates are considered for
this study (v0, v1) = (.1, 1) mm/s with the respective time step (.1, .01) s. The viscoelastic material is
described with 3 KV units (see Table 3) with ν = .2 . The parameters associated with the fracture are
shown in Table 4

26 65 26 
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Thickness = 75

Figure 9 – Test B : 3 point bending specimen with notch located at offset (all dimensions inmm)
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KVunit (i) 0 1 2 3
Ei (MPa) 2300 1500 800 100
τi,ref (s) N/A .05 15 26

Table 3 – Viscoelastic material parameters for Test B and C

Yc (J/m3) Gc (J/m2) l1 (mm) l2 (mm) h (mm)
14e3 186.667 5 10 1.4

Table 4 – Fracture parameters for Test B

The reaction force at supports vs imposed displacement is plotted on Figure 10. Similar to the observation
made in Test A, both the regularization techniques produce results in good agreement with each other.
We can also observe the rate effects, with the crack propagation being relatively slow in case of lower
imposed displacement rates and brutal character of crack propagation at higher displacement rates.
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Figure 10 – Force vs imposed displacement plot for Test B at different loading rates :
PF and LF indicate Phase and Lip-Field

Figure 11 plots the damage and magnitude of displacement (over the deformed mesh) corresponding to
the imposed displacement rate v1 at the anchor point indicated in Figure 10. The band of elements with
localized damage values can be considered as an approximation of the macro-crack. Hence, the crack is
represented in Figure 11.b and 11.d by removing elements corresponding to d > .99. The crack profile
observed is similar to the results observed in [23] for the asphalt material. The damage profile for the
phase-field is observed to be more diffusive because of the exponential damage profile. Concerning the
displacement profile, a displacement jump is clearly visible for both the approaches. However, small
discrepancies in the jump along the crack path is observed due to discrepancies in damage profile.
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Figure 11 – Damage (left column) and magnitudes of displacement (right column) contours for
phase-field (top row) and lip-field (bottom row). Contour plotted for Test B with imposed displacement
rate v1 at the anchor point indicated in Figure 10. The magnitudes of displacement is plotted over the

deformed mesh with magnification factor= 2.

5.3 Test C
This test is similar to the test B with a notch located at offset, except for the addition of holes along the
crack path. The geometry and loading conditions are sown in Figure 12. β = 0 is again used to prevent
damage growth in compression. The same test has been considered in [31] and [56]. In the later, this
test has been used to compare the Thick Level Set (TLS) approach and a particular phase-field approach
(AT2 model). The parameters for the viscoelastic material remain the same as in Test B (Table 3). The
parameters associated with the fracture are listed in Table 5. Two different imposed displacement rates
(v0, v1) = (.05, 1) mm/s with respective time steps (.5, .005) s are considered. The damage is imposed
zero close to supports and loading points to avoid damage growth due to concentrated loading.
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Figure 12 – Test C : 3 point bending beam specimen with holes and notch located at offset (all
dimensions inmm)

Yc (J/m3) Gc (J/m2) l1 (mm) l2 (mm) h (mm)
14e3 50.4 1.35 2.7 .3

Table 5 – Fracture parameters for Test C

In this case, we are only interested in the damage profiles for the phase-field and lip-field approaches at
the considered loading rates. The damage contour is plotted in Figure 13. The crack profile observed is
similar to the profiles observed in [31],[56] for quasi-brittle fracture.
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Figure 13 – Phase damage (top row) and lip damage (bottom row) contours for imposed displacement
rates v0 (left column) and v1 (right column) close to rupture.

It is observed that the loading rate did not have any significant effect on the crack orientation. However,
an increase in the width of the damage band with an increase in loading rate is observed for the PF
model despite the same regularizing length scales being used for both loading rates. This might be due
to the brutal character of crack propagation in case of increased loading rate, while for lower loading rate
the crack propagation is less brutal because of the viscous dissipation acting as a resistance to damage
growth (as a result of energy conservation in bulk). A similar effect was also observed in [31] for the case
of phase-field fracture in elasticity when some artificial viscous resistance was added to Gc. Regarding
the boundary effects as seen in Figure 13, gradient of damage is not necessary zero along the normal to
the boundary in case of LF, whereas in case of PF, it is observed that gradient of damage is zero along
the normal to the boundary because of the Neumann condition as a result of Eq. (44). This also results in
a swelling of phase damage close to the mid hole for the considered mesh. It is expected to be overcome
by reducing the length scale. Besides, small negative values of damage were observed in case of phase-
field models (see Figures 13 a,b), showing that the irreversibility constraint is not properly respected.
This was also observed in the case of Tests A and B for the phase-field models (but not reported as the
negative values were close to zero). This is because of the use of the local history field to drive fracture,
which results in replacing variational inequality by a variational equality. As a consequence, ḋ ≥ 0 is
not properly respected. However, the discrepancy is small that it is ignored in most studies. While the
exact variational structure of the problem is being preserved in lip-field case, the damage irreversibility
constraint is properly enforced and damage lies strictly between 0 and 1.
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6 Conclusion
We presented a variationally consistent formulation to viscoelastic fracture in the quasi-static case by
use of damage models. Both Phase-Field (PF) and Lip-Field (LF) regularization approaches have been
considered to alleviate the spurious localization problem of softening damage models. In addition, the
LF approach has been used for the first time in a viscoelastic context.

Despite both these approaches share common aspects that they are variational and posses similar ex-
pression for energy in local form, they are fundamentally different : (i) In PF, the energy depends on the
gradient of damage to introduce regularization, while in case of LF, the local expression of energy is
maintained. The regularization for the later is then through the introduction of a Lipschitz continuous
space (non-local) for the lip-damage field. (ii) Phase-damage in the AT2 typemodels is sought by solving
a partial differential equation with its questionable boundary condition that gradient of phase-damage is
zero on the boundaries. However, in LF approach, a direct optimization of the energy to find lip-damage
is practical, thanks to the local-non local split of the minimization process [40]. This allows to perform
the non local minimization only over a small portion of the domain affected by Lipschitz constraint.

Compared to the PF implementation, the variational structure of the problem is preserved in case of LF,
as the objective function used for minimization is not modified. In contrast, for the PF implementation,
the use of a local history variable to impose damage irreversibility constraint results in changing the
objective function and hence results in loss of the variational structure. The negative values of damage
observed for the numerical simulation also indicates that the history variable doesn’t impose irreversi-
bility constraint in a strong sense.

In order to aid the comparison of results of both the PF and LF approaches for viscoelastic fracture,
some equivalence is sought by having similar damage profile and fracture energies. Numerical simula-
tions indicate both these approaches compare well. However in case of PF models, damage widening is
observed. This is due to the diffusive nature of the PF model considered. In addition, for the PF model
in study, the questionable boundary condition that gradient of damage should be zero on boundaries has
been observed to have swelling effect of damage close to boundaries in some cases.

It has also been observed that both the models were able to capture the rate effects due to viscoelastic
nature of bulk while preserving energy conservation. In our case, the choice of damage dissipation
potential limits us to a particular type of PF and LF models. However, having some equivalence derived
for any other given PF and LF models, it is expected that the similarities/differences pointed out in this
work still applies. Finally, the use of such viscoelastic damage models for practical applications like
fracture in asphalt and the extension to dynamic case would also be an interesting topic. This will be the
objective of the future study.

A Appendix A
In this section the expression for eigen split of the strain tensor ε is listed

ε =< ε >+ + < ε >− (60)

where< ε >+ and< ε >− describe the tensile and compressive modes. They are defined based on the
eigen values ({εa}a=1,2,..,β) and eigen vectors ({na}a=1,2,..,β) of ε. β takes the values 2 and 3 for two
and three dimensions respectively. Then, the expression for the tensile and compressive modes is given
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as follows :

< ε >+=

β∑
a=1

< εa >+ na ⊗ na < ε >−=

β∑
a=1

< εa >− na ⊗ na (61)

with the following definitions of bracket operators :

< x >+=
1

2
(x+ |x|) < x >−=

1

2
(x− |x|) (62)

B Appendix B

B.1 Appendix B.1
For the symmetrical case (β = 1), the free energy and dissipation potential are given by Eq. (24) and
Eq. (22). They can be rewritten as follows :

ψ = g(d)
1

2

(
ε−

n∑
i=1

εi

)
: C0 :

(
ε−

n∑
i=1

εi

)
+

n∑
i=1

g(d)
1

2
εi : Ci : εi (63)

φ =
n∑
i=1

1

2
ε̇i : τiCi : ε̇i (64)

where Ci is the fourth order elastic tensor associated to ith KV unit (Figure 1) and is given by Ci =

2µiI + λi1⊗ 1. (I and 1 are the fourth and second order identity tensors respectively.)

At time step tm+1 = t, the stress σm+1 = σ is given by

σ =
∂ψ

∂ε
= g(d)C0 :

(
ε−

n∑
i=1

εi

)
(65)

The stress in ith KV unit is given by the sum of the stresses in its elastic (σe,i) and viscous part (ση,i)

σi = σe,i + ση,i = g(d)Ci : εi + τiCi : ε̇i ≈ g(d)Ci : εi + τiCi :

(
εi − εi,m

∆t

)
(66)

Since the KV units are connected in series, the stress in each KV units are the same (σ = σi). Equating
Eq.65 and 66 gives the following expression for εi (=εi,m+1)

εi =
∆t

g(d)∆t+ τi
C−1
i :

(
σ +

τi
∆t

Ci : εi,m

)
(67)

Substituting Eq. (67) in Eq. (65) allows us to rewrite σ as

σ = H :

(
ε−

n∑
i=1

τi
g(d)∆t+ τi

εi,m

)
= H : ε− σint (68)
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where H and σint are given as follows

H = g(d)

[
I +

n∑
i=1

g(d)∆t

g(d)∆t+ τi
C0 : C−1

i

]−1

: C0 (69)

σint = H :

(
n∑
i=1

τi
g(d)∆t+ τi

εi,m

)
(70)

Substitution of Eq.(68) in Eq. (3) results in the variational form given by Eq. (37) for finding displace-
ments.

B.2 Appendix B.2
For the asymmetric tension/compression behavior (β = 0), the jth iteration of the Newton method is
given by

Kj ∆αj = rj (71)

where Kj , rj and ∆αj are the Hessian matrix, the vector of residuals and the vector of unknowns
at iteration j. α contains the vectors of unknown fields of state variables given by [u, ε1, .., εn]T and
∆αj = αj+1 −αj . Rewriting Eq. (71) gives

∂2F j

∂u2
∂2F j

∂ε1∂u
· · · ∂2F j

∂εn∂u

∂2F j

∂u∂ε1
∂2F j

∂ε2
1

· · · ∂2F j

∂εn∂ε1
...

... . . . ...
∂2F j

∂u∂εn
∂2F j

∂ε1∂εn
· · · ∂2F j

∂ε2
n





∆uj

∆εj1
...

∆εjn


=



−∂F j

∂u

−∂F j

∂ε1...
−∂F j

∂εn


(72)

where the Hessian matrix Kj and the residuals rj are evaluated using numerical differentiation with the
known variables uj , εji . The variables uj+1, εj+1

i are found using the following relation.

∆uj = uj+1 − uj ∆εji = εj+1
i − εji (73)

C Appendix C
In this section, we demonstrate the use of bounds to simplify the projection of a given damage field
into a Lipschitz space. Consider the problem of projection of a given target (or local) damage field dtar
defined over a domain Ω into a Lipschitz space LΩ (given by Eq. (30) with the regularizing length l2).
The aforementioned projection can be reformulated as the following minimisation problem in the sense
of L2 norm :

d = arg min
d′∈LΩ

∫
Ω
|d′ − dtar|2 dΩ (74)

Finding the bounds of dtar using Eq. (47) allows us to define the inactive (Ω/Ω) and active (Ω) zones as
explained in Section 4.3. The above problem given by Eq. (74) can then be simplified to the following
problem with the minimisation performed over only on a small part Ω of the original domain Ω as
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follows :

d =


dtar ∀ x ∈ Ω/Ω

arg min
d′∈LΩ

∫
Ω
|d′ − dtar|2 dΩ ∀ x ∈ Ω

 (75)

Figure 14 composing a square domain with unit length explains the Lipschitz projection of dtar for
two different regularizing length scales l2 = (.1, .2) units. dtar is plotted in Figure 14.a and it is
discontinuous across the two circles of increasing radius. dtar clearly doesn’t belong to LΩ because of
the discontinuity.

a ) b ) c )

d ) e ) f )

Figure 14 – (a) dtar (or local damage field) with discontinuities ; (b) difference in bounds d− d for
l2 = .1 ; (c) d− d for l2 = .2 ; (d) and (e) Lipschitz projection of dtar for l2 = .1 and l2 = .2 indicated

as d1 and d2 ; (f) dtar, d1 and d2 plotted along the mid section

The Figure 14.b and 14.c shows the difference in the upper and lower bounds (d − d) associated with
dtar for the two different regularizing lengths considered. The active zone Ω is indicated by the regions
with the difference in bounds taking non-zeros (as per equation Eq. (52)). It can be seen that increase
in regularizing length scale has an effect on increase in portion of the active zone. Moreover, the active
zone is concentrated close to the discontinuities. Figure 14.d and 14.e plots the Lipschitz projected field
{d1, d2} as per Eq. (75). dtar, d1 and d2 along the midsection is plotted in Figure 14.f. The regularizing
lengths have the effect of smoothing the discontinuities with the slope being higher for lower regularizing
length.

D Appendix D
In this section, the energy conservation of the developed model is illustrated. For this the incremental
energy balance (energy between two consecutive time steps) for the Test A is considered. Figure 15 plots
the incremental energy balance in the bulk for the TDCB geometry under the imposed loading rate v2 =

.1 mm/s. ∆E corresponds to the time step indexm and represents the energy change Em+1−Em. The
incremental work input is calculated as Ry∆uy, where {Ry,∆uy} are the the observed reaction forces
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Figure 15 – Incremental energies Em+1 −Em in the bulk as a function of time step indexm. The free
energy, viscous dissipation and damage energy in the bulk is denoted by fe,vd and de. Plots obtained

for Test A at imposed displacement rate v1

and the applied incremental displacements at time tm+1 = t. It can be seen that both the approaches
compare well in terms of energy. The following observation could be made

— Energy conservation in bulk is observed for both PF and LF with the applied incremental work
used in a conservative manner to store free energy and dissipate viscous and damage energies.

— Viscous and damage dissipation are greater than zero satisfying second law of thermodynamics.
In case of PF, though ḋ ≥ 0 is not exactly guaranteed due to the use of a local history variable to
drive damage, the damage energy in bulk is greater than zero. This indicates the use of history
variable does not significantly affect the variational structure of the problem (given by Eq. (40))

— As viscous dissipation is not affected by damage, after the onset of damage growth, viscous
dissipation remains the major consumer of the input work for the considered loading rate.

— The sudden rise in damage energy initially indicates faster rate of crack growth, but later the
increase in damage energy starts to drop, indicating slow rate of crack growth.

— Moreover, relatively smooth profiles for damage energy is observed in case of PF because of
the diffusive nature of phase-damage in the bulk. It is expected to get smoother damage energy
profiles in case of LF by refining the mesh.
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