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Abstract

Topology Optimization (TO) methods for fracture resistance offer new possibilities for designing
stronger structures or materials with lower masses than conventional designs. This article presents
an overview of topology optimization techniques for fracture resistance, from pioneering works to
the most recent developments at the time of writing. We first review stress-based methods, which
were the forerunners of crack resistance methods, producing optimal designs that prevent any dam-
age or crack initiation. Other works followed, taking into account the presence of defects or cracks
in structures, but using classical approaches aimed at minimizing compliance in an elastic frame-
work. TO methods for fatigue damage are also an important branch of these approaches and are
reviewed. We then present more recent methodologies, including non-linear effects in structural
design, such as plasticity and damage. Finally, we describe the latest methods of TO design for
fracture resistance, including an explicit description of crack propagation during loading, from ini-
tiation to failure of structures and materials. In particular, the design of two-phase materials that
are more resistant to cracking and that can be manufactured by 3D printing is discussed. The
article concludes with some challenges and promising avenues for the coming years in this field.

Keywords: Topology optimization; fracture; structures; materials

1 Introduction

Topology optimization (TO) is a well-known com-
putational method for designing structures with
optimal geometries in order to optimize an objec-
tive under possible constraints. Since the pioneer-
ing work of Bendsøe and Kikuchi in the late 1980s,
the technique has been widely developed and has
enjoyed considerable success in the engineering
community. Initially applied to mass minimiza-
tion under compliance constraints or, conversely,

to compliance minimization under volume con-
straints, TO has since been extended and applied
to a wide variety of problems such as mechanical
and thermal loads on structures, fluid flow, waste
management, structural mechanics and thermics,
fluid flow, dynamics, acoustics and biomechanics,
among others. (see review articles in [1, 2]).
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2 Topology optimization to fracture

TO can be categorized into several popular
approaches: Solid Isotropic Material with Penal-
ization (SIMP) method [3–5], Bidirectional Evolu-
tionary Structural Optimization (BESO) method
[6, 7], Level-Set Method (LSM) [8, 9], Phase
Field method [10], Moving Morphable Compo-
nents (MMC) [11, 12], and their combinations
[13]. Review of these methods can be found in
state-of-the-art papers [2, 14–18]. An interest-
ing comparison review on these techniques, with
advantages and drawbacks, can be found in [19].

Recently, an exciting new branch of TO has
emerged, whose aim is not just to minimize the
mass/stiffness ratio, but to take account of dam-
age during service loading. In many engineer-
ing applications, damage or cracks may occur
inevitably, and designing structures or materials
able to continue working in damaged conditions
may be crucial for safety in a variety of appli-
cations from the design of airframes to civil
infrastructures [20]. Another important feature is
energy dissipation during a static or impact load,
where it might be desirable to authorize some
damage/plasticity/cracks to dissipate energy and
preserve other critical locations within the struc-
ture. Structures of this type are needed in a wide
variety of fields including crashworthiness designs,
seismic applications, blast protection, personal
safety and sport equipment, among others [21].
Finally, resisting to fatigue by accurately design-
ing the geometry is also critical for engineering
performances. These different features can be
obtained by optimizing the structural geometry,
or the microstructure of a material itself, thanks
to recent progresses in 3D printing [22–25]. Glob-
ally, these different applications can be handled by
Topology Optimization to fracture resistance and
are of industrial and technological critical impor-
tance, for applications in aircraft, automotive or
biomechanics, among many others.

TO capable of taking crack propagation into
account poses enormous challenges, as it can
combine TO with fully nonlinear path-dependent
simulations. This is in contrast with previous lin-
ear approaches. The first challenge is then the
computational cost. The second issue is the need
for a robust and efficient crack propagation simu-
lation method, compatible with TO. Usually, TO
requires fixed meshes for computational efficiency.

This makes classical FEM-based crack propaga-
tion methods with remeshing (see e.g. [26, 27]) not
well adapted to TO. The eXtended Finite Element
Method (XFEM) [28–31] offers the possibility to
simulate cracks over fixed meshes. However, as
being based on linear fracture mechanics, it can
not handle crack initiation. In addition, the sim-
ulation of complex and multiple cracks in XFEM
induces an enormous level of complexity, which
limits its application in TO, even if there are a
few examples, as presented in this review article.
The phase field method to fracture, developed by
Marigo, Bourdin, Francfort and Miehe [32–35] has
many advantages for being easily combined with
TO: first, it can operate on fixed meshes, as based
on a regularized gradient damage model; then,
it can easily handle initiation, propagation and
merging of cracks with arbitrary geometries. For
these reasons, its combination with TO, initiated
in the seminal paper by Xia et al. [36], has opened
the way to a large number of new methodologies
for complex applications, from structural ones to
material engineering.

In this article, we present an overview of these
methods, combining TO and fracture propagation,
but also all the previous and related approaches
that have led to these techniques. Note that
we focus on Topology Optimization, and do not
review other optimization techniques like param-
eterized geometries (see e.g. [37, 38]) for fracture
resistance, or related works like optimal control for
cracks [39], even though these studies share com-
mon objectives with TO for fracture resistance.
In section 2, we first review stress-based meth-
ods, which were the forerunners of crack resistance
methods by producing optimal designs that pre-
vents any initiation of damage or cracking. In
section 3, works taking into account the presence
of defects or cracks in structures, but following
classical approaches aimed at minimizing compli-
ance in an elastic framework are presented. In
section 4, TO methods for fatigue damage are
reviewed. In section 5, we then describe more
recent approaches, including non-linear effects in
the design of structures, such as plasticity and
damage. Finally, we provide in section 6 a recent
state-of-the-art of most recent TO design meth-
ods to fracture resistance, including an explicit
description of crack propagation during load-
ing, from initiation to failure of structures and
materials. In particular, the design of two-phase
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materials that are more resistant to cracking and
can be manufactured by 3D printing is discussed.
The article concludes with some challenges and
promising avenues for the coming years in this
field.

2 Stress-based approaches

Initially flourishing in compliance optimization,
stress-based design is another prominent and
active topic within the TO community. The first
work on TO for eliminating stress concentration
can be traced back to [40]. Another pioneering
work, recognized in the field, employs the SIMP
approach to address local stress constraints [41]
by Duysinx and Bendsøe. Currently, stress-based
design problems have extensively explored various
TO approaches mentioned earlier. One commonly
studied benchmark is the L-shape beam, which
aims to eliminate stress concentrations in the
right-angle area (a brief summary is provided in
Fig. 1). The single-constrained stress-based opti-
mizations can be categorized into two types: mass
minimization under maximal stress constraints
[42–53], or conversely, maximal stress minimiza-
tion under volume constraints [54–60].

Stress-based TO poses greater challenges com-
pared to compliance-based TO due to several
factors: (1) stress is inherently a local character-
istic, (2) it involves non-self-adjoint optimization,
and (3) the imposition of numerous stress con-
straints is required. In order to address these
challenges, aggregation functions such as p-norm
[61] and Kreisselmeier-Steinhauser (KS) functions
[40] have been widely adopted to represent the
stress constraint corresponding to the number of
finite elements or Gauss points. However, achiev-
ing a balance between accurately predicting the
maximum local stress and employing a gradient-
based robust algorithm for highly nonlinear stress
optimization is crucial. This balance heavily relies
on the choice of aggregation degree, such as the
p-value in the p-norm function. Recently, the
application of Heaviside projection-based aggre-
gation [62] in stress-based TO [63] has enabled
precise predictions of maximal stress while sig-
nificantly reducing computational complexity. To
tackle large-scale design problems, augmented
Lagrangian approaches have been proposed [64–
67], where solutions involving over 135 million ele-
ments and 505 million stress constraints have been

achieved. Similar strategies have been employed in
the context of reliability-based topology optimiza-
tion (RBTO) [68] and in considering manufactur-
ing uncertainties [69], respectively. Additionally, a
comparison of local and global stress constraint
strategies in TO is presented in [70].

The stress-based design approach was initially
combined with classical compliance topology opti-
mization in [40], where the simultaneous min-
imization of stress and compliance was carried
out under a mass constraint. Subsequent studies,
such as [74–78] and [79, 80], focused on formu-
lating compliance minimization with stress and
mass constraints, as well as achieving minimum
weight while considering both compliance and
stress constraints, respectively. In [81], Boissier
et al. used a Level-set TO to solve cyclic elasto-
plastic problems based on the Melans theorem, in
which only the existence of certain residual stress
fields based on elastic solutions is required to guar-
antee asymptotic elastoplastic behavior (shake-
down). In [74], the optimization of elastoplastic
and incompressible media was made possible by
employing a mixed finite-element discretization
scheme. Recently, the same optimization formu-
lations were solved using the BESO method for
linearly elastic materials in [82, 83] and the LSM
for shell structures in [84]. Notably, [71] by Da
and Chen represents the first work that systemat-
ically analyzes the effects of stress-based designs
on fracture resistance properties (see Fig. 2).
The authors found that minimizing the critical
maximum stress1 can delay the onset of crack-
ing, and when combined with compliance opti-
mization, it leads to significant enhancements in
both peak load and toughness. Furthermore, the
authors employed a data-driven strategy in [85]
to minimize multiscale homogenized stress, indi-
rectly enhancing the toughness of heterogeneous
structures. The study emphasizes the significant
size effects observed in multiscale stress-oriented
irregular architected materials (see Fig. 3).

1By critical, we mean the stress concentration directly
contributing to crack initiation.
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Fig. 1 Stress distribution of the optimal L-shaped beams achieved using various stress-based TO methods: (a) compliance
TO with stress concentration [71], and (b-e) the following approaches: (b) SIMP [61], (c) BESO [60], (d) LSM [72], and (e)
MMC [73]. Reproduced figures used with permission.

Fig. 2 Effects of stress-optimized designs on fracture resistance properties [71]: (a) diverse optimized topologies for various
scenarios; (b) stress distribution highlighting the maximum von Mises stress; (c) fracture patterns displaying normalized
toughness (T̃ ) and peak load (P̃ ) values. Reproduced from [71] with permission.

Fig. 3 Size effects of the global heterostructure: (a) final crack patterns of the data-driven designed structures; (b) corre-
sponding nominal stressstrain curves. Reproduced from [85] with permission.
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3 Linear elastic structures
containing virtual or fixed
pre-existing cracks

One of the first reported work introducing the
notion of crack in TO is by Challis et al. [86]. In
their study, an objective function defining a vir-
tual crack extension was proposed on the bound-
ary nodes of a structure discretized by Finite
Elements. The framework only involved linear
elastic structures.

A series of other works have investigated the
TO of structures embedding pre-existing cracks
or defects within a structure. In these problems,
a linear elastic structure was usually considered,
and the TO was carried out with respect to com-
pliance volume, or toughness, taking into account
the presence of fixed cracks. In an early work [87],
Jansen et al. defined a TO framework for minimiz-
ing compliance of structures such that they were
less sensitive to defects. For this purpose, several
“worst case” scenarios were defined, where mate-
rial was totally damaged in a square patch. The
compliance was then minimized for a given num-
ber of damage scenarios. As a result, the optimized
structure was assumed to be insensitive to cracks
in the patch zones.

In [88], Shobeiri investigated TO of linear elas-
tic structures containing fixed cracks by combining
the Element Free Galerkin Method (EFG) [89] and
BESO. Differences between EFG and FEM were
reviewed in this context.

An innovative contribution was proposed by
Buehler’s group in [90], where a TO framework
was introduced to optimize for the first time the
toughness of a bi-material sample. In their work,
the TO of a notched plate made of soft and stiff
phases distributed on a regular grid was carried
out to improve the toughness under mode-I fail-
ure. A greedy algorithm was proposed to obtain
the topology of the second phase, and finite ele-
ments were used to evaluate the toughness using
linear analysis. The toughness was here defined
as the area under the force/displacement curve
at failure strain. In a follow-up work [91], the
same authors used the optimized topologies to
3D-printed samples made of soft and hard phases
(see Figs. 4 and 5). In these studies, no crack
propagation was considered in the simulations and
thus in the TO process, but the samples were

experimentally cracked to evaluate the toughness
improvements (see Fig. 5). It was shown that a
redistribution of soft and stiff phases could lead to
a clear improvement of toughness and strength as
compared to other benchmark designs.

In [92], Kang et al. evaluated the J-integral
around predefined cracks at specific locations and
used it in the objective function to optimize the
topology of elastic structures. In [93] Banh and
Lee used SIMP and a multi-material TO to mini-
mize compliance in presence of fixed cracks, where
the discontinuities and singularities around the
crack tip were modelled by XFEM [28, 29]. The
same authors extended this approach to Function-
ally Graded Materials (FGM) in [94]. A similar
procedure was developed by combining XFEM
and BESO in [95] (see Fig. 6), as well as in [96]
to define the topology of a second material play-
ing the role of patches near existing cracks to
minimize the energy release rate within a BESO
framework. Mechanical ice protection systems was
investigated in [97] using topology optimization to
enhance ice shedding through fracture.

Finally, peridynamics [98] was investigated for
compliance optimization of linearly elastic cracked
structures in [99–102]. A comparison between peri-
dynamics and FEM in this context was discussed
in [101]. In [102], Kendibilir et al. fabricated opti-
mized structures by 3D printing and tested it
experimentally.

4 Fatigue

Fatigue resistance TO is primarily stress-based
and can be enhanced by controlling the stress
level. It typically requires ensuring that the stress
level of each finite element remains within the safe
region, i.e., below the yield stress, after a certain
number of stress cycles. The adoption of stress
aggregation functions, such as the p-norm, allows
constraining the maximum accumulated “dam-
age” to maintain it at a tolerable level even after
a significant number of stress cycles [103]. Fatigue
resistance in TO can be categorized based on
the number of cycles as low-cycle fatigue (LCF)
or high-cycle fatigue (HCF), with a dividing line
typically set around 104 cycles [104]. Due to the
complexity of LCF, which is primarily governed
by plasticity, the majority of research in fatigue
TO has focused on HCF. One notable example of
TO work addressing LCF design is found in [105]



Springer Nature 2021 LATEX template

6 Topology optimization to fracture

Fig. 4 Bi-material notched plate (a) Several designs with different distributions of the soft and stiff phases. (b) 3D printed
samples. Reproduced from [91] with permission.

by Desmorat and Desmorat. In their study, fatigue
life was maximized by optimizing the topology of
a 3D double-clamped cantilever beam, considering
cyclic plasticity in conjunction with the Lemaitre
damage law [106, 107].

In the context of HCF designs, early studies
such as [108] employed three different HCF crite-
ria (Sines [109], Crossland [110], and Dang Van
[111]) within a parametric structural optimization
framework, solved using a gradient-free evolution-
ary algorithm. This work was followed by a TO
framework by the same author in [112], which
demonstrated that TO can effectively reduce the
mass of a structure while maintaining its dura-
bility at an established level. In the same year,
Sherif et al. [113] investigated dynamic response
TO, where fatigue played a crucial role in deter-
mining the optimization process, and proposed
a criterion for meaningful equivalent static loads
(ESL) [114]. Subsequently, Yoon’s group com-
prehensively incorporated dynamic fatigue and

static failure criteria into TO in their works [115–
117], utilizing Miner’s cumulative damage rule to
calculate the total damage at each spatial element.

In [118] and [119], the same cumulative damage
rule was employed, with the principal stress and
Sines damage criterion being constrained in TO,
respectively. The use of the clustered approach
and Rainflow-counting method in these works sim-
plifies the optimization problem, making it as con-
venient as the classical von Mises stress-based TO
framework. However, both studies show that the
optimized topologies obtained through fatigue-
based TO exhibit similarities with stress-based
designs. In contrast, [120] adopts a continuous
time approach for fatigue, where the evolution of
damage is governed by a system of ordinary dif-
ferential equations. This approach does not rely
on cycle-counting techniques such as Rainflow-
counting and integrates fatigue damage over the
entire stress history. Consequently, it can handle
more general load histories, including those with
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Fig. 5 Stress-strain relations. (a) Both optimized materials fail at a higher stress and strain compared to all benchmark
samples. (b) Stress-strain relations for the softer materials that exhibit higher strain and lower failure stress. (c) Toughness
amplification. The two optimized geometries have on average a more than 20-fold increase in toughness modulus compared
to the stiff homogenous sample. (d) In terms of strength, optimized geometries (see Fig. 4) have on average a more than
two-fold increase in strength compared to stiff and random geometries. Reproduced from [91] with permission.

non-proportional loads. The computational accel-
eration of the proposed framework is addressed in
[121], which presents HCF-constrained TO for a
3D bracket subjected to periodic load history. Fur-
thermore, the investigation of fatigue-based TO
under non-proportional loads has been recently
explored in [122], where different objective func-
tions, including maximizing fatigue life under
volume constraints, were studied.

Zhao et al. [123] addressed the same finite-
life local fatigue under random vibrations using
a density-based SIMP-classified method, similar
to the other reviewed works. This problem was
recently solved using the BESO method [124] and
unstructured polygonal meshes [125]. In contrast,
Collet et al. [126] proposed infinite-life fatigue TO,
aiming to minimize mass while subject to com-
pliance and simplified nominal stress constraints.
They adopted a modified Goodman failure crite-
rion based on the Sines method.

Due to the prevalence of fatigue failure as a
leading cause of rupture in fastened parts, fatigue
TO has gained significant attention in real-world
engineering applications. This is particularly evi-
dent with the rise of additive manufacturing,
which has led to numerous engineering exam-
ples and experimental investigations (see Fig. 7).
A recent study by Olesen et al. [131] explored
the simultaneous optimization of topology and
print orientation for transversely isotropic fatigue.
Suresh et al. [132] investigated TO for addi-
tive manufactured components and transversely
isotropic materials, focusing on HCF as a con-
straint. Trudel et al. [133] proposed penalization
techniques for fatigue TO of structures incor-
porating embedded functionally graded lattice
materials. Correspondingly, several studies have
examined fatigue TO for real engineering and
medical parts, such as the Helicopter Tail Rotor
Pitch Arm [128], Aerospace Bracket [129], and
Temporomandibular Joint Prosthesis [130] (see
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Fig. 6 L-bracket optimization: von Mises stress contour in the optimized grometry for several initial cracks with different
lengths. Reproduced from [95] with permission.

Fig. 7 Fatigue TO and experiments of a 3D-Printed metal aerospace bracket [127]: (a) assembly of the original bracket and
the fatigue testing platform; (b) topology of the optimized bracket; (c) stress analysis of the new bracket; (d) 3D printed
sample; and (e) experimental fatigue test. Reproduced from [127] with permission.

Fig. 8). Additionally, Dagkolu et al. [134] reported
the design of a fatigue-critical aerospace part
using TO, which was manufactured using laser
power bed fusion (L-PBF). Lastly, Liu et al.
[135] achieved enhanced fatigue characteristics in
a topology-optimized porous titanium structure
produced via selective laser melting.

5 Path-dependent approaches:
plasticity and damage

Stress-based approaches have limitations to cor-
rectly address situations where damage has
already formed, and to correctly measure fail-
ure of a structure. Therefore, the stress-based
design procedures may produce structures that
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Fig. 8 Fatigue TO of actual engineering components of (a) Helicopter Tail Rotor Pitch Arm [128], (b) aerospace bracket
[129]; and (c) Temporomandibular joint prosthesis [130]. Reproduced from [128–130] with permission.

lack robustness in such scenarios [20]. More specif-
ically, for materials having highly nonlinear behav-
ior, such as elastoplastic and strain-softening, once
a threshold for stress or strain is reached, the
material loses part of its stiffness but may experi-
ence large deformations before actually failing. For
these materials, failure cannot easily be expressed
in terms of a maximal stress or strain. By con-
straining the stress to be lower than the yield
stress, the optimized designs will be structurally
safe but overly conservative since the behavior
beyond yielding or damage initiation is not consid-
ered [136]. To overcome these limitations, authors
have introduced TO approaches including fully
nonlinear and path-dependent simulations. Early
approaches have first included plasticity in TO
approaches, then elastic damage models, and later
models coupling damage and plasticity.

5.1 Plasticity

Plasticity can be the onset of failure in ductile
materials. A first contribution to TO in path-
dependent problems with plasticity was proposed
by Maute et al. [137, 138], where an elastoplas-
tic structure was considered in the simulations. In
their work, the structural ductility, defined as the
integral of the strain energy over a given range of
a prescribed displacement, was maximized under
mass constraint. In [139], Kato et al. proposed a
SIMP TO in composites considering elastoplastic
deformations to maximize the energy absorption
capacity (defined as the external work) of a struc-
ture under a prescribed material volume and a
whole incremental simulation. Analytical sensitiv-
ities were derived for the path-dependent problem.

In [140], Nakshatrala and Tortorelli introduced
the TO of dynamically loaded structured with
rate-independent elastoplastic material behavior
with applications to impact mitigation. An exten-
sion of TO for elastoplastic structures at finite
strains was performed by Wallin et al. in [141].
Hencky’s law of plasticity with regularization was
investigated within the Level-set TO method in
[142].

Recently, Jia et al. [143], investigated mate-
rial design by performing TO in cellular peri-
odic structures considering plasticity and dynam-
ics, showing that energy absorption could be
effectively improved as compared to classical
microstructures such as honeycombs (see Fig. 9).

5.2 Damage

Pioneer works combining topology optimization
and damage may be attributed to Achtziger
and Bendsøe [144], who designed truss struc-
tures with a damage model. In a next study,
Bendsøe and Diaz [145] used an elastic-damage
model for designing structures with damage con-
straints. In [37], Desmorat and Desmorat com-
bined TO with continuum damage to maximize
the lifetime of structures subject to fatigue dam-
age. In [146], Amir included discrete steel rein-
forcements embedded into a concrete continuum,
which was subject to damage. In [147] Amir
and Sigmund optimized reinforcements in concrete
structures, where the concrete was described by
a gradient-enhanced damage model with strain
softening, and reinforcements modeled by elas-
tic bars embedded in the matrix. In this work,
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Fig. 9 Iteration of cellular structure with 8×4 periodic unit cells: (a) iterative histories of mean energy absorption and
volume fraction constraint; (b) force-displacement curves of different iterative steps. Reproduced from [143] with permission.

final compliance was minimized but after solv-
ing a fully nonlinear incremental path-dependent
problem (see Fig. 10).

In [148], James and Waisman used TO to
generate minimum-weight structural layouts, sub-
ject to a compliance constraint. Failure mitigation
was achieved by constraining the maximum local
damage. The damage was modeled using a con-
tinuum damage approach in which the nonlocal
damage evolution law was coupled to a finite ele-
ment model. In a follow-up study [20], the same
authors performed the TO of structures able to
sustain material damage and subjected to multi-
ple loading cases, using a coupled nonlinear brittle
damage model. A nonlocal damage model was
developed by Noël et al. in [149] in the frame-
work of a level-set TO. More recently, Barbier
et al. [136] considered minimization of volume in
a structure by solving an elastic problem with
nonlinear damage model [150] under a maximum
loading capacity, including a fully nonlinear strat-
egy and a simplified strategy, where damage was
computed into the structure in only one step.

5.3 Plasticity and damage

The aforementioned approaches only included
damage in the nonlinear analysis. Other works
coupled damage and plasticity in TO path-
dependent strategies to maximize the load bearing
capacity of elastoplastic structures with damage.

In [151] Alberdi and Khandelwalb optimized
the volume of elastoplastic-damageable structures

under maximum plastic work and maximum dam-
age constraints. In [152], Li and Khandelwal
developed the optimization of structures resis-
tant to ductile fracture by using elastoplastic-
damage path-dependent simulations for minimiz-
ing the structural volume under maximum plastic
work and maximum damage constraints. Similar
approaches were developed by the same authors in
[153] where the plastic work was maximized under
damage and volume constraints, and in [154] using
a nonlocal damage model. More recently, Zhang
and Khandelwal [155] extended such strategy to a
finite strains Gurson-Tvergaard-Needleman plas-
ticity model within a SIMP TO framework, where
the plastic work was maximized under damage
and volume constraints (see Fig. 11)

6 Path-dependent approaches:
crack propagation

A new step in the development of TO to fracture
resistance was accomplished by incorporating an
explicit description of crack propagation in path-
dependent TO approaches. To our best knowledge,
this has been firstly proposed in Zhang et al. [156],
where an XFEM fracture propagation was com-
bined with a BESO TO method. The emergence of
such approach has been accelerated by the recent
development of the phase field method to fracture
(see e.g. [32–35, 157, 158]), which has considerably
simplified the analysis of fracture propagation in
engineering problems. The first combination of
the phase field method to fracture with TO was
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Fig. 10 Optimized reinforcement layouts and response of a 2-D structure taking into account damage. Reproduced from
[147] with permission.

achieved by Xia et al. in [36] and Da et al. in
[159] in the framework of bi-materials, and then
followed by several groups both in the contexts
of single and bi-material structures with different
variants regarding the definition of the objec-
tive function and the TO technique. The different
methods are descried in the following.

6.1 Single material structures

In [160], Russ and Waisman developed a SIMP
TO framework with path-dependent phase field

simulations. In their work, the total mass of the
structure was minimized under maximum compli-
ance and fracture energy constraints during frac-
ture propagation simulations. A careful analysis of
the effects of phase field model features, like degra-
dation function and strain splits was carried out to
investigate their effects on the final topologies. It
was evidenced that including the fracture energy
as a constraint could improve the fracture resis-
tance as compared to including the compliance



Springer Nature 2021 LATEX template

12 Topology optimization to fracture

Fig. 11 Optimized L-bracket taking into account path-dependent finite strains Gurson-Tvergaard-Needleman plasticity
model and damage. Reproduced from [155] with permission.

constraint only (see Fig. 12). In [161], a thresh-
old formulation within phase field was investigated
by the same authors, and a different objective
function combining mas and external work under
constraint of maximal cumulated external work
was analyzed.

These works have been followed by similar
studies with different variants in the choice of TO
methods or definition of the optimization problem.
In [162], Wu et al. used a level-set TO combined
with phase field fracture and a p−norm function
formulation to aggregate the phase field variables
into a single constraint. The authors evidenced
the practical interest of such approaches in den-
tal bridge applications. In [163], Desai et al. also
developed a Level-set TO combined with frac-
ture simulations to minimize total external work
during fracture simulations of structures and con-
ducted advanced 3D applications (see Fig. 13).
In [164], Jia et al. combined a SIMP TO includ-
ing phase field fracture and used a multi-objective
function that allowed optimizing in a weighted
manner: (i) the initial stiffness of the structure; (ii)
the first instance at which fracture nucleates and
(iii) the energy dissipated by fracture propagation
once fracture has occurred (see Fig. 14).

All the above-mentioned works only considered
static, quasi-brittle structures. In [165], Li et al.
developed a ductile fracture behavior combined
within a BESO TO formulation. Another novelty
of this work was the introduction of the anisotropy
in the fracture behavior, to account for orientation
in 3D printed fabrication process (see Figs. 15-16).
In a recent paper, [166], Noii et al. also investi-
gated TO with ductile fracture within a Level-set
TO. In their work, the total work was maxi-
mized while accounting from structural damage
and mass constraints and the level-set surface used
within TO was updated by a reaction-diffusion
algorithm.

Finally, another recent and promising advance
is the consideration of dynamic fracture within
TO. The first related study and the only one so
far to our best knowledge has been conducted by
Wu et al. in [168], where SIMP TO was combined
with dynamic phase field propagation analysis. In
this work, fracture energy was minimized during
a given time load after impact on the structure
and with volume constraints. Introducing dynamic
effects allowed to take into account the effects of
loading rates (see Fig. 17).
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Fig. 12 Force-displacement (a) and fracture energy functional (b) curves using the principal split of the elastic energy
and the quadratic degradation function for three topologies. Reproduced from [160] with permission.

6.2 Heterogeneous structures and
materials

The structural design discussed above is primar-
ily derived from the pioneering work by Xia et al.
[36] and Da et al. [159], with a specific emphasis
on two-phase quasi-brittle composite structures.
In their study [36], the authors employed TO to
optimize the distribution of the stiffer phase in
order to maximize the absorbed energy through-
out the fracture process, encompassing damage,
crack initiation, propagation, and ultimate fail-
ure. Furthermore, they perform a comprehensive
sensitivity analysis of the objective function with
respect to the topological design variable. The
paper showcased numerical examples in both 2D
and 3D settings, illustrating the enhanced fracture
resistance achieved when compared to classical
linearly elastic compliance-based TO approaches.

Da et al. [159] presented a significant advance-
ment by addressing the widespread issue of inter-
facial damage and its implications. The authors
introduced a novel approach to optimize the topol-
ogy of reinforced inclusion phases by modifying
the geometry of the interface. Their objective
function was designed to maximize toughness
considering entire reaction force and load-point
displacement curves, with a constraint on the
inclusion volume. The study investigated scenar-
ios with and without initial cracks, shedding light
on the interfacial effects. By employing a highly
nonlinear cohesive zone model [169, 170], the
researchers observed that cracks tend to initi-
ate at the optimized interface in the absence of

predetermined or initial cracks. Through the opti-
mization process, the study reveals the emergence
of concave interfaces, effectively preventing inclu-
sion bypass and promoting crack nucleation on
the opposite side of the inclusion. Moreover, the
concave interfaces exhibit twisting behavior and
elongate the path of interfacial crack propagation,
consequently demanding elevated fracture ener-
gies to fracture the component. These insights
have a direct impact on fracture resistance, offer-
ing an effective mechanism for toughening through
crack bridging and twisting.

Li et al. [167] and Wu et al. [171] have both
employed a similar framework, utilizing different
TO methods such as SIMP and LSM, respec-
tively. Li et al. [167] compared the BESO and
SIMP methods by analyzing various initial guess
designs. In their study, Wu et al. presented a
practical example of an all-ceramic dental bridge,
demonstrating the improved fracture toughness
achieved by combining LSM with phase-field frac-
ture modelling. Expanding upon this framework,
Da and Yvonnet [172] incorporated periodic com-
posite structures and multiple objectives into their
work. They enforced the periodicity of the unit cell
geometry while performing TO for a given load
applied across the entire structure. The authors
investigated size effects, which exhibited similar
trends to classical fracture experiments in quasi-
brittle structures (refer to Fig. 18). Additionally,
they explored enhancing the fracture resistance
of a unit cell associated with a material under
multiple loads, resulting in a complex optimized
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Fig. 13 Damage variable at the final time plotted for several optimization iterations (black regions indicate cracks).
Reproduced from [163] with permission.

microstructure (refer to Fig. 19). The aforemen-
tioned studies [36, 159, 172] comprise the second
segment of Da’s book [173] in TO of heterogeneous
materials and structures.

In [174], a departure from linear analysis in
assessing the toughness of bio-inspired bi-material
samples, as seen in [91], was made by introduc-
ing phase field modeling. The primary focus of the

study is the analysis of the “brick-and-mortar”
biological composites and its interlock and non-
interlock architectural associations. Through this
investigation, the researchers identified two dis-
tinct fracture stages that align closely with exper-
imental observations [175]. To further enhance
fracture performance, the phase field-based TO
framework aiming to maximize toughness while
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Fig. 14 Design setup and results for the optimization of a disk under rotational displacement. (a) Design domain and
boundary conditions (all length units are in mm). (b) Optimized designs for two different choices of weighting factors defining
importance of initial stiffness, onset of fracture and energy dissipation. (c) Force-displacement curves for the optimized
designs and corresponding radar chart comparing their normalized structural performance. The classical stiffness design
obtained from conventional stiffness maximization is included for reference. Reproduced from [164] with permission.

Fig. 15 Optimized designs of an L-shape structure with anisotropic ductile fracture behavior arising from 3D-printing
process. The values α, d and p denote interfacial damage, bulk damage and equivalent plastic strain, respectively. The
topologies and fields are depicted for 3D printing orientations θ: (a) θ = 0◦; (b) θ = 90◦; θ = 120◦. Reproduced from [165]
with permission.
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Fig. 16 Load-displacement curves for an L-shaped
bracket (optimized design), showing the effects of 3D
printing orientation angles θ, and the transition from quasi-
brittle to ductile fracture regimes. Reproduced from [167]
with permission.

accounting for the mass constraint of the soft
phase was proposed (refer to Figs. 20 (a-f)).
Through strategic modifications to the consti-
tutive material distribution, the authors have
successfully eliminated the significant stress con-
centrations located ahead of the crack tip (refer to
Figs. 20 (g) and (h)). As a result, the energy dissi-
pation capability is significantly enhanced, leading
to a notable improvement in fracture performance.

In a recent study by Da [176], the author
investigated similar soft and stiff bio-inspired bi-
materials and compared them with interpenetrat-
ing phase composites, focusing on more advanced
3D cases. The research included model reduc-
tion techniques applied to 3D fracture resistance
design, demonstrating significant improvements in
critical fracture resistance properties while achiev-
ing computational efficiency in inverse design.
Moreover, the author and co-workers successfully
fabricated bi-material topology-optimized struc-
tures using 3D printing. Experimental tests, such
as the model-I test conducted by Da et al. [177],
revealed that the toughness of the bi-material
structures in brittle fracture can be enhanced by
more than 100 times compared to pure homo-
geneous structures with a 100% volume fraction
of constitutive stiff material. Further investiga-
tions on design optimization of inclusion phases
in bi-material composites against failure can be
found in the works of Singh et al. [178–180].
These studies focus on achieving delamination

resistance in composite structures through vari-
ations in the size, rotation, and shifting posi-
tions of the inclusions within the context of
periodic microstructure optimization. The simi-
lar crack bridging mechanism as in [159] offers
valuable insights into diverse toughening mech-
anisms, encompassing crack nucleation, growth,
and ultimate structural failure.

7 Conclusion and future
challenges

In this article, we have presented the state of the
art of Topology Optimization (TO) for fracture
resistance, including: (i) stress-based approaches,
(ii) TO for linear structures containing initial non-
evolving cracks, (iii) TO for fatigue resistance,
(iv) TO taking into account path-dependent non-
linear damage and plasticity and finally (v) TO
incorporating crack propagation in structures and
materials.

Stress-based TO methods offer valuable
insights for mitigating stress concentrations in
linear structures, which is essential for ensuring
structural integrity. However, they often have lim-
itations when it comes to predicting plasticity,
damage, or the behavior of cracks in scenarios
where they cannot be entirely avoided. Fatigue
TO approaches, on the other hand, predomi-
nantly rely on stress-based methodologies and
are particularly useful for ensuring that stresses
remain within safe limits over a specified num-
ber of load cycles. Nevertheless, there have been
advancements within this framework to account
for damage and plasticity. TO models incorporat-
ing pre-existing cracks primarily revolve around
compliance optimization, wherein existing cracks
are modeled as discontinuities in the structural
design. These methods are well-suited for address-
ing structures with pre-defined flaws, offering
insights into optimizing their performance.

TO techniques explicitly describing the devel-
opment of plasticity, damage or crack propagation
in load path scenarios add a strong layer of
complexity, as they require the solution of a path-
dependent nonlinear problem (usually with finite
elements) at each iteration of the TO scheme. Var-
ious commonly used TO methodologies have been
employed in these endeavors. The last-mentioned
techniques represent the most recent contributions
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Fig. 17 Optimized structures for dynamic fracture resistance. Columns correspond to different loading rates; (a) Final
design taking into account Dynamic fracture; (b) Final crack pattern; (c) design obtained by static analysis for comparison.
Reproduced from [168] with permission.

(a)

(b) (c)

Fig. 18 TO of a bi-material structure; black phases denote stiff inclusions, grey phase denote brittle matrix: (a) fracture
(in red) in 3-point bending in the initial design; (b) fracture in the optimized design; (c) comparison between the response
of initial and optimized designs. Reproduced from [172] with permission.

to TO for fracture resistance, and the various
related studies have shown promising gains in
terms of fracture toughness relative to mass, com-
pared with previous design techniques. In addi-
tion, they also make it possible to develop new
features, such as the ability to maintain structural
integrity or to dissipate energy in the most efficient
way in the case of unavoidable damage situations.

However, the development of these techniques
for practical engineering applications still faces
a number of technical and scientific challenges.
The first of these is computational cost. Unlike

linear approaches, each iteration of the TO pro-
cess usually involves a full non-linear simulation.
Advanced computational methods are therefore
needed to drastically reduce these costs for engi-
neering applications. In this respect, model reduc-
tion or machine learning can be promising ways of
solving this problem.

Another important future challenge will be to
develop multi-scale approaches to more accurately
take into account the effects of microstructures or
architected materials in optimized designs capa-
ble of withstanding fracture. Finally, many very
recent aspects of fracture resistance, including
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Fig. 19 Unit cell of a material containing randomly distributed square inclusions: (a) initial design and load case 1
geometry; (b) load case 2; (c) load case 3; (d) final design for load cases 1 and 2; (e) final design for load cases 1, 2, and 3.
Reproduced from [172] with permission.

anisotropic effects, dynamic fracture, and compos-
ite material design, are still under development
and will have to meet the challenges mentioned
above, integrating more levels of complexity.
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[112] M. Mrzyg lód. Two-stage optimization
method with fatigue constraints for thin-
walled structures. Journal of Theoreti-
cal and Applied Mechanics, 48(3):567–578,
2010.

[113] K. Sherif, W. Witteveen, K. Puchner, and
H. Irschik. Efficient topology optimization of
large dynamic finite element systems using
fatigue. Aiaa Journal, 48(7):1339–1347,
2010.

[114] W.S. Choi and G.J. Park. Transforma-
tion of dynamic loads into equivalent static
loads based on modal analysis. Interna-
tional Journal for Numerical Methods in



Springer Nature 2021 LATEX template

26 Topology optimization to fracture

Engineering, 46(1):29–43, 1999.

[115] S.H. Jeong, D.H. Choi, and G.H. Yoon.
Fatigue and static failure considera-
tions using a topology optimization
method. Applied Mathematical Modelling,
39(3-4):1137–1162, 2015.

[116] J.W. Lee, G.H. Yoon, and S.H. Jeong.
Topology optimization considering fatigue
life in the frequency domain. Computers &
Mathematics with Applications, 70(8):1852–
1877, 2015.

[117] S.H. Jeong, J.W. Lee, G.H. Yoon, and D.H.
Choi. Topology optimization considering
the fatigue constraint of variable amplitude
load based on the equivalent static load
approach. Applied Mathematical Modelling,
56:626–647, 2018.

[118] E. Holmberg, B. Torstenfelt, and A. Klar-
bring. Fatigue constrained topology opti-
mization. Structural and Multidisciplinary
Optimization, 50:207–219, 2014.

[119] J. Oest and E. Lund. Topology optimization
with finite-life fatigue constraints. Struc-
tural and Multidisciplinary Optimization,
56:1045–1059, 2017.

[120] S. Suresh, S.B. Lindström, C.-J. Thore,
B. Torstenfelt, and A. Klarbring. Topology
optimization using a continuous-time high-
cycle fatigue model. Structural and multidis-
ciplinary optimization, 61:1011–1025, 2020.

[121] S. Suresh, S.B. Lindström, C.J. Thore, and
A. Klarbring. Acceleration of continuous-
time, high-cycle fatigue constrained prob-
lems in topology optimization. European
Journal of Mechanics-A/Solids, 96:104723,
2022.

[122] S. Zhang, C. Le, A.L. Gain, and J.A. Norato.
Fatigue-based topology optimization with
non-proportional loads. Computer Meth-
ods in Applied Mechanics and Engineering,
345:805–825, 2019.

[123] L. Zhao, B. Xu, Y. Han, J. Xue, and
J. Rong. Structural topological optimization

with dynamic fatigue constraints subject to
dynamic random loads. Engineering Struc-
tures, 205:110089, 2020.

[124] K. Nabaki, J. Shen, and X. Huang. Evolu-
tionary topology optimization of continuum
structures considering fatigue failure. Mate-
rials & Design, 166:107586, 2019.

[125] X. Teng, C. Wang, X. Jiang, and X. Chen.
Structural topology optimization with local
finite-life fatigue constraints. Mathematics,
11(5):1220, 2023.

[126] M. Collet, M. Bruggi, and P. Duysinx.
Topology optimization for minimum weight
with compliance and simplified nominal
stress constraints for fatigue resistance.
Structural and Multidisciplinary Optimiza-
tion, 55:839–855, 2017.

[127] Y. Chen, Q. Wang, C. Wang, P. Gong,
Y. Shi, Y. Yu, and Z. Liu. Topology opti-
mization design and experimental research
of a 3D-printed metal aerospace bracket
considering fatigue performance. Applied
Sciences, 11(15):6671, 2021.

[128] S. Demir, M. Kurt, and T. Kotil. Fatigue
damage–based topology optimization of
helicopter tail rotor pitch arm. Journal
of Aerospace Engineering, 35(5):04022073,
2022.

[129] C.B. Niutta, A. Tridello, G. Barletta,
N. Gallo, A. Baroni, F. Berto, and D.S.
Paolino. Defect-driven topology optimiza-
tion for fatigue design of additive manu-
facturing structures: Application on a real
industrial aerospace component. Engineer-
ing Failure Analysis, 142:106737, 2022.

[130] M.A. Al-Ali, M.A. Al-Ali, A. Takezawa, and
M. Kitamura. Topology optimization and
fatigue analysis of temporomandibular joint
prosthesis. World Journal of Mechanics,
7(12):323–339, 2017.

[131] A.M. Olesen, S.M. Hermansen, and E. Lund.
Simultaneous optimization of topology and
print orientation for transversely isotropic
fatigue. Structural and Multidisciplinary



Springer Nature 2021 LATEX template

Topology optimization to fracture 27

Optimization, 64:1041–1062, 2021.

[132] S. Suresh, S.B. Lindström, C.J. Thore, and
A. Klarbring. Topology optimization for
transversely isotropic materials with high-
cycle fatigue as a constraint. Structural and
Multidisciplinary Optimization, 63:161–172,
2021.

[133] E. Trudel and M.S.A. ElSayed. Penaliza-
tion techniques for fatigue-based topology
optimizations of structures with embedded
functionally graded lattice materials. Inter-
national Journal for Numerical Methods in
Engineering, 123(9):1991–2011, 2022.

[134] A. Dagkolu, I. Gokdag, and O. Yilmaz.
Design and additive manufacturing of a
fatigue-critical aerospace part using topol-
ogy optimization and l-pbf process. Procedia
Manufacturing, 54:238–243, 2021.

[135] Y.J. Liu, D.C. Ren, S.J. Li, H. Wang, L.C.
Zhang, and T.B. Sercombe. Enhanced
fatigue characteristics of a topology-
optimized porous titanium structure
produced by selective laser melting. Additive
Manufacturing, 32:101060, 2020.

[136] T. Barbier, E. Shakour, O. Sigmund,
G. Lombaert, and M. Schevenels. Topol-
ogy optimization of damage-resistant struc-
tures with a predefined load-bearing capac-
ity. International Journal for Numerical
Methods in Engineering, 123(4):1114–1145,
2022.

[137] K. Maute, S. Schwarz, and E. Ramm. Adap-
tive topology optimization of elastoplastic
structures. Structural optimization, 15:81–
91, 1998.

[138] S. Schwarz, K. Maute, and E. Ramm. Topol-
ogy and shape optimization for elastoplastic
structural response. Computer methods in
applied mechanics and engineering, 190(15-
17):2135–2155, 2001.

[139] J. Kato, H. Hoshiba, S. Takase, K. Ter-
ada, and T. Kyoya. Analytical sensitivity in
topology optimization for elastoplastic com-
posites. Structural and Multidisciplinary

Optimization, 52:507–526, 2015.

[140] P.B. Nakshatrala and D.A. Tortorelli.
Topology optimization for effective energy
propagation in rate-independent elastoplas-
tic material systems. Computer methods in
applied mechanics and engineering, 295:305–
326, 2015.

[141] M. Wallin, V. Jönsson, and E. Wingren.
Topology optimization based on finite strain
plasticity. Structural and multidisciplinary
optimization, 54:783–793, 2016.

[142] A. Maury, G. Allaire, and F. Jouve. Elasto-
plastic shape optimization using the level
set method. SIAM Journal on Control and
Optimization, 56(1):556–581, 2018.

[143] J. Jia, D. Da, J. Hu, and S. Yin. Crashwor-
thiness design of periodic cellular structures
using topology optimization. Composite
Structures, 271:114164, 2021.

[144] W. Achtziger and M. P. Bendsøe. Design
for maximal flexibility as a simple com-
putational model of damage. Structural
optimization, 10:258–268, 1995.

[145] M.P. Bendsøe and A.R. Dı́az. A method for
treating damage related criteria in optimal
topology design of continuum structures.
Structural optimization, 16:108–115, 1998.

[146] O. Amir. A topology optimization pro-
cedure for reinforced concrete structures.
Computers & Structures, 114:46–58, 2013.

[147] O. Amir and O. Sigmund. Reinforcement
layout design for concrete structures based
on continuum damage and truss topology
optimization. Structural and Multidisci-
plinary Optimization, 47:157–174, 2013.

[148] K.A. James and H. Waisman. Fail-
ure mitigation in optimal topology design
using a coupled nonlinear continuum dam-
age model. Computer methods in applied
mechanics and engineering, 268:614–631,
2014.



Springer Nature 2021 LATEX template

28 Topology optimization to fracture
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