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ABSTRACT

This paper presents a deep learning approach for the real-time prediction of train passenger loads.
We generate an image to represent the metro line data, wherein a pixel’s coordinates determine a
train departure, and its color denotes the train loads. A computer vision technique called inpainting
is deployed to complete a real-time metro traffic image, which is equivalent to the prediction task.
First, we introduce the transformation of the metro line data to an image, which takes into account
all metro line constraints, e.g., irregular time sampling of trains. Second, we present the method-
ology to forecast the train loads based on two main deep learning approaches: U-Transformer and
Channel Vision Transformer. These models offer a multi-step forecasting process over the metro
line by extracting the visual features of the images. Third, we apply the proposed models to a real
test case of the Paris metro line 9 to validate and benchmark our models against various classi-
cal and deep learning-based forecasting approaches. The results show that the proposed models
outperform the existing models in forecasting. Fourth,we perform an In-depth analysis based on
attention scores and latent spaces to interpret the performances of the proposed methods. Further-
more, we investigate the results of our models in seven atypical scenarios (e.g., strike, lockdown,
and disruptions) to evaluate the robustness of the proposed approaches.

Keywords: Public Transport; Forecasting; passenger loads; Computer Vision; Inpainting; Deep
Learning; Transformer.
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INTRODUCTION

Forecasting the evolution of demand and supply are crucial for transport operators and travelers. In
intelligent public transport systems, real-time forecasting information about passenger loads can
be used by operators to anticipate and optimize their service level and by travelers to obtain robust
information for planning their journey. In this context, short-term forecasting models can be used
for the real-time prediction of passenger loads. In addition, a reliable short-term prediction model
should be able to anticipate passenger loads during rare events such as strikes or disruptions. This
study focuses on forecasting train loads for both normal and atypical situations in urban transit
systems.

There are multiple approaches to represent and solve short-term prediction problems in-
volving non-linear inference and recursive data with both spatial and temporal dependencies. Re-
cently, deep learning and machine learning approaches have been widely used to deal with fore-
casting problems in transportation applications. Compared to classical time series methods, they
have shown great accuracy in modeling sequential multivariate data (/) and offer better scalability.
The main techniques deployed in the literature are based on the Recurrent Neural Network (RNN)
or Long Short Term Memory (LSTM) framework (2). These approaches are capable of managing
the short-term and long-term evolution of the target time series to be predicted. Several stud-
ies have proposed LSTM-based models to predict various target variables in urban transportation
systems. (3) used LSTM to predict the bus demand of Melbourne city. (4) proposed an LSTM-
based model for smart cards to forecast dynamic Origin-Destination matrices of a subway line in
Rennes. (5) proposed a two-dimensional LSTM network for the same task to take into account
the Spatio-temporal correlations between origins and destinations in a transit network. In addition
to the above-mentioned works on the demand side, several studies focused on the prediction of
variables corresponding to the supply side. For example, (6) proposed two LSTM-based models
to achieve a multi-step prediction for the number of available bikes at the city scale. Moreover,
many studies proposed a combination of two deep learning architectures, using LSTM to handle
the temporal dependencies and another approach to deal with spatial dependencies. For example,
(7) developed a deep Convolutional LSTM (ConvLSTM) to extract spatio-temporal information
to forecast travel demand for Chengdu city in China. In recent years, graph methodologies have
emerged to represent public transport networks and encode spatio-temporal features. In this regard,
(8) used a three-level graph representation of the London metropolis to forecast bicycle usage. (9)
relied on Probabilistic Graph Convolution to extract spatio-temporal features in order to forecast
Sydney public transit demand. (/0) merged recurrent neural network and graph convolution to
learn spatio-temporal information to predict bus and taxi flow distributions in Beijing. Other clas-
sical machine learning strategies to forecast the time series of a public transport network can be
also mentioned, such as Gradient boosting (//, 12), dynamic Bayesian network (/3) or (/4) which
transformed the public transport load forecasting into a supervised classification task. However,
LSTM-based models require time-sequential data and they focus mainly on temporal dependen-
cies. There are various strategies to deal with spatial dependencies, such as graph-based or image-
based approaches. In these approaches, the spatio-temporal series of a public transport network
are represented as images, including the history of all train movements. This makes it possible to
define prediction tasks more precisely over all trains moving inside a public transport system. In
the present study, we used an image-based approach to consider spatio-temporal dependencies and
define the prediction tasks.

All the above-mentioned studies consider the regular time sampling feature of urban transit
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data. This means that the forecasting model is built according to a constant time interval in order to
sample data without considering the flow dynamics of the mode of transport, e.g., trains and buses.
However, in the real case, the dynamic evolution is basically irregular. There are few studies in the
literature that have taken this point into account (75, 76).

In order to take into account the specificities of real train data, such as irregular time sam-
pling of train stops and a univariate space defined by a metro line, the present study applied an
image representation of the passenger loads. In other words, the idea is investigating forecasting
over images through an inpainting task. Thus, with the image representation approach, the pre-
diction task is transformed into an image completion task, wherein the pixels to be completed are
related to the future data that we want to predict.

Inpainting is a well-known computer vision technique that aims to complete the missing
area of an image. Adapting inpainting to a forecasting task is a recent approach used by the authors
in (17) to extract features and forecast the level of traffic on a highway road. It was also used in
our previous work (/6) to build a framework that is able to forecast passenger loads over an entire
metro line. In addition to using 2D images, (/8) used inpainting to forecast an electric energy
system temporal series by transforming them into a 3D image.

In (16), we designed an image inpainting architecture to implement deep learning methods
for short-term prediction problems. We used the classical U-net method as the deep learning func-
tion. However, there are more advanced methods, such as attention-based models, to improve the
prediction performance. The efficient performance of attention-based models, e.g., Transformer, is
proven in computer vision where they have become the state of art (/9). Transformer architecture,
introduced in 2017 by (20), outperforms other solutions in various domains such as natural lan-
guage processing with BERT architectures (27), or computer vision with Vision Transformer (ViT)
(22). The present study aims to extend a forecasting inpainting architecture with self-attention
mechanisms and Transformer to map the relationships between train departures and the dynamics
of a metro line. We use self-attention mechanisms that show a high potential to be deployed for
short-term prediction (23-25).

Moreover, most of the studies in the literature do not apply their methodology to atypical
scenarios. Prediction is particularly difficult for theses cases since they are under-represented in
the dataset. Therefore it is not straightforward to determine which methodology is robust for
short-term prediction. Besides, among all the aforementioned methods, only two papers (8, 13)
emphasize the explainability of the proposed forecasting methodology. Here, we have an assiduous
focus on atypical situations to interpret the results of the proposed models.

To help position our contribution statement, we present in Table 1 a characterization of
the existing prediction frameworks in the literature. A forecasting framework is often constructed
according to the prediction objectives and the data available for its implementation. Thus, we have
defined several categories to classify the various transit forecasting models as shown in Table 1:
operation status, spatial information, time sampling, methodology, and explainability. Operation
status denotes a study on normal or rare and complex forecasting situations. The spatial infor-
mation defines the spatial scope of the forecasting ranging from local to global information (e.g.,
station, bus, train line, transit network). Time sampling informs about the aggregation of the data.
Regular sampling means that data are aggregated at a specific time interval (e.g., every 10 min-
utes), while irregular sampling means that the data are aggregated according to a real event or
change inside the network (e.g., train departure, taxi stops). The methodology column refers to
the models that are deployed for the forecasting. Finally, the explainability refers to whether the
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TABLE 1: The sample of different studies on short-term prediction for transport networks in the

literature.
Operation Status Spatial information Time sampling Methodology .
- ; : : Explain-
Research Normal | Atypical Single | Transit | Full Regular | Trregular Classic Deep learning methods ability
station | Line | network methods | LSTM | Graph | Transf. | U-net
Toqué et al. (4) X X X X
Zhao et al. (5) X X X X
Liu et al. (6) X X X X
Liyanage et al. (3) X X X X
Wang et al. (7) X X X X X
Colace et al. (8) X X X X X
Lietal. (9) X X X X
Peng et al. (10) X X X X X
Pasini et al. (/15) X X X X
Du et al. (26) X X X X X
Wu et al. (/1) X X X
Egu and Bonnel (/2) X X X X
Roos et al. (13) X X X X X
Heydenrijk-Ottens et al. (/4) X X X X X
Hao et al. (25) X X X
Wu et al. (24) X X X X X X
Chen et al. (23) X X X X
Bapaume et al. (/6) X X X X
This work X X X X X X

study interprets the models’ results or not. Therefore, the contributions of this paper are detailed
2 as follows:

We developed two attention-based architectures, the U-transformer and the Channel Vi-
sion Transformer. To this end, we performed a benchmark on real load data collected
during 3 years of operation of the Paris metro line 9 to compare these two architectures’
ability to forecast loads of all the next 4 train departures of a metro line. A comparison
of forecasting performances was carried out, including several deep learning and basic
machine learning approaches.

Secondly, we exploited the latent space of the prediction models to interpret the fore-
casting. We used attention scores to explain the results and to highlight the relationship
between the prediction of one train departure (one pixel) and all train departures in an
image.

Finally, by using the image representation, we create various test sets representing atyp-
ical situations observed on a metro line, such as strikes or disruptions. The goal is to
evaluate the robustness and generalization capacity of the proposed models by comput-
ing the forecasting performances in seven atypical contexts.

The remainder of this paper is organized as follows. In section 2, we introduce an image
representation of a metro line. Next, we define the forecasting frameworks and transformer-based
models in section 3. Section 4 presents various test sets to evaluate the prediction robustness of

the propo

sed models in particular contexts. In addition, we present the results over five months of

public transport images in section 4. Finally, in section 5, we outline the main conclusions of this
paper and mention some future research directions.
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FIGURE 1: Image of the Paris metro line 9 for 40 trains and 36 stations. Grey pixels represent
missing values

PROBLEM AND STATEMENT
This section presents the transformation of the short-term prediction problem into an image com-
pletion task by representing the train loads of a metro line as an image.

Metro traffic images representation

In (16), we defined an image representation of trains moving along a metro line to apply a fore-
casting framework. Figure 1 depicts an image denoted / that represents the train loads of all trains
over a metro line in real-time. Each pixel encodes the train load corresponding to a single train
identified by the column number at the station denoted by the row number. Therefore, each column
represents the course of a train along the entire metro line, and each row represents the sequence of
departures at each metro station. The color encodes the number of passengers for a train departure.
The grey pixels in Figure 1 represent the lack of data due to missing data or no train stops.

Real Time Images and mask
Figure 1 represents an image at the end of the day, when all the trains have finished running. But in
a real time perspective, the trains are moving along the metro line. Thus, at time #, many pixels are
in fact missing in the image, depicted by the grey pixels in Figure 2(A). We denote the real time
image as I(¢) at time ¢.

The image I(¢) is composed of two parts: a past area with the realized traffic at time ¢ and
a future area representing the forthcoming departure of trains to be forecasted. In addition, the
size of the missing area can change depending on the number of trains in specific contexts (e.g.,
peak hours, off-peak hours). Forecasting the passenger loads of the next train departures consists
in completing the missing area introduced by construction inside the image /(7). This method is
called inpainting in computer vision. The forecasting horizon is based on the number of pixels to
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FIGURE 2: (A) Real time Image I(¢) of the Paris metro line 9, including 37 stations and 40 trains
at time ; grey pixels represent future train stops. (B) Mask m, of the pixels to be forecasted (cluster
pixels) within the image.

predict for each station. A short-term forecast will focus on a few pixels per station, whereas a
long-term forecast will focus on the whole picture. A mask my, is defined to encode valid pixels,
which must be predicted. Figure 2(B) depicts an example of mask to forecast the 4 next departures.

Thus, the image forecasting framework is divided into two serial steps, an inpainting task
and a forecasting task, as shown in Figure 3. We denote the inpainted image and forecast image by
I(t) and I7,,(t), respectively. In addition, the input image (¢) is composed of several sub-images
called channels which encode several metro line variables.

Input Image: /(?)

Output Tmage: I(2) Forecasted Image: £,,,.(?)

> )| I- “-" —» (n) >
Inpainting P Mask

FIGURE 3: A two steps of forecasting framework: inpainting and forecasting. The inpainting
image is the result of an inpainting function f. The forecasted image represents only the pixel
considered by the prediction.
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Dimension and Channel Encoding

In computer vision, we can define an image over 3 dimensions: the height 4, the width w, and
the channels d. A channel is a sub-image that encodes one variable. In standard RGB images
(Red, Green, Blue), the image has 3 channels for each color. In this case, the height is the number
of stations of the studied metro line, and the width represents the number of trains considered to
generate the image, which is linked to the maximum capacity of the public transport line and the
forecasting task. Here, the height and the width are set to respectively 37 (stations) and 40 (trains).
The metro traffic image channels represent data of the train network. For this study, 4 variables
were defined as shown in Figure 4: (A) train load, (B) waiting time, (C) remote ticketing validation
(tap-in) at the station, and (D) travel time. These four channels are used as inputs of the inpainting
framework where the goal is to complete only the load channel.
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PROPOSED METHODOLOGICAL FRAMEWORK
This section introduces the inpainting framework to forecast the next trains passenger loads. We
present two architectures that fit the inpainting function based on the attention mechanism.

Inpainting framework

In computer vision, image inpainting is a well-known approach used to complete images (27, 28).
The goal is to extract visual features and contexts from the picture to paint all missing pixels, train
departures in this study. The developed framework is divided in two steps: (i) the reconstruction
of a missing part of an image () denoted by (¢) and (ii) the extraction of the forecasted loads
from /(¢) illustrated in Figure 3. In the first step, we applied an inpainting function f to an input
image. Then, to extract future train loads denoted by [ ror(t), we used a mask m,, in the second step
to select the corresponding pixels from [ (t). The following equation summarizes the forecasting
task:

Ifor(t) = I(t) ©my, where I(t) = f(I(t)) and ® is the product of Hadamard (1)
Thus, the model must minimize the following lost function:
LU0 () o (1), Epreat)) = GMSE(1(2), (8)) + BMSE (I (1), Eyor() @

The loss function in equation (2) is a pixel-wise loss function divided in two components, an
inpainting term and a forecasting term. For more information about this framework, please refer
to (16) This work aims to use the transformer model as our inpainting function f in the forecasting
framework. In addition, this framework scales to all public transport lines by changing the size
of the input image. Moreover, the proposed framework can be easily adapted to other forecasting
targets such as delay or time travel. We can also potentially simultaneously predict delays and train
loads, in which case the output would be a two channel image. The only requirement is related to
vehicle granularity (e.g. train, bus) in order to build images.

Forecasting Transformer Models
Transformer and Vision Transformer
In recent years, deep learning has seen a major evolution with the new network architecture called
the Transformer (20) which is fully based on attention mechanisms. This model tends to simulate
the human behavior of attention. From a computer science view, the attention mechanisms are used
to enhance the dependencies between elements of a sequence or an image. In addition, they can
manage temporal dependencies without any recursive architecture. The Transformer was originally
used in natural language processing (NLP) to map the dependencies between words in a sentence
or text. In computer vision, the Vision Transformer (ViT)(22) model was proposed to adapt the
attention mechanisms to the image classification task by constructing a visual word sentence called
patches (e.g. a visual word is a small neighboring pixel group). Transformer model is now seen
as the state of art in many tasks of computer vision such as classification (29-37), segmentation
(32, 33), object detection (34, 35) or image generation (36). Recently, transformers are applied to
short-term forecasting tasks. For example, (23) built a bi-directional encoder—decoder transformer
model to estimate future and past traffic conditions to forecast transport flows. (24) forecasted time
travel by integrating attention mechanisms to a ConvLSTM or (25) proposed to forecast metro
passenger flows by merging a sequence to sequence architecture with an attention mechanism.
The Transformer is a deep learning architecture composed of a multi-head self attention
module which uses attention to build various dependency representations of all pixels regardless
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FIGURE 5: Architecture of the U-Transformer

their coordinates. It relies on a attention function given by the equation 3:
K
Attention(Q,K,V) = softmax( Q

T
N 3)
where Q € R"*% is the query vector, K € R"*% is the key vector, and V € R"*% is the value vector
with n the number of pixels or patches, and dj the dimension of the key vector K.
In our computer vision task, O, K and V vectors are computed from the pixels of the image
I(¢) through projection matrices denoted W2, WX WV . The goal of attention is to compute the
similarity between the query vector Q and the key vector K. Then we pass the pixel information
through the Value vector V. In order to maintain the coordinate information of a pixel, Transformer
uses a positional encoding to propagate this information through the architecture. Noted that a
transformer uses several projection matrices in order to map multiple representations of the same
input image 1(¢) defined as Head. In computer vision, in order to reduce the size of the input
vectors, a non-overlapping patch decomposition (22) is used to create an ordered sequence of
small picture from an image called patch (e.g. patch of 16 x 16 or 32 x 32 pixels). For more details
about transformer and attention mechanisms, the reader can refer to (20, 22).

U-Transformer
This work proposes two deep learning architectures using a transformer as a primary component.
The goal is to integrate the relationship representation of attention to the inpainting function f.
The first model noted as U-Transformer is an evolution of the model U-net. The idea is
to replace the convolution and pooling layers with a transformer, as shown in Figure 5 for both
the encoder and decoder part of the U-shape model. The architecture is based on the Swin-Unet
proposed by (33) for image segmentation. But other strategies merge transformer blocks and U-net
models. For example, (37) aims to apply attention to some parts of the models like feature space
or (38) only on the decoder. The U-Transformer is divided into two steps. Besides, the pooling
task is achieved by concatenating patches together.
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Channel Vision Transformer

A metro traffic image is composed of channels related to each problem variable. But some of
these variables are linked to a train (passenger load or travel time), and others are linked to a
station (the ticketing data or waiting time). The goal is to build an architecture that considers
this characteristic and computes an attention score independently for each variable related to a
train or a station. The Channel Vision Transformer is built with this objective, and it is similar
to Channel-wise methodologies (39, 40). This new architecture applies transformer encoders for
each channel composing /(¢) (Figure 1(b)). The proposed model is composed of 4 inputs, one
per channel, to which we apply a transformer encoder to extract features from each variable as
shown in Figure 6. The patch size used in this model is 1 X 1 meaning that the patch is equivalent
to a train departure—the image’s reconstruction results from one convolution performed on the
concatenation of each transform encoder.

Attention based model limitation and learning

Transformer models may have relevant performances in many domains. However, training them
can be costly in terms of computing resources, mainly in terms of computer memory (graphic
processing unit - GPU) required for calculating attention scores. Thus, a patch encoding of 1
considerably increases memory usage and impacts the architecture and training. The training is
performed on an NVIDIA RTX 3090 graphic card with 24 GB of RAM and the TensorFlow python
framework and python 3.8. To train the transformer models, we limited the number of heads and
the projection size of the multi-head attention layer to 16 and 64. In addition, the batch size is
also impacted by the transformers’ resource cost. We fixed it to 8 or 4 depending on the model.
Compared to the convolution model, the learning of the transformers is constrained by the GPU
memory at our disposal.
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FORECASTING RESULTS, AND MODEL EXPLAINABILITY

Model configuration and numerical experiments

In order to evaluate the performance of our methodology, we applied it to a real data set collected
from Line 9 on the Paris metro, which includes train loads, ticket validations (tap-in), train waiting
times, and travel times. The size of the generated images was 36 x 40 x 4: 36 stations (i.e., we
omitted the last station), 40 trains, and 4 channels (i.e., input variables). These images were gen-
erated from the data collected every minute during the daily operating times of the metro line over
a long period from January 2019 to April 2021.

To benchmark our two proposed models, we compared them to other forecasting models.
The first model was a Naive approach in which the predicted values are equal to the last passenger
load at each station. We also considered several deep learning approaches, including two classical
methods - a Neural Network (NN) and a fully Convolutional Neural Network (CNN), and four
recent methods - a Convolutional Neural Network combined with a Neural Network (CNN+NN)
(17), a U-net Model (/6), a one Transformer Model (20), and a Vision Transformer (VIT) model
(VIT)(22).

Table 2 summarizes the parameters of all nine considered models. Readers should note that
this study used the Soft Plus output activation function to match a positive passenger load. For the
learning step, all the models were trained with the Adam optimizer and a learning rate of 0.0001.
To perform benchmarking, we split the data set into learning and test sets. The first data set was
composed of approximately 700,000 images from January 2019 to April 2021 with 1,200 images
per day, i.e., one image per minute between 5:30 am to 1:30 am the next day. The test set had to
cover the majority of loading situations, such as strikes, nominal traffic, holidays, etc., and could
not be chosen randomly. This constraint was due to the image format, where overlapping could
occur between neighboring images during training and bias the outputs. Thus, over three years,
the test set consisted of 5 full months of images (2 for 2019, 2 for 2020 and 1 for 2021) and a total
of around 220,000 images.

It denotes the number of parameters to be learned, and the activation function for the output
layer for deep learning approaches. The number of the head by encoder and the patch size for
transformer-based models are also presented. The output activation function used in this study is
the So ft plus to match with a positive passenger load.

TABLE 2: The settings of all the benchmarked models.

Models (reference) #parameters| Batch size | Head patch size
Naive - - - -
NN 27,354,528 | 128 - -
CNN 20,254,465 | 128 - -
CNN + NN (17) 25,418,272 | 128 - -
U-net (16) 16,552,065 | 128 - -
Transformer (20) 78,081 8 16 1
VIT (22) 6,465,345 8 64 3
U-Transformer (ours) 29,839,681 | 4 64 3
Channel Vision Transformer (ours) 21,902,849 | 4 16 1
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Forecasting and Inpainting results

We trained the forecasting models and applied them to the test set. Table 2 reports the results of
both the inpainting (/(¢)) and forecasting (/ ror(t)) tasks for the 4 next departures from each station
(see Figure 3). We used two standard evaluation metrics, Root Mean Square Error (RMSE) and
Weighted Mean Average Error (WMAPE) (/3). For inpainting, the U-net model outperformed
the other models with a WMAPE of 6.6% and an RMSE of 29%. Regarding the passenger load
prediction task, the U-transformer provided the best results with a WMAPE of 11.2% and an
RSME of 31%. It is worth noting that the transformer model tended to overfit in inpainting (a
WMAPE of 8.3%) and performed poorly in forecasting (a WMPE of 18.2%). However, these
results were estimated from the whole test set in which atypical situations had not been identified.
Before analyzing the performance of methods in atypical cases, we will discuss the explainability
of the methods in order to understand how they accomplished the inpainting and forecasting tasks.

TABLE 3: Inpainting and forecasting results based on weighted mean absolute percentage error
(WMAPE) and Root Mean Square Error (RMSE).

Inpainting Forecasting
Models (reference) RMSE WMAPE RMSE WMAPE
Naive 63 14.2 50 19.9
NN 60 22.4 48 18.9
CNN 41 12.3 33 13.1
CNN + NN (I7) 44 15.9 36 14.8
U-net (/6) 29 6.6 31 12.3
Transformer (20) 30 8.3 43 18.2
VIT (22) 42 12.9 33 12.4
U-Transformer (ours) 34 9.9 31 11.2
Channel Vision Transformer (ours) 32 9.2 32 12.1

Forecasting explainability
We applied two approaches in order to interpret the results: Attention Score and Latent Space
Exploration. In this subsection, we shall present and discuss the results of both analysis methods.

Attention Score Analysis
Transformer-based models are able to provide attention scores that can improve the explainability
of our prediction models. The attention scores allow us to interpret the prediction models and vi-
sualize the relationships between the pixels that generate the forecast. This subsection will focus
on the explainability of the Channel Vision Transformer model based on the attention scores gen-
erated by the equation 3 for the different input variables. Note that this model was chosen instead
of the U-transformer model because (i) it gives similar results to the U-transformer and has a patch
encoding of size 1; (ii) it is a channel-wise approach that allows us to observe attention for each
channel of the image. We can therefore compute attention scores for each individual pixel in [ for(t)
and interpret them. For instance, Figure 7 presents the computed attention scores for one pixel of
f ror(t) in relation to the other pixels. Figure 7 (a) shows the location of the targeted pixel (green
pixel) in [ for(t).

We limited our analysis to 4 heads per channel, but we have developed a visualization tool
to explore the entire image and all the attention scores. Figure 7 (b) depicts the attention scores
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measured between the green pixel and all the pixels for 4 heads from the Transformer encoder of
the load channel. Figure 7 (c) and (d) show the same representation for the travel time and waiting
time channels. The attention scores from the load channel in Figure 7 (b) show that the transformer
model focused on the most recent train departures (e.g., HeadO) or on the previous train loads (e.g.,
Head4) to perform prediction. For the travel times shown in Figure 7 (c), we can see that the focus
was more on future train departures rather than past journeys. For the waiting times (see Figure 7
(d)), heads 1 and 5 show that attention was focused on the majority of past train departures. In
addition, some heads (e.g., Headl or HeadS5 of Figure 7 (b)) did not show any significant attention
scores meaning that there was no relationship between the pixel and the image that activated the
head in question. With attention scores, we can observe that both proposed methods took account
of the important information from the other pixels to perform forecasting. However, this function
is not the only way to interpret the results, and we also investigated other representation learning
methods such as Latent Space.

Latent Space exploration

To explain the forecasting model’s choices and results, it is possible to explore the feature space
the model builds to represent all the training images. The U-Transformer architecture is similar
to an auto-encoder model wherein the feature space, called the latent space, is represented by a
bottleneck in the U-shaped architecture. We used t-distributed stochastic neighbor embedding (t-
SNE) projection (47) to reduce the high dimensional latent space into 2D in order to obtain an
understandable visible representation. The t-SNE was only used for visualization and it has the
advantage of keeping the same distance between the 2D and the original high-dimensional space.
Figure 8) presents the results of the t-SNE projection method for each year.

We can observe in Figure 8 that the model identified the main component in the center of
the figure and several small groups of around it. The main component represents the nominal case
for transit images. The information for each year is shown in a different color. The surrounding
groups represent atypical situations that do not match the nominal case, for example disruptions
and strikes. Note that the forecasting period included the COVID 19 crisis, which impacted mo-
bility. We can observe 3 significant groups of images from 2020 and 2021 (highlighted by circles
in Figure 8)). They show the three French Covid-19 lockdowns. Although it is not shown in this
visualization, time is the main characteristic of the latent space. Two images taken at the same time
of day will be close in the latent space. On the contrary, an image from the morning and an image
from the afternoon will be distant from each other. Thus, as we can expect, the model forecasts
loads according to calendar information with an important distinction between images collected
under atypical situations and the nominal case.

In-Depth analysis of forecasting results for atypical situations

In practice, a public transport operator evaluates transport supply on the basis of demand estimated
by historical observation studies. Passenger load prediction can be trivial when there is no variation
from the plan (timetables). However, the real supply can be uncertain and disturbed by atypical
events (i.e., events that are not foreseen by the operator). Thus, we selected several real atypical
scenarios based on three criteria: (i) subsequent knowledge of the metro traffic, (ii) descriptive
statistics computed on the images, and (iii) latent space clustering. The goal was to evaluate the
robustness of the framework and the proposed forecasting models for the whole test set and for
specific test sets.
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TABLE 4: Forecasting results based on weighted mean absolute percentage error (WMAPE) for
the entire test set and the atypical situations.

Models (reference) / WMAPE [%] for Testset | Delay High load | Strike| Lockdown
Naive 19.9 27.3 20.1 38.2 | 21.1
NN 18.9 28.4 20.1 40.2 | 26.8
CNN 13.1 24.2 13.0 29.8 | 18.6
CNN + NN (17) 14.8 24.2 14.3 324 | 259
U-net (/6) 12.3 19.3 11.6 28.1 | 16.8
Transformer (20) 18.2 26.6 26.6 35.5 | 20.1
VIT-3 (22) 12.3 20.3 12.1 31.1 | 18.2
U-Transformer (ours) 114 19.1 11.2 29.6 | 13.7
Channel Vision Transformer (ours) 12.1 19.9 12.0 30.0 | 14.2

TABLE S: Forecasting results based on weighted mean absolute percentage error (WMAPE) for
the entire test set and specific atypical situations: Cluster 3 represents a sudden heavy load in the
middle of the line (i.e., 11th station). Cluster 12 represents a disrupted situation and a scenario
with closed stations; Cluster 18 represents a scenario with a sporting event.

Models (reference) / WMAPE [%] for Testset cluster 3 | cluster 12 cluster 18
Naive 19.9 28.9 29.8 22.3
NN 18.9 28.5 60.5 18.7
CNN 13.1 214 342 14.6
CNN + NN (17) 14.8 25.9 40.2 15.6
U-net (16) 12.3 19.5 30.4 13.9
Transformer (20) 18.2 31.2 75.1 18.2
VIT-3 (22) 12.3 20.9 52.8 13.1
U-Transformer (ours) 114 18.4 58.9 12.5
Channel Vision Transformer (ours) 12.1 19.5 51.6 13.1

The first criterion was based on the use of event databases and calendar information. We
were able to identify two specific cases - Strike and Lockdown - which differed from the nominal
cases. In the Paris Metropolis, there was a long transport strike in December 2019. The Lockdown
data set is represented by images impacted by the COVID-19 crisis during March 2020. The
second criterion was based on descriptive statistics computed on the images. For example, the
distribution of the number of missing pixels or the maximum duration of a metro journey allowed
us to identify disrupted events. We can then extracted various test sets. The first extracted set
is called the Delay set, and involves images where the length of a metro journey exceeded the
nominal case by more than 10 minutes. The high load set was created from images in which the
average loads were higher than those in the nominal case. Finally, the last criterion was derived
from the latent space of the U-Transformer. The approach was to apply unsupervised clustering to
partition the latent space into a reduced set of clusters including some atypical groups of images
as shown in the t-SNE visualization in the Figure 9. We chose to cluster the training images using
a k-means algorithm with 20 clusters (the number of clusters was chosen according to operational
considerations). The aim was to detect atypical clusters that were not extracted in an unsupervised
way using the first two criteria. We excluded the Lockdown and Strike clusters that were visible
in this latent space. Thus, we selected 3 clusters: Cluster 3, Cluster 12 and Cluster 18 which
represent atypical situations from an operational point of view, accounting for a total of around
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10% of the data. Figure 10 shows one image per cluster. Cluster 3 corresponds to the appearance
of high loads from the 11th station on the line. Cluster 12 represents disrupted images or images
with closed stations, while cluster 18 represents images with a high load at the beginning of the
line (i.e. sporting events). Finally, the trained k-means algorithm was used on the images of the
test set to extract atypical images from the selected clusters.

Table 4 and Table 5 summarize the results obtained from all the atypical groups and clusters
presented previously. Prediction performance was evaluated with the WMAPE metric. With regard
to these results, the U-Transformer model outperformed all the other models for all test cases,
except for Strike and Cluster 12. The U-net model provided the best results for Strike with a
WMAPE value of 28.1% and the Naive model outperformed all the other models on the Cluster
12 test set obtaining a WMAPE value of 29.8%.

It is also noteworthy that delayed trains (e.g. images with atypical travel times and waiting
times) had a greater impact on the forecasting results than high loads. The Delay, Strike and Clus-
ter 12test sets had a WMAPE value that was at least 8% higher than the full test set. In contrast,
the forecasting performance of the high load, Lockdown and Cluster 18 sets where the load was
generally higher was close to the nominal performance given by the U-Transformer model. We
observed a maximum difference of 3% between the WMAPE value for the test sets we have men-
tioned and the nominal case. Consequently, the results provide numerical proof that the proposed
U-Transformer architecture can provide more accurate predictions of future train loads, particu-
larly for atypical situations.
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CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a deep learning framework for the short-term prediction of train
passenger loads in an urban public transit network. It combines vision transformer and inpainting
approaches to forecast all the desired future train loads simultaneously (i.e., not recursively). Two
new architectures (U-Transformer and Channel Vision Transformer) have been proposed based on
self-attention in order to reformulate and solve the forecasting task as an inpainting problem. We
have compared the performances of the proposed architectures with state-of-the-art methodolo-
gies on a real data set covering 3 years on a Paris metro line. The benchmark results show the
effectiveness of the proposed methods over multiple test sets. In addition, the proposed approach
outperforms other prediction models, particularly for atypical situations such as lockdown, strikes,
high loads, and delays. The proposed methodology can classify atypical situations according to
their type, e.g., strike or lockdown. We have identified 7 groups of atypical situations in this study
(Tables 4 and 5). Moreover, we have performed an in-depth analysis based on attention scores and
latent spaces to interpret the performances of the forecasting methods.

The proposed methodology can be extended in several directions. We are currently ex-
ploring two avenues. The first sets out to improve the performance of the forecasting models on
atypical cases, by over-sampling atypical images from the latent space. We are also investigating
a train-based model that considers our images as a sentence of a train courses where attention
mechanisms can be applied to extract train features and complete future train sequences. Doing
so, it allows reducing the allocation and usage of GPU memory during the forecasting process.
Another possible perspective for this work would be to test our models on an public database in
the framework of an open source project that our 3 years of data currently used does not allow.
Moreover, the proposed methodology can predict supply and demand by reconstructing an image
with a passenger load channel and a waiting time channel. Exploring the latent space provides us
with a possible approach to achieve anomaly detection (42) in a transport network. This research
has shown that images can provide an effective way of detecting abnormal situations in public
transport.
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