
HAL Id: hal-04302102
https://univ-eiffel.hal.science/hal-04302102v1

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptative generalisation over a value hierarchy for the
k -anonymisation of Origin–Destination matrices

Benoit Matet, Angelo Furno, Marco Fiore, Etienne Côme, Latifa Oukhellou

To cite this version:
Benoit Matet, Angelo Furno, Marco Fiore, Etienne Côme, Latifa Oukhellou. Adaptative generalisa-
tion over a value hierarchy for the k -anonymisation of Origin–Destination matrices. Transportation
research. Part C, Emerging technologies, 2023, 154, pp.104236. �10.1016/j.trc.2023.104236�. �hal-
04302102�

https://univ-eiffel.hal.science/hal-04302102v1
https://hal.archives-ouvertes.fr

Adaptative generalisation over a value hierarchy for the

k-anonymisation of Origin-Destination matrices

Benoit Matet∗1,2, Angelo Furno2, Marco Fiore3, Etienne Côme1, and Latifa Oukhellou1

1Univ. Gustave Eiffel, GRETTIA, Marne-la-Vallée, France
2Univ. Gustave Eiffel, Univ. Lyon, ENTPE, LICIT-ECO7, Lyon, France

3IMDEA Networks Institute, Madrid, Spain

July 2022

Abstract

The study of transportation relies on mobility data, containing information on the whereabouts
and movements of individuals in a study area. These data are often represented in the simple
form of origin-destination (OD)-matrices, which are a valuable indicator for the management of
transportation networks but also present risks to the privacy of the individuals. In particular,
the significant size (i.e., number of distinct flows) and high number of modalities (produced by
a high-resolution zoning) of OD-matrices call for an adapted, fast algorithm that can efficiently
anonymise them. In this paper, we develop a lightweight approach for the k-anonymisation of
OD-matrices that exploits the low dimension of the data to explore a larger solution space than
regular generalisation algorithms, while keeping relevant restrictions of the search space in order
to be scalable on matrices with high number of flows. We apply it to a variety of real-world
large-scale O-D matrices collected by the New York City Taxi and Limousine Commission and
derived from the Data for Development (D4D) challenge organised by Orange in Senegal and Côte
d’Ivoire. Compared to an extensive benchmark of regular generalisation algorithms and mobility
anonymisation state-of-the-art, we show that our method is 27% more precise and 9 times faster
than comparable approaches able to scale on the same datasets.

Keywords— Origin Destination matrix, anonymisation, generalisation, suppression

1 Introduction

Mobility data have become more and more accessible thanks to the evolution of processes to collect them from
various sources. Initially only available through ground surveys, the wide spread of GPS devices and mobile
phones has paved the way for the collection of huge volumes of data, notably Call Detail Records (CDRs)
and passive Network Signalization Data (NSD) from mobile phone usage. After processing, these sources offer
a detailed report of the trajectories of a significant part of the population over a given study area, offering
invaluable information for the organisation of territories and transportation networks. However, it is clear that
mobility data contain potentially personal information, and special care should be taken in their handling. We
take as a reference the European General Data Protection Regulation (GDPR) [1], which defines as personal
information any piece of information pertaining to a particular individual. Apart from their usefulness and
their sensitivity, mobility data are also characterized by their uniqueness: individuals tend to have very different
trajectories over the course of a day, which makes it difficult to extract trends or group them in order to provide
more privacy-preserving mobility reports [2, 3].

The simplest indicator we can extract from a set of trajectories is an Origin-Destination (OD)-matrix,
describing the flows between origins o and destinations d over a time window [t, t + ∆t) (Fig. 1). Typical
values for ∆t range from 15 to 60 minutes, depending on the specific transport application [4]. A set of OD-
matrices is then a regular, relational dataset with three attributes for each flow: an origin o, a destination d,
and a time t usually denoting the time step of the beginning of the flow. Although they represent a dramatic
simplification compared to trajectories, they are still a crucial indicator of mobility. Like mobility data, OD-
matrices keep their property of uniqueness (i.e., flows can be small and isolated from others), and a high

∗Corresponding author: benoit.matet@univ-eiffel.fr

1

Trajectory collection OD-matrix

2

1

413

A

B

CC

B

A

Figure 1: Illustration of a collection of trajectories and the resulting Origin-Destination matrix, set on
areas of interest A, B and C.

number of modalities: the origin and destination can be among sets of up to thousands of areas. This makes
OD-matrices harder to anonymise than regular relational data. In this work, we propose a methodology to
efficiently make OD-matrices meet GDPR’s restrictive definition of anonymous data, i.e., the data subject is
not or no longer identifiable (Recital 26 GDPR). According to this definition, European regulators consider
small flows to constitute personal information, making the distribution of OD-matrices problematic in the
European Union even though they are admittedly much safer than the trajectory collections from which they
are derived. Formal privacy guarantees are required to ensure small flows are protected from any specific
form of re-identification. To this end, we use the widely spread criterion of k-anonymity [5]. It is used
both in research and by authorities such as French regulator CNIL, which makes it an appropriate criterion
as our practical aim is to foster the use of OD-matrices by anonymising them. An OD-matrix is said to be
k-anonymous if no flow represents less than k individuals. By k-anonymising an OD-matrix, we can improve
its safety against the various categories of attacks [6]:

• Record linkage, also called re-identification attack. If a flow in the OD-matrix has only one individual,
an attacker can pinpoint a target individual in the data.

• Attribute linkage, also called homogeneity attack. If all the individuals from a particular origin go
to the same destination at a given time, then an attacker knowing that a target left the origin area can
infer where they went, without needing to pinpoint the target first.

• Probabilistic attack. If an attacker knows anything about a target, then accessing the OD-matrix can
improve their knowledge about the target’s whereabouts.

Each one of these three attacks is a relaxation of the previous one, the goal being less ambitious for the
attacker but the success more likely. Note that probabilistic attacks may be successful even if the target user
is not actually in the data, as long as we consider the OD-matrix to be representative of the population flows
in the study area.

Technically, k-anonymity with k as low as 2 is secure against record linkage attacks, although this would
understandably not be a satisfying anonymity condition. In particular, it would offer very limited protection
against attribute linkage and probabilistic attacks. State-of-the-art usually aims at k between 3 and 5 in
the case of hard-to-anonymise datasets, and up to 200 for simple datasets [7]. A complementary property
is l-diversity [8], which holds when each generalised value covers at least l distinct modalities. Together,
k-anonymity combined with l-diversity ensures protection against attribute linkage attacks, and significantly
reduces the potential of probabilistic attacks [9]. For even further protection, it is possible to implement t-
closeness [10], which holds when the distribution of attributes in each group of k is no further than a threshold
t from the total distributions. However for OD-matrices, it can be argued that k-anonymity alone, given a
sufficiently high k, is enough to make the individuals no longer identifiable: The areas of origin and destination
can be large enough to avoid attribute linkage, and the low number of attributes renders probabilistic attacks
rather vacuous.

The main approach to k-anonymisation is generalisation and suppression [5], i.e., reducing the precision
of the data until the flows are big enough and suppressing the ones that are not. A toy example of 10-
anonymisation generalisation and suppression is illustrated in Fig. 2: flows A → A, A → B and A → C
are aggregated together in order to reach a volume above 10, and similar aggregations are performed on the
flows originating from C and D, and directed towards destinations B, C and D. Flow B → A is suppressed,
which can be preferable when the necessary aggregation to hide it is too coarse. Finding such a solution that
minimizes the loss in precision is known to be a NP-hard problem [11]. Historically, the first k-anonymisation
algorithm was Datafly [5], which relies on a generalisation hierarchy describing how modalities should be

2

Initial OD-matrix 10-anonymous OD-matrix

A

B

C

D

A

B

C

D

4
53

2

4

6

5

5

3

A

B

C

D

A

B

C

D

10

11

12
0

Figure 2: Example of generalisation and suppression of a simple OD-matrix. Note that the flows
here have been clustered without any kind of constraint. Some approaches seek particular solutions,
notably ones where the generalisations form a partitioning of the domain.

merged together. An example of such a generalisation hierarchy is illustrated in Fig. 3: for a dataset giving
the position of individuals in a study zone, the initial modalities are represented by the leaves of the tree. If
we choose to generalise the whole dataset one level higher, then the possible modalities are the parents of the
leaves. Datafly finds the best horizontal cut in the hierarchy, meaning everyone in the data is generalised to
the same level. This uniform generalisation approach has the advantage of being scalable to huge volumes
of data, as well as data with numerous attributes. In a bid to find a finer-grained result, some approaches
look for a generalisation at the individual level, which gives a solution akin to a clustering [7]. In the specific
field of mobility data, this approach is better represented by Glove [2], which generalises points in a dataset
of trajectories. However, these approaches lack scalability for datasets characterized by a huge number of
flows, as is the case for data derived from mobile phone CDRs and NSD: for example, Liang and Samavi [7]
report computing times in the order of hours for low values of k, and their approach can be expected to take
days for k ≥ 10 given its exponential time dependency. In order to achieve fast, accurate anonymisation of
OD-matrices, dedicated processing is needed. In this paper, we develop an approach for k-anonymisation of
OD-matrices with a focus on scalability. Our contribution is three-fold:

• We formulate generalisation and suppression over a generalisation hierarchy as an optimisation problem,
taking advantage of the low dimensionality of OD-matrices in order to broaden the search domain of
solutions. As representativity is paramount for the value of mobility data, we also control the volume
of suppressed records by keeping it under a fixed constraint. We solve it by using state-of-the-art
algorithms for dependency-constraint knapsack problems, finding an adaptative generalisation finer
than uniform ones. Based on this formulation, we propose Adaptative Tree Generalisation (ATG),
a lightweight algorithm to efficiently reach k-anonymity. The algorithm is proposed in two versions,
ATG-Dual and ATG-Soft, corresponding to two variations of the problem we solve.

• We evaluate our approaches against an extensive benchmark of anonymisation methods from the state
of the art: uniform generalisation from the general field of anonymisation, clustering from mobility data
anonymisation, and differential privacy. The approaches are compared on a variety of datasets: New-
York city taxis available in open-data, and the Senegal and Cote d’Ivoire datasets available in the scope
of the Data for Development (D4D) challenge [12, 13]. Several variations of the data are used to analyze
how the various approaches adapt to different conditions, for a total of six distinct datasets.

• As the approaches vary vastly in the format of their output and their interpretations, it is not trivial
to compare them fairly. We define and discuss the relevance of various indicators used to measure the
information loss due to anonymisation.

The remainder of this paper is organised as follows: we review related work on data anonymisation in Section 2.
We then detail our methodology in Section 3. In Section 4, we describe the datasets and the methods we
compared in our experiments, then we discuss the appropriate indicators to compare various anonymisation
methods before presenting our results. Section 5 concludes the paper. Implementation and methodology details
are available in the supplementary material.

3

A

B

C

D

Figure 3: Example of a spatial generalisation hierarchy. The root represents the whole study map,
and the children of a node form a partitioning of the parents. An individual present in area A in the
data can be generalised to be shown as present in area B, C or D depending on what is necessary in
order to hide them in a group of k individuals.

2 Related work

In this section, we first review the k-anonymisation methods developed specifically for mobility data, then in the
general case of structured data, and finally differential privacy. We conclude the section with our positioning
compared to the k-anonymisation techniques from the state of the art.

2.1 Trajectory data anonymisation

Previous work on the anonymisation of mobility data has focused on the anonymisation of collections of
trajectories. the generalisation and suppression of complete trajectories is computationally expensive, as it
relies on hierarchical clustering with custom merging procedures to accommodate the complex nature of the
data. The first notable work is Never Walk Alone (NWA) [14], which considers inherent spatial uncertainty to
create groups of k individuals that share parts of their uncertainty areas. Its time-tolerant variation, Wait For
Me (WMA) [15], uses a variation of the edit distance adapted for quantitative values [16] in order to handle
the uncertainty in time as well as in space. As the edit distance is computationally expensive, its authors
also propose a linear spatiotemporal distance intended for large databases. Glove [2] uses another rule of
merging trajectories that yields better precision and does not add artificial trajectory points in order to create
groups. A subsequent approach by Tu [17] uses another merging logic that also implements l-diversity and
t-closeness. These methods initially proposed for trajectories can be used for an OD-matrix if we consider them
to be collections of two-point trajectories. The merging procedures then become straightforward as the time
coherence constraint states that the time intervals spanned by the generalised points must not overlap. Then
the only possible merge in a single, fixed-timestep OD-matrix consists in merging the origins together and the
destinations together. Despite this simplification, the underlying clustering is expected to find a large, variable
number of clusters among huge volumes of records, a task for which regular approaches scale poorly [18].

2.2 Generalisation and suppression for relational data

One single OD-matrix, corresponding to a single time step, can be seen as a structured table with only two
attributes. Historically, the first k-anonymisation algorithm for structured data is Datafly [5], relying on
a tree-like Value generalisation Hierarchy (VGH) for each attribute (Fig. 3). Datafly iteratively generalises
all the values of an attribute to their parent values in the hierarchy, selecting heuristically at each step the
attribute that has the most distinct values. This results in a horizontal cut in the hierarchy of each attribute.
We call this family of generalisation uniform, because all the values are generalised to the same level. The
uniform generalisation approach is still the object of active research, with efforts to replace the heuristic by
an efficient exploration of the lattice of all possible generalisations. The latest and best adapted approach to

4

an OD-matrix is the OIGH algorithm [19], specifically designed for data where the hierarchy is the same for
all attributes. An example of uniform generalisation applied to an OD-matrix is given in Fig. 4: the initial
zones A, B, C, D are associated to a generalisation hierarchy in dashed lines, and uniform generalisation gives
a cut in the tree that aggregates every modality of an attribute to the same level. It is not possible to detail
destinations between A and B while aggregating destinations C and D together.

Initial OD-matrix 10-anonymous OD-matrix

A

B

C

D

A

B

C

D

4
53

2

6

4
3

3
5

A

B

C

D

A

B

C

D

14

21

Figure 4: Example of an OD-matrix with hierarchies for origins and destinations, and one possible
output of uniform generalisation.

Disregarding the value generalisation hierarchy, we can also consider an OD-matrix to be composed of
four attributes, namely the coordinates of origin and destination. The k-anonymisation of quantitative data
can be efficiently handled by the Mondrian algorithm [20], which finds a partitioning of attributes using an
approach inspired by kd-trees [21]. Mondrian considers the flows as 4-dimensional points, and at each step
selects a dimension and performs a median cut. Then it repeats for each subset of points, and each branch
formed this way stops once it is found that any additional cut would imply clusters of less than k points. As
such, Mondrian does not allow suppression at all.

In recent works generalisation and suppression have also been formulated as an optimisation problem.
The constraints of the problem ensure k-anonymity while the objective function to minimize is a measure of
the coarseness of generalisation. Liang and Samavi [7] formulate the generalisation of each individual value
by a mixed-integer linear program. Directly solving for this linear program remains hard, so they propose
a practical Split & Carry algorithm that splits the problem into smaller, more manageable sub-problems,
as well as a greedy search for bigger datasets. The solution found does not necessarily give a partitioning
of each attribute as Mondrian does, but rather a partition of the individuals. As such, we can see their
approach as a form of clustering. In the strictest form of k-anonymity, we may accept that an individual is
indistinguishable from another if the generalisation of their features is included in the generalisation of the
other’s features, without necessarily being equal. This added degree of freedom leads to non-homogeneous
generalisation [22], and an application to an OD-matrix is illustrated in Fig. 5. For more clarity, the data of
the figure is summarised in Table 1.

non-homogeneous generalisation

B

C C

D

5

4
3

6
5D

Initial OD-matrix

B

C

D

C

D
3

5

4

6
5

Figure 5: Left: initial OD-matrix to anonymise. Right: same flows with their generalised areas of
origin and destination.

Doka et al. [23] formulate non-homogeneous generalisation as a network-flow problem and propose to solve it
with an exact algorithm, as well as with a greedy approach that runs in O(kN2), N being the number of distinct
individuals. The Doka approach suffers from this impractical complexity, while proposing an information loss
only marginally better than the one obtained by Liang and Samavi. To the author’s knowledge, no work

5

volume
initial
origin

initial
destination

generalised
origin

generalised
destination

5 C B {C, D} B
4 C C C C
3 D B D B
6 D C {C, D} {B, C, D}
5 D D D {C, D}

Table 1: Flows of Fig. 5 and their non-homogeneous generalisation. Note how any particular initial
flow has its origin and destination included in enough generalised flows so that the cumulated volume
is above k = 10.

has yet formulated generalisation and suppression restricted to a generalisation hierarchy as an optimisation
problem.

2.3 Differential Privacy

Differential privacy is a robust privacy principle introduced by Dwork et al. [24] that does not apply to a dataset
in itself but rather to a randomized algorithm taking the dataset as input and returning a series of query results.
We say that the algorithm respects differential privacy if for any possible output, the probabilities of returning
this output given that any particular individual is in the input dataset or not cannot differ by more than a
fixed threshold. This threshold is characterized by a parameter ϵ > 0, which allows to exactly quantify how
much we want to enforce privacy. This definition is formalised in Eq. 1, stating that a randomized algorithm
M is ϵ-differentially private if for all subset S of the possible values returned by M, and for all couples (x, y)
of datasets differing by at most one row:

Pr[M(x) ∈ S] ≤ exp(ϵ)Pr[M(y) ∈ S]. (1)

Where Pr[M(x) ∈ S] and Pr[M(y) ∈ S] are the probabilities of M returning a value belonging to S given the
input datasets x and y, respectively. Note that the factor exp(ϵ) is greater than 1 for any ϵ > 0, giving us a
two-sided bounding of the ratio of probabilities.

Applied to an OD-matrix, the most straightforward way of satisfying differential privacy is to add to each
flow a Laplacian noise with a default parameter of 1 [25]. As it would not make sense to have negative or non-
integer flows, we round the flows and keep only the positive ones, without hampering the differential privacy
guarantee [26]. This noise must be added to 0-flows in order to respect the differential privacy property, and
the probability of it resulting in a non-zero noisy flow (given that the input is a 0-flow) is 30.33%. However,
OD-matrices are known to be very sparse, and the density of our datasets range from 0.24% to 4.4%. As a
result, a differentially private OD-matrix would be between 6 and and 126 times more costly to store than the
original matrix [26], and would mostly consist of blank noise. More critically, investigations into its relevance
with respect to GDPR [27] find that it does not guarantee the safety of the dataset in itself, nor does it protect
against false re-identifications, which should be prevented as well as true ones. For a comprehensive survey on
differential privacy in the general case, see [28, 25].

2.4 Positioning

The presented solutions tend to focus on finding the finest generalisation that respects k-anonymity, while
keeping a reasonable computing time for small-scale datasets. Yet mobile phone data offer volumes way above
the ones usually considered, to which few solutions from the state of the art can actually scale. For example,
for a dataset of 100,000 records, 4 attributes and k = 5, Liang and Samavi’s fastest model Split & Carry [7]
takes hours to complete: the computing time being exponential with respect to k, it may amount to days for
k = 10. These time scales are orders of magnitude above the computing time we aim for in the benchmark.
We propose in this paper a simplified context for the optimisation problem, which makes an Adaptative
Tree Generalisation specifically adapted for OD-matrices, with their particularity of being exceptionally low-
dimensional, high-volume, with a high number of modalities. Our ATG-Dual approach can handle high volumes
while being significantly finer than the faster approaches of uniform generalisation. We also propose ATG-Soft,
a cheaper version that sacrifices precision in favor of computing time. Fig. 6 summarises the positions of the
approaches of the state of the art with respect to the degree of freedom they allow in the solution: uniform
tree generalisation restricts the solution space the most, followed by our approach and then Mondrian, which
all find partitions of the attributes in order to form clusters. Methods that find a clustering that does not
necessarily rely on a partitioning of the attributes have a broader search space. Finally, non-homogeneous
generalisation, which does not necessarily produce a clustering, has an even broader search space.

6

non homogeneous generalisation

Doka [23]

clustering

NWA [14]
W4M [15]
Glove [2]
Tu [17]
Liang [7]

attribute partitionning

Mondrian [20]

adaptative tree generalisation

ATG-Soft (this work)
ATG-Dual (this work)

uniform tree generalisation

Datafly [5]
OIGH [19]

Figure 6: Classification of k-anonymisation approaches with respect to the space of solutions they
consider.

3 Methodology

3.1 Overview

We consider an OD-matrix, defined on a set of initial tiles and equipped with a generalisation hierarchy that
describes a local order in which we can aggregate the initial tiles to form generalised areas. We call the
hierarchy T , and we use the same hierarchy over the origins and the destinations. Each leaf of T represents an
initial tile, and each node n ∈ T represents the area obtained by the union of the children of n. A pruning of
T is a tree obtained by pruning out some branches of T (i.e., a node and all the nodes below it). We interpret
such a pruning as the set of nodes we wish to split, so that their children, if not split, represent a partitioning
of the set of initial tiles. This is illustrated in Fig. 7: the pruning defined by the nodes in grey is interpreted
as a partitioning defined by the nodes in white in the right-most figure.

Complete hierarchy Nodes selected by pruning Interpretation as a partitioning

Figure 7: Left: Example of a complete generalisation hierarchy. Middle: Example of a pruning of the
hierarchy, satisfying the tree constraint. Right: Interpretation of the pruning as a partitioning of the
values.

Formally, we note (xn)n∈T the binary variable that describes a pruning of T . In this section, we will use
the tree constraint, that holds if and only if the set of nodes n such that xn = 1 is a pruning of T :

tree constraint(x, T) =

∀n ∈ T, xn ∈ {0, 1}
∀n ∈ T, xp(n) ≥ xn

∀n ∈ leaves(T), xn = 0

xp(root(T)) = 1 by convention

where p(n) denotes the parent of node n in the tree T . As we cannot split leaves of the hierarchy, xn is
necessarily 0 for leaves of T . Let O be a partitioning of origins, and for each o ∈ O, Do be a partitioning of
destinations. For each o ∈ O, d ∈ Do, we note o → d the flow going from o to d, vo→d the volume of the flow
(measured in number of people, obtained by summing the initial flows), and |o| and |d| the sizes of the origin
and destination, measured in number of initial tiles. We consider the total generalisation error G, derived from

7

the objective functions used in the state of the art [23, 7]:

G =
∑
o∈O

∑
d∈Do

vo→d≥k

(|o|+ |d|)vo→d. (G)

The generalisation error G penalises the size of the origin and destination for each individual that has not been
suppressed. As we have to suppress any individual that has not been k-anonymised, the amount of suppression
is given by:

S =
∑
o∈O

∑
d∈Do

vo→d<k

vo→d. (S)

We now consider the problem of finding partitionings of origins and of destinations that minimize G while
keeping S under a suppression constraint C. The formulation of this problem is given for reference:

Problem (Coupled generalisation under maximal suppression constraints). Let x = (xo)o∈T represent an
origin’s pruning, and for each possible origin o ∈ T , yo = (yo,d)d∈T represent one destination’s pruning. Then
the coupled partitioning problem under maximal suppression constraint can be cast as:

min
x,y

∑
o∈T,d∈T
vo→d≥k

(xp(o) − xo)(yo,p(d) − yo,d)(|o|+ |d|)vo→d

s.t.

tree constraint(x, T)

∀o, tree constraint(yo, T)∑
o∈T,d∈T
vo→d<k

(xp(d) − xd)(yo,p(d) − yo,d)vo→d ≤ C

(J)

The term (xp(o) −xo) ensures that we only count the penalties of the leaves of the origin pruning, and the term
(yo,p(d) − yo,d) ensures that we only count the penalties of the leaves of the destination pruning.

Problem J is already a restriction on the problem of generalisation of flows, yet it remains hard and
computationally expensive to solve. In order to simplify it, we uncouple it in two separate problems: we first
formulate the best pruning problem to find a map of origins O with the heuristic that origins o ∈ O should
emit an outgoing volume close to a given target volume vtarget. As the k-anonymisation is coarser for problems
with fewer individuals, this heuristic ensures that the destination maps for different origins will be close in
coarseness. It is best justified with the assumption that the flows have similar behaviors regardless of their
origins. Then, for each origin o ∈ O, we can more easily find a partitioning of destinations that minimizes the
total generalisation error G under the suppression constraint. These problems are formulated as variations of
the best pruning problem.

3.2 Best pruning problem

The best pruning problem considers that generalising values to a node n induces a penalty πn. Finding the best
partitioning then amounts to minimizing the sum of penalties of the leaves of the pruned tree. The resulting
problem is given by:

Problem (Best pruning problem). Let x represent a pruning of T , then the best pruning problem for the
penalty function π is defined by:

min
x

∑
n∈T

(xp(n) − xn)πn

s.t. tree constraint(x, T)

(P)

The term (xp(n) − xn) ensures that we only count the penalties of the leaves of the pruned tree.

If the expression chosen for πn depends only on the xn′ such that n′ is a descendant of n, then solving
problem P is rather straightforward: by making a simple pass through T , one can recursively choose for each
node if it is better to split it or not, with the corresponding best-case penalty. See appendix I for the detailed
algorithm. In the case of generalisation of origins, we set πn so that it measures how far the volume of flows
coming out of n is from our target volume vtarget. We choose the expression:

πn =

vtarget −
∑

d∈leaves(T)

vn→d

2

.

An illustration of the corresponding values for πn is given in Fig. 8. We see that for each node, we can choose
either to accept its penalty or accept the sum of the penalties of its children.

Then, we use a variation of Prob. P to find a generalisation of destinations that minimizes the total
generalisation error G given a fixed O, under the suppression constraint C.

8

Initial OD-matrix emission flows leaf penalty (𝑣#$%&'# = 10)
𝜋- = 𝑣#$%&'# − 𝑣-

/

A

B

C

D

A

B

C

D

4
53

2

6

4
3

3
5

12

2

7

14

4
53

2

6

4
3

3
5

4

64

9

16

4
53

2

6

4
3

3
5

14

35

21

16

225

121

Figure 8: Left: example of an OD-matrix with the hierarchy over the origins. Middle: emission
flows from each initial and generalised origin. Right: corresponding penalty obtained by setting

πn =
(
vtarget −

∑
d∈leaves(T) vn→d

)2

with vtarget = 10.

3.3 Pruning problem with suppression constraint

Let o ∈ O be an origin. For each d ∈ T , we define the aggregation penalty αd, equal to the contribution of
node d in the expression of G:

αd =

{
(|o|+ |d|)vo→d if vo→d ≥ k

0 else
, (3.1)

and the suppression penalty σd, equal to the number of records that would be suppressed if d was a leaf of the
pruned tree:

σd =

{
0 if vo→d ≥ k

vo→d else
. (3.2)

Examples of values for αd and σd are given in Fig. 9: the size of the origin is 2 as it is the result of aggregating
the two areas C and D together. We see that the values of αd increase as we go up in the hierarchy. The lowest
total aggregation penalty is achieved by aggregating nothing, but it may imply suppressing more volume than
is acceptable.

suppressed volumes (k=10)aggregation penaltiesInitial OD-matrix

A

B

C

D

A

B

4
53

2

10

3

8

0

30

0

0

40

231

44

10

3

8

0

0

8

3

0

0

0

10

3

8

Figure 9: Left: example of an OD-matrix with the hierarchy over the destinations. Middle: aggregation
penalty for each destination for one given origin. Right: suppressed volumes for each destination,
considering k = 10.

Minimizing G with fixed origin o amounts to minimizing the sum of αd while keeping the sum of σd under
a suppression constraint C. The resulting problem is given by:

Problem (Best pruning problem under hard suppression constraints). Let x represent a pruning of T and αd

and σd be defined according to Equations 3.1 and 3.2 respectively, then finding the best pruning of T for a fixed

9

origin o is equivalent to:

min
x

∑
d∈T

(xp(d) − xd)αd

s.t.

{
tree constraint(x, T)∑

d∈T (xp(d) − xd)σd ≤ C

(H)

The term (xp(d) − xd) ensures that we only count the penalties of the leaves of the pruned tree.

Problem H is better formulated as a variant of a knapsack problem, where the benefit of each node d is the
gain in aggregation penalty due to splitting d and the weight of node d is the additional suppression induced
by splitting.

Problem (Knapsack formulation of the best pruning problem under hard suppression constraints). Let bd =
αd −

∑
c∈children(d) αc be the gain due to splitting d and wd =

∑
c∈children(d) σc − σd the weight of destination

d. Then the knapsack formulation of H is:

max
x

∑
d∈T

xdbd

s.t.

{
tree constraint(x, T)∑

x∈T xdwd ≤ C

(K)

With this formulation, the problem has been studied under the name of the Tree knapsack problem [29, 30]
or ordered knapsack problem [31]. A variant where the hierarchy is not necessarily a tree is known as the
Precedence Constraint Knapsack Problem (PCKP) [32], and has been extensively studied in the field of open-
pit mining [33, 34]. The tree knapsack problem can be easily solved by dynamic programming for trees under
a few hundred nodes, but for larger trees it is recommended to consider its dual [33]. Equivalently, we directly
consider the dual of our original formulation H.

Problem (Dual formulation of best pruning problem under hard suppression constraints). The dual of prob-
lem H obtained by relaxation of the suppression constraint is given by:

max
λ

min
x

∑
d∈T

(xp(d) − xd)(αd + λσd)− λC

s.t. tree constraint(x, T)

(D)

We can prove that the optimal solution of problem D is feasible for problem H (see appendix F), meaning
that the solution respects the hard constraint of no more than C records suppressed. This is a variation on
the dual of the PCKP, as we obtain a maximisation problem instead of a minimization problem. We can still
solve it with the All Breakpoints Algorithm [33]: This algorithm relies on the fact that the lagrangian function
that we aim to maximize:

L : λ 7→ min
x

∑
d∈T

(xp(d) − xd)(αd + λσd)− λC,

is continuous, piecewise linear, and characterized by its breakpoints (Fig. 10, left).
This list of breakpoints can be recursively computed by a single pass through T , defining for each node n

the lagrangian that would be obtained for a problem set on the branch starting from n. We call this function
the Best Branch Error of n Bn(λ). The Best Branch Error of the root Broot(T) is then the lagrangian
function L. See appendix D for the definition and properties of the best branch error. However, even though
Bn can be determined by a single pass through the branch of n, the computing time also depends on the
number of breakpoints, which can be high. The Specific Breakpoints Algorithm (SBA) [34] improves over the
All Breakpoints Algorithm. It takes advantage of the piecewise linearity and convexity (in this case, concavity)
of the lagrangian function to perform a search akin to dichotomy, which requires evaluating the lagrangian
function for only a small number of points (Fig. 10, right). See appendix J for the detailed algorithm.

Evaluating the lagrangian function on a single value λ is equivalent to solving problem P with πd = αd+λσd,
eventually adding −λC. We call this variation the soft suppression constraint, which is formulated as:

Problem (Best pruning problem with soft suppression constraint).

min
x

∑
d∈T

(xp(d) − xd)(αd + λσd)− λC

s.t. tree constraint(x, T)

. (H’)

10

𝜆

𝐿(𝜆)

𝜆

𝐿(𝜆)

𝑃&
𝑃'

𝑃(

Figure 10: Left: General shape of the lagrangian function of problem D. Right: Geometrical interpre-
tation of one step of the algorithm SBA used to find the maximum.

Note that this is also closer to minimizing a common definition of the generalisation error [7], which contrary
to our definition of G, penalizes suppressed records as if they were generalised to the maximum level. Here,
suppressed records are penalized as if they were generalised to the level λ, and we can interpret λ as an area.
The optimal solution for problem H’ has an interesting property: we can prove that it will never imply the
generalisation of a flow o → d such that |o|+ |d| > λ (see appendix E). As such, we lose the hard constraint on
the suppressed volume but gain a hard constraint on the level of generalisation, which can also be of interest
for data owners.

3.4 Global suppression constraint

Solving problem H or D separately for each origin o ∈ O requires distributing the suppression constraint C so
that the solutions together do not suppress more than a volume C. Choosing such a distribution is in itself an
optimisation problem. We can instead solve for all the destinations at once, by considering a tree T̃ made of
|O| times the same hierarchy T , connected together with a dummy root as illustrated in Fig. 11. Each subtree
represents the destination map of an origin, and thus solving the problem on tree T̃ yields one destination map
for each origin in O. Solving the problem for T̃ instead of T is computationally a lot more demanding, hence
the importance of problem D solved with SBA, which scales very well for large trees.

destination map 1 destination map 2 destination map 3 destination map 1 destination map 2 destination map 3

Figure 11: Left: separately generalising the destination map of each origin. Right: solving for the
global problem under the unified constraint C

3.5 Parameter choices

Defining a generalisation hierarchy. The hierarchy T is central to our approach. To ensure the best
results, it could be valuable to manually define the areas and organise the order in which they ought to be
aggregated, in order to give priority to areas that are known to share the same land usage. In this study, we
use a satisfying automated approach, using the implicit spatial partitioning of the data when available, e.g.,
Voronoi tessellation of base stations for mobile phone data. We then run a hierarchical agglomerative clustering
on the centroids of the initial areas, and we use the resulting dendrogram as a generalisation hierarchy.

Selection of vtarget. The decoupling of origins and destinations introduces a hyper-parameter vtarget that
needs to be tuned. A simple criterion can be considered in order to choose a value: setting vtarget too high
will lead to origins more coarsely generalised than destinations, and the contrary for vtarget too low. As the
original goal is to produce an all-purpose anonymisation, we have no reason to favor precision towards origin
or destination. Moreover, we observe through experimentation that the least G is obtained for origins and
destinations of the same mean size. It is then recommended to set vtarget such that the mean sizes of origins

11

and destinations are the closest. The best value depends on the number of areas in the study zone, the total
volume of the matrix, and the structure of the flows. In this study, we set a single vtarget for each dataset,
selected via a grid-search on a small sample of matrices.

3.6 Proposed models

Based on the problems we formulated, we propose two approaches to k-anonymise OD-matrices through gen-
eralisation and suppression:

• Adaptative Tree Generalisation (ATG)-Dual: Uncoupling the problem and solving the dual problem D
for destinations with the Specific Breakpoints Algorithm. The hyper-parameter vtarget is selected via a
grid-search on a small sample of matrices. The implementation is detailed in appendix J.

• ATG-Soft: As the solving of the soft problem H’ also yields results with interesting properties, we
include it for information with λ set to 10% of the map size. Note that setting λ to 100% of the map
size would be equivalent to using common state-of-the art definitions of the generalisation error, which
penalize suppressed records as if they were generalised to the maximum possible level. However, this also
leads to prohibitively high suppression costs with solutions that suppress almost nothing. This illustrates
that the number of modalities in mobility data is far greater than in other domains, as this problem does
not arise in the anonymisation of regular data.

4 Experiments

In this section, we first present the datasets on which we run the experiments, then the benchmark against
which we compare our approaches. We discuss the performance indicators we will use to compare the solutions,
then we present our results.

4.1 Datasets

We evaluate the various approaches on a selection of datasets obtained from open data and from mobile traces.
We denote by nyc the dataset from the New York Taxi and Limousine Commission (TLC)1. It is set on the
definitions of 263 neighborhoods by the NYC Department of City Planning, and the generalisation hierarchy
is defined as the dendrogram given by a hierarchical clustering applied on the centroids of the neighborhoods.
The other problems considered are derived from the mobile phone data from the Data for Development (D4D)
challenge [12, 13].

With the main idea of generating an OD-matrix without consideration of its actual ground truth, we
consider any transition between base stations to be an actual trip, without pre-processing. The OD-matrices
are then defined as the trips made between base stations over a one-hour period. For the generalisation
hierarchy, we use the dendrogram given by a hierarchical clustering applied on the base stations. This gives
the datasets civ and senegal. Several variations on the senegal dataset are also considered: senegal_crop

with only the 599 eastern-most base stations, which account for most of the activity; senegal_big which
increases the volumes in the data by summing together timesteps that pertain to different sets of individuals;
and senegal_split which artificially increases the number of initial tiles by dividing the base stations in
four and distributing the flows non-uniformly between them. Table 2 summarises the main characteristics of
the datasets: we detail in particular the density of the matrix, computed as the number of non-null flows
over the total possible number of distinct flows (i.e., the squared number of tiles), averaged over the period
of observation, and the percentage of flows that are 10-anonymous in the original data. The relatively low
amount of these 10-anonymous flows corresponds to a significant share of the total volumes of the data, as
they are naturally the biggest flows. The part of the anonymous volume in the original data is given under the
column %anon vol. See appendix A for more details.

4.2 Benchmark

We compare our solution to Glove, which is the state of the art for k-anonymisation of mobility data. As our
approach does not explicitly implement l-diversity and t-closeness, we could not measure the benefits offered
by Tu [17] which would only give a coarser generalisation than Glove at a higher computing cost. Glove is
drastically simplified when applied to simple ODs, seen as 2-point trajectories without timestamps. In that
case, it is almost equivalent to the greedy clustering underlying the approach, i.e., to a regular hierarchical
agglomerative clustering (HAC) on the four-dimension points defined by the coordinates of origins and desti-
nations, with complete linkage and L1 metric. As such, we also propose Glove-sk, a simple implementation
of Glove using scikit-learn [35] making use of the efficient implementation of HAC to get a full dendrogram,

1publicly available at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

12

name #matrices #tiles average
#flows

density average
volume

%anon.
flows

%anon.
vol

nyc 7242 263 3058 4.4% 15009 15.8% 59.0%
civ 632 1221 3523 0.2% 3117 0.3% 2.6%
senegal 6752 1666 18276 0.7% 41027 5.7% 36.8%
senegal crop 6528 599 13710 3.8% 29614 5.8% 37.8%
senegal split 360 6664 305194 0.7% 956742 6.5% 46.0%
senegal big 360 1666 100322 3.6% 956742 12.3% 80.7%

Table 2: Descriptive statistics of the datasets used for the experiments (#matrices: number of matrices
available in the whole dataset, where each matrix represents the flows over a time step; #tiles: number
of initial tiles over which the matrices are set; density: average graph density of the matrices; avg.
#flows: average number of flows among the matrices in the dataset; avg. vol.: average sum of the
flows; %anon. flows: fraction of flows that are above k = 10; %anon. vol: fraction of individuals that
are in flows above k = 10). Note that due to performance concerns, we do not evaluate the benchmark
on all available matrices and we rather choose a small sample of matrices for each dataset.

and then choosing the lowest cut that grants k-anonymity to all but C records. Unfortunately, because it
can only be agnostic of the volumes of the flows, scikit-learn’s HAC performs appallingly badly compared to
actual Glove. We still include it in the benchmark as it is by far the most readily available solution for a data
owner, running in a reasonable amount of time for data that are not as high-volume as the ones featured in
this study. As the implementation offered by scikit-learn benefits from state of the art code optimization, it
also acts as a lower bound for the computing time we could expect from glove in the case of the best possible
implementation.

Although Mondrian has been found to perform very poorly on trajectories [15], we observed that it
produces relevant results for OD-matrices. We compare our approaches to our own python implementation of
Mondrian, which performs cuts in the coordinates of the flows seen as 4D points. We also compare our own
python implementation of uniform generalisation with the OIGH algorithm, which gives horizontal cuts in
the hierarchies of origins and destinations. The hierarchies we use, derived from dendrograms, do not have
all leaves at the same tree depth, which is originally not handled by OIGH. In order to accommodate those
hierarchies, we made slight adaptations of OIGH, that we detail in appendix B. For comparison, and although
differential privacy does not answer our problem, we compare k-anonymisation to (1,0)-differential privacy
reached through laplace noise. The results obtained by suppression alone are also shown in the result
tables.

For reproducibility purposes, we include in appendix B the complete details of our implementations, along
with information on the adaptations we made to their original formulations.

4.3 Performance indicators

For the choice of performance indicators, we bore in mind that the particular generalised areas we provide will
most likely not be of interest for the final users of the data. It is reasonable to assume that data users will rather
be interested in drawing their own areas of interest and querying the matrix for an estimation of the flows
between these areas. This is especially true as the various anonymised OD-matrices that represent different
timesteps from a single dataset will feature generalisations that are a priori inconsistent, and comparing the
timesteps requires projecting them on a single static zoning. In the absence of additional information, the best
estimation flow between two arbitrary areas is obtained by considering the volumes to be uniformly distributed
in their generalised areas, and as a result the flow between the arbitrary areas is proportional to the overlap
with the generalised areas. We call this estimation process reconstruction. For more details on the use of
the reconstruction process for temporal analysis, see appendix H

It is then relevant to actually reconstruct the anonymised OD-matrix and evaluate the difference with the
original. It amounts to considering that k-anonymisation is obtained by the addition of a kind of reconstruction
noise, which makes it a good way of comparing k-anonymisation with the laplacian noise used for differential
privacy. In the results, we report the reconstruction loss E computed as the absolute difference across all
flows:

E =
1

V

∑
o,d∈leaves(T)

|ṽo→d − vo→d|, (2)

where we denote ṽo→d the reconstructed volume over these initial tiles, and we normalize by the total volume
of the flows V =

∑
o,d∈leaves(T) vo→d for readability. Note that the sum is over the leaves of T , corresponding

13

to the initial tiles over which the OD-matrix is defined. For a discussion on the limits of the reconstruction
loss, see appendix G.

We also evaluate the approaches with respect to their total generalisation error G, as defined in Eq. G.
Approaches such as Glove and Mondrian that do not rely on a generalisation hierarchy do not have a clearly
defined value for G. As they use an axis-aligned bounding box as a reference for their clusters, we count all
the tiles intersecting with the box in the size of the generalised area. We give here a general expression for
G that is more readily applicable to all generalisation methods, defined over any set F+ of anonymous flows
o → d such that vo→d ≥ k. The value we report in the results is the mean generalisation error Ḡ across
matrices, given by:

Ḡ =
1

V +

∑
o→d∈F+

(|o|+ |d|)vo→d, (3)

with V + =
∑

o→d∈F+ vo→d the total volume of anonymised flows. When the origins and destinations are
aggregated to roughly the same level as is normally the case, Ḡ represents roughly twice the number of tiles in
the origin or destination of the average generalised flow. A value of Ḡ = 2 then means that no generalisation
was performed.

Finally, as a complementary metric to measure the distortion induced by the anonymisation, we evaluate
the distribution distance D between each OD matrix and its anonymised versions. This metric is slightly
different than the reconstruction loss E as it considers OD-matrices as normalised distributions, not penalising
suppression. The distribution distance is given by:

D =
∑

o,d∈leaves(T)

∣∣∣ ṽo→d

V +
− vo→d

V

∣∣∣ (4)

with the same notation as the previous definitions.

4.4 Results

We compare the approaches on a restricted number of OD-matrices on the available datasets. For each dataset,
the matrices were chosen at random among matrices with a total volume of more than 5000. For each matrix,
we set the suppression constraint C to be 10% of the total volume and we set k = 10 in accordance with the
value accepted by the French regulator CNIL for OD-matrices. Fig 12 gives a dataset by dataset comparison
of our ATG-Dual approach versus ATG-Soft, OIGH, Glove, and Glove-sk on metrics Ḡ, E, distribution, and
time of computing. For each dataset, we represent the distribution of the performance of the benchmark
solver, expressed as the ratio with the performance of ATG-Dual. The line y = 1 indicates matrices for which
ATG-Dual and the benchmark have the same value, and the line y = 10 indicates matrices for which the
competitor’s metric is 10 times higher than ATG-Dual. As it is best to have a low error and a low computing
time, ATG-Dual is better when the distributions are above the line y = 1.

Unsurprisingly, we see that the ATG-Soft is faster but coarser than ATG-Dual, as it is essentially a cheaper
version that uses a fixed value for λ instead of finding the best one. ATG-Dual gives consistently better results
than OIGH in a shorter computing time.

Upon closer inspection, we observe that OIGH is likely to waste time in its search inside the lattice
of possibilities, because it yields a lot of ties that then need to be broken. Glove offers a noticeably finer
generalisation than ATG-Dual. However, its prohibitive computing time makes it difficult to recommend,
and its memory usage is such that we were unable to run it for our bigger datasets senegal_split and
senegal_big. An optimistic take on Glove would be to consider that it has the performance of Glove with
the computing time of Glove-sk. Glove-sk in itself offers remarkably bad results, which shows the importance
of the volume awareness in the hierarchical clustering proposed by Glove, that could not be handled with
HAC. We include it in the comparison as it gives an estimation of the computing time that a truly optimised
implementation of Glove could possibly offer. Yet, its computing time is still unsatisfactory compared to our
approaches. Mondrian finds generalisations that are coarser than our approach for all datasets except civ,
but the reconstruction error is much more balanced, with an advantage for Mondrian. This is at least partly
explained by the fact that Mondrian does not suppress volume, which has a direct impact on the absolute errors
measured in E. As Mondrian requires repeatedly counting volumes on both sides of the cuts we consider, it
is much slower than ATG-Dual. Some implementation improvement could be considered in order to optimise
the counting steps, but it is unlikely that it could achieve a 100-fold reduction in computing time.

Table 3 summarises the average performance over all matrices in the small datasets nyc, civ, senegal
and senegal_crop, for which we were able to run Glove. We report the mean value of Ḡ, E, D and S as
well as the total computing time to anonymise all the matrices. We see that Glove stands out for its lack of
scalability, making it impractical in huge-volume cases. Among the other solutions, a difference of minutes that
we measure in the computing time is relevant but not decisive. They must rather be compared based on Ḡ, for
which ATG-Dual offers a significant improvement over the state of the art. The better E offered by Mondrian
is partly explained by its not suppressing volumes. Each unit of missing volume has a contribution of 1 in the

14

G
lo
ve
-s
k

O
IG
H

G
lo
ve

Ḡ E Time

AT
G
-S
of
t

M
on
dr
ia
n

D

Figure 12: Comparison of the performance of our ATG-Dual approach versus ATG-Soft, Glove-sk,
Glove, OIGH, and Mondrian. Each box represents the distribution of the performance over one
dataset, expressed as the ratio of the benchmark over ATG-Dual. First column: comparing gener-
alisation error G. Second column: comparing the reconstruction loss E. Third column: comparing the
distribution distance D. Fourth column: comparing the computing times. In each case, the line y = 1
represents matrices for which the benchmark has the same performance as ATG-Dual, and the lines
y = p represents matrices for which the benchmark is p times worse than ATG-Dual. The box plots
correspond to the datasets in this order: nyc, civ, senegal crop, senegal, senegal split, senegal big.

expression of E (Eq. 2), which means that an additional 1% of suppression contributes to an increase of 0.01
in E. As Mondrian also offers a better D, we have to consider that Mondrian happens to find generalisations
that are more uniform in terms of volumes. For differential privacy, E and S mostly measure the volumes that

15

have been added to 0-flows, as they represent more than 95% of possible flows in each OD-matrix. Because of
this, differential privacy performs worse than any generalisation technique when compared on E. This matches
the previous observation [26] that differential privacy is not adapted for sparse data. As the interpretation of
Ḡ is only relevant for generalisation, we do not include it in the table for suppression and laplace noise.

solver Ḡ E D time (s) S

ATG-Dual 24.90 1.18 1.14 23 9.99%
ATG-Soft 40.41 1.76 1.31 9 3.24%
oigh 53.62 1.34 1.30 56 9.87%
glove-sk 444.12 1.10 1.36 358 9.99%
glove 18.70 0.81 0.84 23203 9.98%
mondrian 27.39 0.95 1.02 688 0.00%
suppression — 0.33 1.34 — 39.46%
laplace noise — 2.88 6.78 — -170.92%

Table 3: Performance on samples of the dataset senegal crop, nyc, civ, and senegal. Ḡ: mean gener-
alisation error (Eq. 3); E: normalized reconstruction loss (Eq. 2); S: fraction of volumes suppressed
(Eq. S); D: distribution distance (Eq. 4). The reported time is the total computing time (in seconds)
to run the anonymisation of all matrices of all datasets. Note that laplace noise adds volumes, as it
mostly applies a positive noise on a sparse matrix.

As Glove could not be evaluated for our biggest datasets, we compare the approaches on the same average
criterias in a separate Table 4 for senegal_split and senegal_big. We see that the best computing time we
could hope for Glove, given by Glove-sk, is still not satisfactory in this situation. Our approach is of particular
interest here, as it offers a finer generalisation than OIGH and Mondrian for a fraction of the time. The ATG-
Soft alternative is even faster, yet the difference in computing time at this scale is not of importance. This
approach could become relevant for even bigger matrices, for example set on the ten thousand base stations of
a mobile operator in France.

Even if our approach is more appropriate, uniform tree generalisation admittedly performs well for OD-
matrix generalisation. Indeed, we could expect the best solution to show a high disparity of aggregation levels
between densely and sparsely populated areas, which a uniform generalisation cannot offer. This effect is
mitigated by the fact that the initial tiles already partially reflect the disparity in activity density, as they
rely on base stations or administrative divisions, which are more densely distributed in populated areas. This
illustrates the importance of the generalisation hierarchies, as well as the adaptation we implemented in order
for OIGH to run on hierarchies whose initial leaves are not all at the same depth. For more detailed results,
see appendix C.

5 Conclusion and perspectives

In this paper, we proposed to k-anonymise OD-matrices that are large-scale both in terms of size of the study
area and number of flows. To that end, we developed ATG-Dual, a tree-based approach that formulates
generalisation and suppression as an optimisation problem and finds the best adaptative generalisation, as
opposed to a uniform generalisation usually found by similar tree-based approaches. For even heavier OD-
matrices, we also propose ATG-Soft, a faster version of ATG-Dual that relies on a fixed parameter λ instead of

solver Ḡ E D time (s) S

ATG-Dual 19.85 0.72 0.78 111 9.92%
ATG-Soft 65.39 1.07 1.09 32 1.54%
oigh 29.68 1.10 1.15 985 9.79%
glove-sk 1361.51 1.04 1.25 3376 10.00%
mondrian 25.19 0.76 0.85 11541 0.00%
suppression — 0.49 1.02 — 59.00%
laplace noise — 2.87 3.33 — -86.98%

Table 4: Performance on samples of the datasets senegal big and senegal split.

16

finding the best one, sacrificing precision of generalisation for the benefit of computing speed. The formulation
we adopt is indeed a restriction on the solution space we consider. State-of-the-art solutions developed for
mobility consider broader search spaces as they allow any form of clustering of flows. This is a natural way
of considering k-anonymity, and allowing more degrees of freedom is essential in the context of trajectory
anonymisation, as they are especially hard to anonymise. Yet even with these techniques it has been observed
that the valuable information cannot be expected to resist k-anonymisation for k ≥ 5. By considering OD-
matrices, which are a central input to mobility analysis while being considerably simpler than trajectories, the
data can be anonymised with good preservation of information. The generalisation hierarchy then appears as
a relevant restriction that is natural to the data user and considerably reduces the computing cost for huge
matrices, where traditional approaches struggle to scale. Our two approaches find the best anonymisation
in their respective solution spaces under a hard constraint: ATG-Dual enforces a hard constraint on the
suppression, which is especially relevant in the context of OD-matrices with a high number of modalities, as
the representativity of the data is essential to their value. ATG-Soft enforces a hard constraint on the size of
generalisation, which is also of interest to guarantee the precision of the data. Uniform tree generalisation,
while being rather scalable and offering acceptable results given the right adaptations, is still slower and coarser
than our approaches for huge OD-matrices. In particular, as it was originally designed to generalise numerous
attributes with very small hierarchies of less than a dozen modalities, it is only natural to focus on a finer cut
in the hierarchy when we have only two attributes with thousands of modalities. Our approaches come at the
cost of decoupling the attributes through an ad hoc process requiring a hyper-parameter vtarget. Although in
our current solution it has to be set by hand based on the results over a small subset of the data, it should
be possible in future work to infer the best value for vtarget based on characteristics of the input OD-matrix.
The cost function used for the generalisation of origins could also in itself be modified in order to better
anticipate the processing of destinations. Our work has the practical aim of helping the owners of large-scale
OD-matrices, such as mobile operators, to efficiently and effortlessly anonymise their data. However, it is well
known that k-anonymity does not protect against all types of privacy attack. The approach should guarantee
l-diversity in order to ensure protection against attribute linkage attacks, meaning the generalised areas should
all cover at least l locations. In this context, we may consider that each initial area is a location or that each
initial area contains a varying number of points of interest counting as locations. In each case, this condition
could be guaranteed in future work by adding a minimum level of aggregation as a constraint. In the broader
scope of probabilistic attacks, future work should focus on achieving t-closeness, meaning the distributions
of destinations given each origin should not differ too much from the global distribution of destinations, and
likewise for the distributions of origins. As the criterion requires to know the whole destination distribution,
it is not local: we cannot introduce an additional term in each node of the best pruning problem and try to
minimize its sum. The variation of the problem to ensure t-closeness would take the form of an additional
constraint akin to the suppression constraint, and likely require relaxation as well in order to efficiently solve
it. Still, t-closeness would remain hard to achieve in the context of sparse distributions with high number
of modalities such as OD-matrices. It may also be of interest to measure the actual privacy risks of the
OD-matrices in terms of probability of success of various attack scenarios. Indeed, OD-matrices are already
arguably safer than most types of personal data as the number of attributes is very limited.

The k-anonymity offered by our approach is thus a necessary first step toward a more complete solution.
Still, it is also a sufficient guarantee in itself for the French regulator CNIL, in charge of enforcing GDPR
in France. Currently, mobility data tend to be under-used by their owners as their huge volumes and their
personal aspect make their handling costly and legally risky. Achieving cheap, fast, and foolproof anonymisation
of mobility data would allow their widespread public use, ensuring the most insights possible are extracted
from them in order to organise ever more efficient transportation networks.

Acknowledgment

This research is supported by the French ANR research projects MOBITIC (grant number ANR-19-CE22-0010)
and PROMENADE (grant number ANR-18-CE22-0008).

References

[1] European Commission, “2018 reform of EU data protection rules.” https://eur-lex.europa.eu/

legal-content/EN/TXT/?uri=celex%3A32016R0679, 2018.

[2] M. Gramaglia and M. Fiore, “Hiding mobile traffic fingerprints with glove,” in Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT ’15, (New York, NY,
USA), pp. 1–13, Association for Computing Machinery, 2015.

[3] Y.-A. Montjoye, C. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the crowd: The privacy bounds
of human mobility,” Scientific reports, vol. 3, pp. 1–5, 03 2013.

17

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679

[4] F. Asgari, A. Amrani, and M. Khouadjia, “Scaling time-dependent origin-destination matrix using growth
factor model,” in 2021 International Symposium on Computer Science and Intelligent Controls (ISCSIC),
pp. 51–57, Nov 2021.

[5] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and suppression,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, p. 571–588, oct 2002.

[6] M. Fiore, P. Katsikouli, E. Zavou, M. Cunche, F. Fessant, D. Le Hello, U. M. Aivodji, B. Olivier,
T. Quertier, and R. Stanica, “Privacy in trajectory micro-data publishing: a survey,” Transactions on
Data Privacy, vol. 13, pp. 91 – 149, 2020.

[7] Y. Liang and R. Samavi, “Optimization-based k-anonymity algorithms,” Computers & Security, vol. 93,
no. 101753, pp. 1–17, 2020.

[8] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “L-diversity: Privacy beyond
k-anonymity,” ACM Trans. Knowl. Discov. Data, vol. 1, p. 3–15, Mar. 2007.

[9] R. Shokri, “Quantifying and protecting location privacy,” it - Information Technology, vol. 57, pp. 257–263,
01 2015.

[10] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity and l-diversity,” in
2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115, 2007.

[11] C. Bettini, X. S. Wang, and S. Jajodia, “Protecting privacy against location-based personal identification,”
in Secure Data Management (W. Jonker and M. Petković, eds.), (Berlin, Heidelberg), pp. 185–199, Springer
Berlin Heidelberg, 2005.

[12] Y.-A. de Montjoye, Z. Smoreda, R. Trinquart, C. Ziemlicki, and V. D. Blondel, “D4d-senegal: The second
mobile phone data for development challenge,” ArXiv, vol. abs/arXiv:1407.4885, 2014.

[13] V. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, and C. Ziemlicki,
“Data for development: the d4d challenge on mobile phone data,” ArXiv, vol. abs/1210.0137v2, 2013.

[14] O. Abul, F. Bonchi, and M. Nanni, “Never walk alone: Uncertainty for anonymity in moving objects
databases,” in 2008 IEEE 24th International Conference on Data Engineering, pp. 376–385, 2008.

[15] O. Abul, F. Bonchi, and M. Nanni, “Anonymization of moving objects databases by clustering and
perturbation,” Information Systems, vol. 35, no. 8, pp. 884–910, 2010.

[16] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for moving object trajectories,” in
Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD ’05,
(New York, NY, USA), p. 491–502, Association for Computing Machinery, 2005.

[17] Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, and D. Jin, “Beyond k-anonymity: Protect your trajectory from
semantic attack,” in 2017 14th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), pp. 1–9, 2017.

[18] N. Monath, K. A. Dubey, G. Guruganesh, M. Zaheer, A. Ahmed, A. McCallum, G. Mergen, M. Najork,
M. Terzihan, B. Tjanaka, Y. Wang, and Y. Wu, “Scalable hierarchical agglomerative clustering,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery I& Data Mining, KDD ’21,
(New York, NY, USA), p. 1245–1255, Association for Computing Machinery, 2021.

[19] W. Mahanan, W. Chaovalitwongse, and J. Natwichai, “Data privacy preservation algorithm with k-
anonymity,” World Wide Web, vol. 24, p. 1551–1561, 09 2021.

[20] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-anonymity,” in Proceedings
of the 22nd International Conference on Data Engineering, vol. 2006, pp. 25 – 25, 05 2006.

[21] J. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding best matches in logarithmic expected
time,” ACM Trans. Math. Softw., vol. 3, pp. 209–226, 09 1977.

[22] W. K. Wong, N. Mamoulis, and D. W. L. Cheung, “Non-homogeneous generalization in privacy preserving
data publishing,” in Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, (New York, NY, USA), p. 747–758, Association for Computing Machinery, 2010.

[23] K. Doka, M. Xue, D. Tsoumakos, and P. Karras, “K-anonymization by freeform generalization,” in Pro-
ceedings of the 10th ACM Symposium on Information, Computer and Communications Security, ASIA
CCS ’15, (New York, NY, USA), p. 519–530, Association for Computing Machinery, 2015.

[24] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analy-
sis,” in Theory of Cryptography (S. Halevi and T. Rabin, eds.), (Berlin, Heidelberg), pp. 265–284, Springer
Berlin Heidelberg, 2006.

[25] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found. Trends Theor.
Comput. Sci., vol. 9, p. 211–407, Aug. 2014.

18

[26] G. Cormode, M. Procopiuc, D. Srivastava, and T. Tran, “Differentially private publication of sparse data,”
in ICDT ’12: Proceedings of the 15th International Conference on Database Theory, pp. 299–311, 03 2011.

[27] J. Holzel, “Differential privacy and the gdpr,” European Data Protection Law Review, vol. 5, pp. 184–196,
01 2019.

[28] C. Dwork, “Differential privacy: A survey of results,” in Theory and Applications of Models of Computation
(M. Agrawal, D. Du, Z. Duan, and A. Li, eds.), (Berlin, Heidelberg), pp. 1–19, Springer Berlin Heidelberg,
2008.

[29] V. D. Merwe and D. Jacobus, The use of partitioning strategies in local access telecommunication network
problems and other applications. PhD thesis, Potchefstroom Campus of the North-West University, 2007.

[30] D. Shaw and G. Cho, “The critical-item, upper bounds, and a branch-and-bound algorithm for the tree
knapsack problem,” Networks, vol. 31, pp. 205–216, 07 1998.

[31] D. S. Johnson and K. A. Niemi, “On knapsacks, partitions, and a new dynamic programming technique
for trees,” Math. Oper. Res., vol. 8, p. 1–14, Feb. 1983.

[32] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, first ed., 01 2004.

[33] J. Byun and R. Dimitrakopoulos, “An efficient algorithm for the lp relaxation of the maximal closure
problem with a capacity constraint,” Tech. Rep. G–2013–60, Groupe d’études et de recherche en analyse
des décisions, GERAD, Montréal QC H3T 2A7, Canada, 2013.

[34] N. Maiti, P. Pathak, and B. Samanta, “An efficient algorithm for the precedence constraint knapsack
problem with reference to large-scale open-pit mining pushback design,” Mining Technology, vol. 130,
pp. 1–14, 01 2021.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[36] J.-C. Picard, “Maximal closure of a graph and applications to combinatorial problems,” Management
Science, vol. 22, no. 11, pp. 1268–1272, 1976.

Appendices

A Detailing of the datasets

In this section, we detail the datasets we used in the experiments for reproductibility purposes. For each
dataset, when slicing into time steps, we take the hour of departure of the trips for reference.

New York taxis with urban mapping (nyc) This dataset is comprised of all the records of yellow
and green taxis from 2019. The data contains the zone of origin and zone of destination for more than 22M
trips made over the year. The geography of the 263 tiles if defined by the TLC based on the definitions
of neighborhood by the NYC Department of City Planning. We partition the dataset into 7,242 matrices
corresponding to time slices of one hour each. The generalisation hierarchy defined on these zones is obtained
as the dendrogram of a hierarchical clustering applied on the centroids of the zones, with L2 distance and ward
linkage.

Cote d’ivoire (civ) This dataset is made from the mobiles trajectories available from the first D4D
challenge [13], covering 5M users from 1st December 2011 to 28th April 2012, defined on 1,221 base stations.
With the main idea of generating an OD-matrix without consideration of its actual ground truth, we consider
any transition between antennas to be an actual trip. The OD-matrices are then defined as the trips made
between antennas over a one-hour period. The initial tiles considered for these datasets are the Voronoi
tessellation of the base stations projected in epsg:2165. The generalisation hierarchy we use is the dendrogram
of a hierarchical clustering applied on the base stations, with L2 distance and ward linkage.

Senegal (senegal) This dataset is made from the mobiles trajectories available from the second D4D
challenge [12], covering 9 million mobile users from 7th January to 22nd December 2013, defined on 1,666 base
stations. Only 300 000 users are visible in the data at a time, and the batches roll over a two-weeks period. In
the same approach than for the civ dataset, we consider any transition between base stations to be an actual
trip, and each OD-matrix describe the trips over a one-hour period. The generalisation hierarchy is the also
defined as the dendrogram of a hierarchical clustering with the same parameters as for civ.

19

West Senegal (senegal crop) In order to understand the impact of the number of initial zones on the
time of computing, we consider the senegal OD-matrices defined only on the 599 west-most antennas, the most
urbanized area of Senegal.

Senegal with Voronoi cells, inflated (senegal big) The Senegal trajectories cover 300 000 users on
a rolling 2-week basis. In order to generate a heavier dataset, we make the hypothesis that people have roughly
the same behavior along the year, which allows us to aggregate all matrices with the same time step modulo
two weeks into one matrix comprised of the trips of 9M of users.

Senegal with artificial cells (senegal split) In order to study the effects of bigger maps, we artificially
split each senegal base station into four mock antennas. Each trip between two antennas is randomly attributed
to one of the 16 possibilities of trips between the sub-antennas following a non-uniform multinomial law: the
origin and the destination are independently sampled from a law of parameter (0.4, 0.3, 0.2, 0.1), the sub-
antennas being ordered. We chose not to assign the trips uniformly so that the best solution would not start
by trivially aggregating all the sub-antennas to their original antennas, and to maintain a low graph density
as would be expected from an OD-matrix defined many areas.

B Detailing of the benchmark

In this section, we expand on the implementation details of the algorithms we used for the benchmark.

Adaptative Tree Generalisation For each dataset, we select vtarget based on a grid-search performed
over a small training set. The values obtained for various values of k are detailed in table 5.

dataset k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15

civ 100 100 100 100 100 200 100 200 200 200 200
nyc 100 100 100 100 100 100 100 100 100 100 200
senegal 300
senegal big 400
senegal crop 200 300 300 300 300 400 400 400 400 400 400
senegal split 500

Table 5: Best v target for the studied datasets for various values of k.

Glove We implement Glove in python, with the addition of a 100-nearest neighbours from scikit-learn [35].
The use of a nearest-neighbors graph significantly improves the time performance of Glove without sensibly
impacting the coarseness of its generalisation. By nature, Glove does not consider a generalisation hierarchy
and takes as input coordinates of the points of the trajectories, performing spatial generalisation. For this
study, we assign as coordinates the coordinates of the centroids of the tiles of the map.

Glove-sk The Glove algorithm is drastically simplified when applied to simple ODs, seen as 2-point tra-
jectories without timestamps. In that case, Glove is almost equivalent to the greedy clustering underlying
the approach, i.e., to a hierarchical agglomerative clustering on the four-dimensions points defined by the
coordinates of origins and destinations, with complete linkage and L1 metric. As such, we propose a sim-
ple implementation of Glove using scikit-learn [35] making use of the efficient implementation of hierarchical
clustering to get a full dendrogram, and then choosing the lowest cut that grants k-anonymity to all but C
records. As in our Glove implementation, we also add a 100-nearest neighbors to speed up calculations, as is
recommended by scikit-learn’s documentation for hierarchical clustering with high number of points. However,
the adaptation does not exactly returns what Glove would, because of two main differences:

• First, the complete linkage considers the distance between two clusters to be the maximum distance
between the points of each cluster. Glove considers the maximum distance between the hypercubes
defined by the clusters.

• More importantly, the hierarchical clustering is agnostic of the volume and eventually suggests merging
flows that are both above the anonymity threshold k. This leads to a huge generalisation overhead.

Because of this, the scikit-learn implementation of Glove performs appallingly worse than actual Glove.
We still include it in the benchmark as it is by far the most readily available solution for a data owner, running
in a reasonable amount of time for data that are not as high-volume as the ones featured in this study. As the
implementation offered by scikit-learn benefits from state of the art code optimization, it also acts as a lower
bound for the computing time we could expect from glove in the case of the best possible implementation.

20

level 1 level 2 level 3 level 4 level 5

Figure 13: All generalisation levels considered by OIGH for a hierarchy that does not have all leaves
at the same depth.

Mondrian We use our own python implementation of Mondrian. As it takes coordinates as input instead
of qualitative areas, we assign to each area the coordinates of the centroid, as in Glove. At each step, we chose
to cut the dimension that has the highest range, and we cut it to the median. If this cut implies separating a
cluster into clusters that have less than a volume of k, we do not cut and we stop the algorithm in the current
branch. As Mondrian forms a tree, the other branches make their own independant cuts.

OIGH The OIGH algorithm has been adapted to match the particular structure of the generalisation hi-
erarchies of this studies: Uniform generalisations usually consider all the initial values to be at the same tree
depth which is not necessarily the case for us. Some steps of OIGH could then yield generalisations that are
not partitioning of the study area. In order to keep a coherent generalisation at all steps, going up one level
in our implementation only generalise nodes that are of minimum-cardinal among the available parents. This
problematic is illustrated in Fig. 13.

laplace-noise We implement a variation of the noise process described by Dwork [25], that results in integer,
non-negative noisy flows: the recommended Laplacian noise is completed by a deterministic rounding and a
thresholding to 0 for negative flows. As differential privacy is immune to post-processing [25], these operations
preserve the ϵ-differential privacy property (Eq. 1) and save us the burden of storing a full matrix of noise.

C Detailing of the results

We detail the results of each solver over each dataset in table 6.

D Definition of the best pruning error Bn(λ)

In this section, we define the best pruning error of a node n in a generalisation hierarchy T , designed to solve
the dual problem D. We recall that this problem involves finding the λ that maximizes the lagrangian function:

L : λ 7→ min
x

∑
d∈T

(xp(d) − xd)(αd + λσd)− λC.

The best pruning error Bn(λ) of a node n is designed to be equal to the contribution of node n and its subtree
to the total L(λ):

Bn(λ) =

{
min

{∑
c∈children (n) Bc(λ), αn + λσn

}
if n has children and vn ≥ k

αn + λσn else
(5)

As αn+λσn is the generalisation error of node n, the expression of Bn(λ) indicates that it takes the best choice
between generalising to node n and splitting node n, when possible. It follows by induction that Broot(T)(λ)
is the minimal value for the generalisation penalty αn + λσn, and that:

L(λ) = Broot(T)(λ)− λC.

piecewise linearity As the (xd)d∈T are in {0, 1}, the solution x for L(λ) is constant in a neighborhood
of λ, and the value L(λ) is linear as long as x does not change. It is apparent then that L, and each Bn, are
piecewise linear, with breakpoints corresponding to thresholds in λ that imply a change in the best solution x.
Each piece of Bn correspond to a solution (xn′)n′∈branch(n), and each breakpoint correspond to two solutions.

21

dataset solver time (s) Ḡ E E (normalized) S

civ ATG-Dual 00:00:05 57.2 1.72 17.05 10.0%
civ ATG-Soft 00:00:02 74.4 3.58 18.10 5.3%
civ oigh 00:00:11 106.8 1.79 17.81 9.9%
civ glove 00:06:34 35.7 1.01 11.57 10.0%
civ glove-sk 00:00:09 542.9 1.39 16.81 9.9%
civ mondrian 00:00:37 52.0 1.32 13.40 0.0%
nyc ATG-Dual 00:00:01 4.7 0.49 4.75 10.0%
nyc ATG-Soft 00:00:00 9.1 0.62 6.38 3.3%
nyc oigh 00:00:05 7.0 0.75 7.05 9.7%
nyc glove 00:04:42 4.2 0.52 4.61 10.0%
nyc glove-sk 00:00:09 24.4 0.70 7.48 10.0%
nyc mondrian 00:01:32 7.5 0.49 6.26 0.0%
senegal ATG-Dual 00:00:09 17.4 1.21 12.00 10.0%
senegal ATG-Soft 00:00:04 43.5 1.41 14.28 3.2%
senegal oigh 00:00:26 26.2 1.36 13.48 9.9%
senegal glove 04:17:38 16.0 0.82 8.66 10.0%
senegal glove-sk 00:01:18 667.6 1.21 15.10 10.0%
senegal mondrian 00:05:33 22.7 0.96 10.6 0.0%
senegal big ATG-Dual 00:00:15 3.9 0.17 5.92 9.8%
senegal big ATG-Soft 00:00:05 13.9 0.53 8.84 1.1%
senegal big oigh 00:00:54 6.2 0.79 10.32 9.5%
senegal big glove-sk 00:05:40 80.9 0.68 10.7 10.0%
senegal big mondrian 00:32:59 7.5 0.41 7.40 0.0%
senegal crop ATG-Dual 00:00:06 13.6 1.19 11.95 10.0%
senegal crop ATG-Soft 00:00:01 27.5 1.31 13.53 3.0%
senegal crop oigh 00:00:12 32.7 1.35 13.67 9.8%
senegal crop glove 01:57:47 13.5 0.82 8.87 10.0%
senegal crop glove-sk 00:00:52 508.0 1.04 15.10 10.0%
senegal crop mondrian 00:03:43 20.4 0.95 10.63 0.0%
senegal split ATG-Dual 00:01:35 16.0 0.75 9.76 10.0%
senegal split ATG-Soft 00:00:26 83.5 1.14 13.5 1.8%
senegal split oigh 00:15:30 19.7 1.09 12.68 9.9%
senegal split glove-sk 00:50:23 2304.5 1.09 14.41 10.0%
senegal split mondrian 02:39:21 20.2 0.78 9.66 0.0%

Table 6: Detailed results

non-decreasing property w.r.t. λλλ As increasing λ means adding more penalization, the best solution
x can only have a higher value. It follows that Bn is non-decreasing with respect to λ. It can be constant, and
for each n such that vn ≥ k it actually assumes a constant value after a threshold λ∗

n. Indeed, intuitively, if
the penalisation for suppression λ is high enough, it is preferable not to split node n, and accept the constant
aggregation penalty αn. If node n has a volume vn < k, then it can only yield the suppression penalty λσn

and its best pruning error is a linear function.

Concavity w.r.t. λλλ We prove by induction that for each n ∈ T , the best pruning error Bn is concave with
respect to λ:

• If n is a leaf of T , then from the expression of Bn it is either constant or linear, so it is concave.

• For a given n ∈ T , Bn is the sum of the best pruning error of the children, which are supposed concave.
Then it is maxed by a threshold, which conserves concavity.

It follows that L : λ 7→ Broot(T)(λ) − λC is also concave. Moreover, as we saw in the previous paragraph,
Broot(T) is constant value after a threshold λ∗

root(T), assuming the trivial property vroot(T) ≥ k. It follows that
L(λ) is necessarily decreasing after this λ∗

root(T). As it is defined for λ ≥ 0, we conclude that the maximum of
L is attained.

22

E λ is a hard constraint on aggregation level

In this section, we prove that the aggregation x∗ found by solving H’ respects an aggregation constraint:

∀d ∈ T ∼ leaves(T) s.t. vo→d ≥ k, |o|+ |d| > λ =⇒ x∗
d = 1.

This property means that any volume would rather be split than aggregated to a level above λ, even if it means
getting entirely suppressed. This does not concern flows whose destination cannot be split (leaves of T), or
flows that are already suppressed (vo→d < k).

Proof. Let λ ≥ 0, d ∈ T , o → d a flow such that |o| + |d| > λ. We note C the set of the children of d. We
suppose d is not a leaf of T , so C ̸= ∅. Recall that in the context of OD aggregation, the aggregation penalty
of node d is:

αd =

{
(|o|+ |d|)vo→d if vo→d ≥ k

0 else
,

and the suppression error of node d is:

σd =

{
0 if vo→d ≥ k

vo→d else
,

so the best pruning error of node d, defined by:

Bd(λ) =

{
min

{∑
c∈C Bc(λ), αd + λσd

}
if d has children and vo→d ≥ k

αd + λσd else

becomes:
Bd(λ) = min

{∑
c∈C

Bc(λ), (|o|+ |d|)vo→d

}
where Bd(λ) =

∑
c∈C Bc(λ) means that the optimal solution implies splitting the d (so x∗ = 1), and Bd(λ) =

(|o|+ |d|)vo→d means that the optimal solution implies keeping d aggregated (so x∗ = 0). So we have to prove
Eq. 1: ∑

c∈C

Bc(λ) < (|o|+ |d|)vo→d. (1)

We separate C into the set of children with volume above k and the set of children below k:

C+ =
{
c ∈ C, vo→c ≥ k

}
C− =

{
c ∈ C, vo→c < k

}
Then, by definition of Bc(λ): ∑

c∈C

Bc(λ) ≤
∑
c∈C+

(|o|+ |c|)vo→c + λ
∑
c∈C−

vo→c,

and |d| and vo→d can be expressed as sums over the children:

(|o|+ |d|)vo→d =

(
|o|+

∑
c∈C+

|c|+
∑
c∈C−

|c|
)(∑

c∈C+

vo→c +
∑
c∈C−

vo→c

)
= |o|

∑
c∈C+

vo→c +
∑
c∈C+

|c|
∑
c∈C+

vo→c +
∑
c∈C−

|c|
∑
c∈C+

vo→c + (|o|+ |d|)
∑
c∈C−

vo→c

where: ∑
c∈C+

|c|
∑
c∈C+

vo→c ≥
∑
c∈C+

|c|vo→c (strict inequality if C+ is not empty)

∑
c∈C−

|c|
∑
c∈C+

vo→c ≥ 0

(|o|+ |d|)
∑
c∈C−

vo→c ≥ λ
∑
c∈C−

vo→c (strict inequality if C− is not empty)

It follows that Eq. 1 is true:

(|o|+ |d|)vo→d >
∑
c∈C+

(|o|+ |c|)vo→c + λ
∑
c∈C−

vo→c ≥
∑
c∈C

Bc(λ)

23

We proved that for any d with children such that vo→d ≥ k, the best pruning error of d is obtained by splitting
d. In order to ensure that d is actually split in the optimal solution, we also have to prove that the precedence
constraint is met. If we note a a node on the path from the root(T) to d, then we know that |a| > |d|. So
|o|+ |a| > |o|+ |d| > λ, so the optimal solution also implies splitting a. As it is true for all nodes from root(T)
to a, by induction d is split in the optimal solution.

F Feasibility of the solution found by dual tree

In this section, we prove that the aggregation x∗ found by solving problem D respects the suppression constraint:∑
x∈T

(xp(d) − xd)σd ≤ C.

As illustrated in appendix D, the function L : λ 7→ minx

∑
d∈T (xp(d) − xd)(αd + λσd)− λC is piecewise linear,

characterized by its breakpoints. Each piece of L is defined on bounds [λ0
l ;λ

0
r] and represents at least one

solution
x0 = argmin

x∈[λ0
l
;λ0

r]

∑
d∈T

(xp(d) − xd)(αd + λσd)− λC.

The value associated to x0 depends linearly on λ, with derivative:

∀λ ∈ [λ0
l ;λ

0
r], L

′(λ) =
∑
d∈T

(x0
p(d) − x0

d)σd − C.

Two consecutive pieces of L share a single point (λ̃, L(λ̃)), meaning the solution x0 corresponding to the left
piece and the solution x1 corresponding to the right piece have the same value L(λ̃). As proven in appendix D,
the maximum of F is reached. It is necessarily reached for a least one breakpoint (λ∗, L(λ∗)), which necessarily
verifies: L′

−(λ
∗) ≥ 0 and L′

+(λ
∗) ≤ 0, where L′

− and L′
+ denote the left-hand and the right-hand derivatives,

respectively. Then the derivative of the right piece is L′
+(λ

∗), so the solution x∗ corresponding to the right-hand
piece of L verifies: ∑

d∈T

(x∗
p(d) − x∗

d)σd − C ≤ 0.

We proved that there always exist an optimal solution x∗ to D that respect the suppression constraint.

G Relevance of the reconstruction loss as an indicator of the
granularity of a spatial generalisation of an OD-matrix

In this section, we discuss some remarks about the reconstruction loss and its relevance as an indicator for
the information loss of an anonymisation algorithm: OD-matrices are by nature sparse and they can also have
sparse emission and reception maps, for example if the matrix is set over a fine grid. The k-anonymised version
of such an OD-matrix features generalised origins with a small number of emission hot spots separated by a
high number of empty tiles, and similarly for destinations. For the sake of simplicity, we consider a generalised
flow o → d containing two hot spots each contributing vo→d/2, and a number zo and zd of empty tiles in o
and d, respectively. The reconstructed flows uniformly distribute vo→d into all zo × zd possible flows. This
means a difference of vo→d

zozd
for the empty flows, and vo→d

2
− vo→d

2zozd
for the two hotspots. We obtain the absolute

difference:

Eo→d = (zozd − 2)
vo→d

zozd
+ vo→d − vo→d

zozd

= 2vo→d − 3
vo→d

zozd

which quickly converge to 2vo→d when zozd grows. As long as zo ≈ zd ≥ 15, the noise then mostly represents
the volume of the flow, regardless of its other properties, which is not a desirable feature.

H Temporal analysis is still possible even though separate OD-
matrices are generalised differently for each timestep

In this section, we illustrate how separating the flows into distinct OD-matrices corresponding to time steps
does not stop us from doing temporal analysis. Indeed, the reconstruction process described in Section 4.3

24

allows us to retrieve an estimation of the flows between any arbitrary couple of zones, which we can choose to
be consistent across timesteps. By reconstructing anonymised OD flows on the initial zoning, we can compare
them with the initial flows. An exemple of this is given in Fig. 14, which represents the mean volume of some
example flows throughout the week, as obtained from the original data and from the data anonymised with
ATG-dual.

I Solving the best pruning problem

In this section, we detail Algo. 1 to solve the Best Pruning Problem P: For each node n, αn can be evaluated
in time O(1). If we note M the number of leaves of T , which correspond in our case to the size of the study
area, then a tree has O(M) nodes and solving problem P can be done in time O(M). Problem P can also
be formulated as a maximisation of the benefit compared to splitting nothing, in which case the objective
function sums over all selected nodes instead of only the leaves. This other form of the problem is known as
the maximal closure problem, and can also be solved using an efficient max-flow/min-cut algorithm [36].

Algorithm 1: get pruning

Input : node n, error fun
Output: best pruning error of node n, and the corresponding pruning

1 error agg = error fun(n)
2 if tree has children then
3 error split ← 0
4 pruning split ← ∅
5 for child ∈ tree.children do
6 bpec, pruningc ← get pruning(child, error fun)
7 error split ← error split + bpec
8 pruning split ← pruning split ∪ pruningc
9 end for

10 if error split < error agg then
11 return error split,pruning split
12 else
13 return error agg, {n}
14 end if

15 else
16 return error agg, {n}
17 end if

J Tree aggregation algorithm

In this section, we detail Algo. 2, to decouple the generalisation problem. It relies on the solving of Problem P
for the generalisation of origins, which is detailed in Algo. 1.

Algorithm 2: Decoupling of the generalisation problem

Input : vo→d, hierarchy tree, v target, k, S
Output: aggregated od matrix

1 od matrix agg ← ∅
2 error fun ← (f : o 7→ (

∑
d vo→d − vtarget)

2)
3 , generalised origins ← get pruning(hierarchy tree, error fun)
4 agg flows ← generalise destinations(generalised origins, hierarchy tree, k, S)
5 for (o, d, vol) ∈ agg flows do
6 od matrix agg.append((o, d, vol))
7 end for
8 return od matrix agg

25

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0

50

100

150

200

236 -> 237 (mean difference = 0.41)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0

5

10

15

20

25

30
186 -> 68 (mean difference = 0.79)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0

5

10

15

20

25

151 -> 142 (mean difference = 2.8)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0

2

4

6

8

10

12

14
163 -> 90 (mean difference = 2.5)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0

2

4

6

8

79 -> 112 (mean difference = 0.44)

Figure 14: Weekly profiles of o → d flows of various importance in dataset nyc. Blue curve: profile
obtained from the OD-matrices anonymised by ATG-dual then reconstructed. Orange curve: profile
obtained from the initial OD-matrices.

26

For a given origin map Mo, we look for one destination map for each origin such that the total error of all
the destinations map is minimal and the total suppressed volume is below the threshold C. The corresponding
problem is problem H applied on a tree composed of |Mo| times the generalisation hierarchy, whose roots are
all the children of one dummy node that would be always selected in the solution. Each one of the subtrees
represents the destinations for one particular origin, so each node corresponds to a particular flow vo→d. In
the following Algo. 3, constructing this tree is handled in the build_destinations_tree function, that assigns
the aggregations errors αo→d and suppression costs σo→d. Actually solving for problem H is computationally
very expensive, so Algo. 3 rather solve for the dual problem D, which can be fast to solve using the Specific
Breakpoints Algorithm [34]. Algorithm 3 is thus an adaptation of the specific breakpoints algorithm for the
leaf-error minimization. The Specific Breakpoints Algorithm requires to evaluate the value and the derivative
of the best pruning error, which is done in a similar way than the solving of the pruning in Algo. 1. As it does
not return the same output, we include it in a separate algorithm 4.

Algorithm 3: generalise destinations

Input : generalised origins, hierarchy tree, k, C
Output: aggregated od matrix

1 dest tree ← build destinations tree(generalised origins, hierarchy tree)
2 λl ← 0
3 bpel, bpe’l ← dest tree.root.evaluate(λl)
4 el ← bpel − λlC // value of objective function

5 sl ← bpe’l − C // derivative of objective function

6 λr ← M
7 bper, bpe’r ← evaluate(dest tree.root, λr)
8 er ← bper − λrC
9 sr ← bpe’r − C

10 while True do
11 λm ← (slλl − srλr + er − el)/(sl − sr) // find the intersection of the tangents

12 bpem, bpe’m ← evaluate(dest tree.root, λm)
13 em ← bpem − λmS
14 sm ← bpe’m − C
15 if λm = λl or λm = λr then
16 error fun ← (f : n 7→ αn + λmσn)
17 return get pruning(dest tree, error fun)

18 else
19 if sm > 0 then
20 (λl, el, sl)← (λm, em, sm)
21 else
22 (λr, er, sr)← (λm, em, sm)
23 end if

24 end if

25 end while

27

Algorithm 4: evaluate

Input : node n, λ
Output: best pruning error of node n, and its derivative w.r.t λ

1 error agg = αn + λσn

2 deriv agg = σn

3 if tree has children then
4 error split ← 0
5 deriv split ← 0
6 for child ∈ tree.children do
7 bpec, bpe’c ← evaluate(child, λ)
8 error split ← best error split + bpec
9 deriv split ← best deriv split + bpe’c

10 end for
11 if error split < error agg then
12 return error split,deriv split
13 else
14 return error agg,deriv agg
15 end if

16 else
17 return error agg,deriv agg
18 end if
19

28

	Introduction
	Related work
	Trajectory data anonymisation
	Generalisation and suppression for relational data
	Differential Privacy
	Positioning

	Methodology
	Overview
	Best pruning problem
	Pruning problem with suppression constraint
	Global suppression constraint
	Parameter choices
	Proposed models

	Experiments
	Datasets
	Benchmark
	Performance indicators
	Results

	Conclusion and perspectives
	Appendices
	Detailing of the datasets
	Detailing of the benchmark
	Detailing of the results
	Definition of the best pruning error
	Lambda is a hard constraint on aggregation level
	Feasibility of the solution found by dual tree
	Relevance of the reconstruction loss as an indicator of the granularity of a spatial generalisation of an OD-matrix
	Temporal analysis is still possible even though separate OD-matrices are generalised differently for each timestep
	Solving the best pruning problem
	Tree aggregation algorithm

