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Abstract

The railway world is undergoing major changes. The advent of new technologies allows us to rethink the train system
and face new challenges, but one must not forget all the ecological constraints that are now accentuated by the increase
in energy costs. This paper focuses on the optimization of the driver commands to limit the energy consumption of
the trains under punctuality and security constraints. This problem falls within the framework of control optimization
problems for nonlinear dynamic mechanical systems in the presence of constraints and uncertainties. A four-step
approach is then proposed in this paper to solve this problem: (1) the introduction of simplified and fast-to-evaluate
models to model the nonlinear dynamic behavior of the train and its energy consumption; (2) the identification in a
Bayesian formalism of the parameters on which these models depend from on-track measurements on commercial
trains; (3) the reformulation of the optimization problem so that it integrates the uncertainties related to an imperfect
knowledge of these estimated parameters; (4) the resolution of the optimization problem using evolutionary algo-
rithms. The main specificity of this work lies in the fact that not only the objective function to be minimized, here the
energy consumed by the train, is impacted by the uncertainties, but also the admissibility constraints of the solution,
here punctuality and operating safety. The integration of the uncertainties in the search for the control function is thus
not trivial and requires several original adaptations in order to make the final optimization problem well posed.

Keywords: Nonlinear systems, Bayesian estimation, control optimization, dimension reduction

1. Introduction

Simulation is increasingly used to optimize the behavior
of more and more systems, whether they are physical, bi-
ological, mechanical or economic. In this work, we are
interested in the optimization, under constraints, of the
control of a nonlinear dynamic mechanical system (whose
expression is given in (A.5)). The link between the con-
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trol and the state vector gathering temporal evolutions of
characteristic quantities of the considered system (ex: po-
sition and speed) is often achieved thanks to numerical
models.

Such models are generally based on three kinds of inputs
that must be set to execute the code. First, there is the time
evolution of the control function driving the system that
one seeks to optimize with respect to a certain criterion.
There are also the parameters characterizing the system
itself, which are a priori constant during the whole sim-
ulation, such as its mass or its traction and braking char-
acteristics. Finally, it is necessary to specify environmen-
tal conditions, which may change during the circulation
(ground topology, wind or humidity, and so on).
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The difficulties related to the solving of this type of prob-
lem are numerous. The first ones come from the fact that
the optimal control function is functional, so that it is a
priori searched in a set of infinite dimension. The com-
putational costs of the direct problem, i.e. the simulation
of the temporal evolution of the state vector with a fixed
choice of the model parameters, can be long, which can
strongly limit the ability to explore the set of possible con-
trol functions. Finally, and it is on this difficulty that this
paper focuses, the parameters of the system may not be
perfectly known and the environmental conditions may be
poorly specified [1]. Indeed, whether they are epistemic
or random, these uncertainties on the system parameters
and environmental conditions lead to the minimization of
an uncertain quantity of interest, radically changing the
optimization problem of the control function [2]. And
these difficulties are all the more important as these uncer-
tainties also impact the constraints that the control func-
tion must verify.
The first objective of this work is thus to show to what
extent the presence of these uncertainties on both the ob-
jective function and the constraints can make the opti-
mization of the control function ill-posed, in the sense
that it will admit no solution. Indeed, if the constraints
are very sensitive to the uncertainties, it may be impossi-
ble to find a deterministic solution that respects the con-
straints, whatever the realization of the uncertain parame-
ter. The challenge will then to make it well-posed again.
This will be done thanks to the introduction of a trans-
formation of the control function making it possible to no
longer make the search space of the solution (which in-
cludes constraints) depend on the uncertain parameters.
The second objective will consist in proposing an approx-
imate method of solving this problem under uncertainties.
Several steps will first be proposed to reduce the dimen-
sion of the search space in a relevant way. The function to
be minimized being a priori nonconvex and its gradient
being not explicit, an evolutionary-type algorithm will fi-
nally be used to solve this problem in reduced dimension.
These different methodological developments will then be
applied to the case of the minimization of the running
consumption of high-speed trains. Indeed, the recent sky-
rocket of the electrical energy costs encourages the rail-
way companies to reduce their consumption. Three dif-
ferent levers can therefore be activated: modifying the

running environment of the train, redesigning the vehicle
itself, or adapting the train speed. We propose to focus ex-
clusively on the train speed in this work, not only because
it may be the only parameter on which we can play in the
short term, but also because it has recently been observed
that on the same high-speed line, energy consumption be-
tween the different circulations could considerably vary.
Optimizing train speed to reduce energy consumption is
not a new problem and several studies can be found in
the literature. For instance, the case of systems of sev-
eral trains has been considered in [3], the importance to
take into account uncertainties in the optimization prob-
lem is analyzed in [4], and multi-objective formulations
can be found in [5]. These optimization problems in-
troduced in these papers are solved with many different
methods like evolutionary algorithms [6], dynamic pro-
gramming [7], pseudo-spectral methods [8], or the maxi-
mum principle [9] between others.
The present work differs from these previous works in
several aspects. (i) First, the driver commands have been
privileged to the train speed as optimization variable. This
complicates the problem because the link between driver
commands and speed is not trivial, but makes the results
of this work much more usable from an operational point
of view. (ii) Second, the optimization problem that we
introduce relies on models for the train dynamics and the
energy consumption that are as close as possible to the
train under consideration, while being relatively quick to
be evaluated. Note in particular the fine integration of
several factors playing on the energy consumption during
acceleration phases and the presence of two braking sys-
tems, allowing energy recovery during these phases. (iii)
Thirdly, a rigorous Bayesian approach has been imple-
mented for the estimation of the parameters, previously
introduced in the models. The identification of these pa-
rameters was made possible by the deployment of dedi-
cated measurement campaigns on trains operating in com-
mercial conditions. In particular, we will insist on the
introduction of two sources of model error, in order to
take into account the necessarily uncertain nature of the
railway dynamics model, but also of the energy consump-
tion model. (iv) Finally, the uncertainties management is
based on a novel formulation of the optimization problem
under constraints, allowing to no longer make the con-
straints depend on the model parameters uncertainties.
The outline of this paper is as follows. Section 2 presents
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the general framework proposed for constrained control
optimization under uncertainties. Section 3 presents the
railway application, and Section 4 concludes the paper.

Remark.. In the rest of the manuscript, in order to fa-
cilitate the distinction between deterministic and random
versions of the same quantity, we will use capital letters
for random quantities and small letters for deterministic
quantities.

2. Theoretical framework

2.1. Problem definition
In this work, we are interested in optimizing the non-
linear dynamical behavior of a system of interest (Equa-
tion (A.5)) through its control function. Let 0 ≤ t ≤ 1
be the time, x := {x(t) ∈ X ⊂ Rp, 0 ≤ t ≤ 1} be the state
vector of the system, and u := {u(t), 0 ≤ t ≤ 1} be the sys-
tem control function. Function u is assumed to belong
to U := C0([0, 1], [−1, 1]), which is the set of continuous
functions defined on [0, 1] whose values are in [−1, 1].
For a given control function u ∈ U, the state vector x
is supposed to verify a deterministic parametric equation,
which is written as:

ẋ(t) = f (x(t), u(t); z f ), 0 ≤ t ≤ 1. (1)

Here, the model f is supposed to be known, but the vector
of parameters z f ∈ Z f , on which it relies, is a priori un-
known (or not perfectly known) and needs to be estimated
from data. The model f is said to be deterministic in the
sense that for given values of u and z f , it leads to a unique
value for the state function, which is written

x(·; u, z f ) : t ∈ [0, 1] 7→ x(t; u, z f ) ∈ X. (2)

The system dynamics must also verify a certain number of
constraints, which can be written as an envelope E gath-
ering lower and upper bounds for each component of x at
any time t. The lower and upper bounds at a particular
time may be infinite when there is no specific constraints,
or equal when a component of x has to pass at a specific
value at a specific time. In particular, envelop E includes
requirements on the initial and final values of x under the
form x(0) = x0 and x(1) = x1. For a given value of
z f ∈ Z f , this allows us to define the set of valid control
functions, noted Uvalid(z f ), by:

Uvalid(z f ) :=
{
u ∈ U | x(·; u, z f ) ∈ E

}
. (3)

The performance of the system of interest is analyzed
through another real-valued function h, which also de-
pends on x and u. Function h is again assumed to be
known, but may also depend on non-perfectly known pa-
rameters, noted zh ∈ Zh. For a given value of z :=
(z f , zh) ∈ Z := Z f × Zh, we are therefore interested in
identifying the optimal control, which is defined as the
solution of:

min
u∈Uvalid(z f )

∫ 1

0
h(x(t; u, z f ), u(t); zh) dt. (4)

Remarks. In the same manner than for the state vector,
there may exist constraints on the values of h under the
form of time dependent lower and upper bounds. These
constraints are however not considered here for the sake
of simplicity. Note also that function h is not necessary
positive, as it will be the case for the railway application.

2.2. Specificities, difficulties, and proposed methodology
The optimization problem defined by Eq. (4) may seem
relatively standard in the field of control optimization.
Nevertheless, the fact that the vector z gathering the
model parameters is not perfectly known poses a major
difficulty. Indeed, it is necessary to estimate its value from
dedicated measurements, i.e. measurements for which the
values of (u, x) are known at all times. Because of the lim-
ited and noisy nature of the available measurements, and
the necessary approximate nature of the models f and h,
this estimation is likely to be affected by uncertainties. To
take into account these uncertainties, we use a Bayesian
framework. Vector z is therefore modeled by a random
vector with given a priori probability distribution and the
estimation process amounts at computing its a posteri-
ori probability distribution, i.e. its probability distribution
conditioned by the information provided by the available
measurements. Let Z be the random estimator of vector z
obtained after this Bayesian estimation.

In order to obtain a robust control function with respect to
the uncertainties of the problem, it is necessary to prop-
agate these uncertainties within the optimization prob-
lem defined by Eq. (4). A first way of proceeding con-
sists in solving M deterministic problems associated with
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M (independent or not) draws of Z, which are denoted
by Z(ω1), . . . , Z(ωM). In this case, we obtain M con-
trol functions, which can be considered as M independent
realizations of a particular stochastic process indexed by
t in [0, 1]. Note that the solution of each deterministic
problem is not trivial either: the dimension of the space
in which the control function is searched is infinite and
the constraints concern a priori the complete dynamics
of the system (past and future). In order to make this
problem numerically tractable, we can replace U by the
subset Ud := C0

d([0, 1], [−1, 1]) of functions interpolating
linearly the d values in [−1, 1] of the control function at
the d fixed times t1 = 0 < t2 < . . . < td = 1 (these
times may or not be equally distributed over [0,1]). This
would lead to the new optimization problem indexed by
z = (z f , zh) ∈ Z:

min
u∈Uvalid

d (z f )

∫ 1

0
h(x(t; u, z f ), u(t); zh) dt, (5)

Uvalid
d (z f ) :=

{
u ∈ Ud | x(·; u, z f ) ∈ E

}
⊂ Uvalid(z f ). (6)

Without specifying the problem studied, it is difficult to
make a precise statement on the existence and uniqueness
of a solution to the former optimization problem. And
even if we are interested in a specific problem, which
will be the case in Section 3, the large dimension of the
research domain, the presence of non-linear constraints,
and the a priori non-convex character of the function to
be minimized may strongly complicate these convergence
analyses. In order to simplify the notations, and to make
future developments more readable, without restricting
their general character, we assume that for z ∈ Z, the
optimization problem defined by Eq. (5) admits a unique
solution, which is denoted by

u?d (·; z) : t ∈ [0, 1] 7→ u?d (t; z) ∈ [−1, 1]. (7)

Even if we work in finite dimension, the comparison and
the statistical treatment of different solutions of prob-
lem (5) remain complex. Indeed, it is not because each op-
timal control verifies the constraints that any linear trans-
formation of them will also verify the constraints. In par-
ticular, if we denote by u?d (·; Z(ωm)) the solution of (5) as-
sociated with the realization Z(ωm) of Z, it is very likely

that the empirical average of these solutions,

uM(t) :=
1
M

M∑
m=1

u?d (t; Z(ωm)), 0 ≤ t ≤ 1, (8)

is not an interesting control function (let us think for in-
stance to the case where the different control functions
are slightly shifted in time). Looking for common fea-
tures between these functions can nevertheless allow us to
greatly reduce the dimension of the problem. This is what
Karhunen-Loève decomposition naturally allows us to do
(see for instance [10, 11, 12, 13, 14, 15] for more details
about this method, also known as Principal Component
Analysis when working with vectors instead of functions).
Indeed, given M solutions of the deterministic problem, it
seems interesting to estimate the autocorrelation function
of the solutions of (5) by its empirical estimate,

rM(t, t′) :=
1
M

M∑
m=1

u?d (t, Z(ωm))u?d (t′, Z(ωm)), (9)

and to search the optimal control in Ud under the form:

uK(t;α) :=
K∑

k=1

αkvk(t), α := (α1, . . . , αK), (10)

where α is the vector containing all the scalar values
used in the linear combination of the functions v1, . . . , vK ,
which are defined as the 1 ≤ K ≤ min(M, d) first solu-
tions associated with the K first eigenvalues λ1, . . . , λK of
the following eigenvalue problem in Ud:∫ 1

0
rM(t, t′)v`(t′) dt′ = λ`v`(t), 1 ≤ ` ≤ d, (11)

∫ 1

0
v`(t)vl(t) dt = δ`,l, λ1 ≥ λ2 ≥ . . . λd ≥ 0, (12)

with δ`,l the Kronecker symbol equal to 1 if ` = l and 0
otherwise. We can notice that since u?d (·; z) is in Ud for
each z ∈ Z, the function rM is continuous on a compact
set and that its rank is at most min(M; d) by construction.
Under this formalism, the optimal control function can
now be written uK(·;α?(z)), where for each z = (z f , zh) ∈
Z, α?(z) is the solution (whose existence and uniqueness
are again assumed) of:

4



min
α∈Avalid

K (z f )

∫ 1

0
h(x(t; uK(·;α), z f ), uK(t;α); zh) dt, (13)

Avalid
K (z f ) :=

{
α∈RK | uK(·;α)∈Ud, x(·; uK(·;α), z f )∈E

}
.

(14)
The difficult management of uncertainties in the former
optimization problem mainly comes from the uncertain
nature of the admissible set. To circumvent this problem
while still taking into account uncertainties, the optimal
control problem defined by Eq. (13) can be reformulated
as:

min
α∈A∞K

∫ 1

0
EZ

[
h(x(t; uK(·;α), Z f ), uK(t;α); Zh)

]
dt, (15)

where E [·] is the mathematical expectation with respect
to probability distribution of Z = (Z f , Zh) and A∞K is the
limit when M tends to infinity of

M⋂
m=1

Avalid
K (Z f (ωm)). (16)

The solution of such a problem no longer depends on Z
and minimizes the cost function on average, which should
lead to reasonable control functions for any value of z in
Z. But this problem relies on the strong assumption that
A∞K is non-empty, i.e. that there are control functions such
that the constraints are verified whatever the value of z.
This assumption is however often not verified in practice,
making this formulation unsuitable as it will be the case
in the application proposed in Section 3. Rather than pro-
ceeding in this way, it seems to us more judicious to intro-
duce a deterministic transformation on the control func-
tion to make it verify the constraints whatever the value
of z. This transformation being generally case-dependent,
we will only assume its existence without discussing on
its construction in this part.
Hence, let us suppose that there exists a transformation
g such that for all z f ∈ Z f and all u in Ud, g(u; z f ) can
be seen as a pseudo-projection of u into Uvalid

d (z f ), in the
sense that g(u; z f ) is in Uvalid

d (z f ), and∫ 1

0
|g(u(t); z f ) − u(t)|dt (17)

is small. The discretized optimization problem under un-
certainties can finally be rewritten as:

min
α∈AK

∫ 1

0
EZ

h  x(t;g(uK(·;α); Z f ), Z f ),
g(uK(t;α); Z f ); Zh

 dt, (18)

AK :=
{
α ∈ RK | uK(·;α) ∈ Ud

}
. (19)

In trying to solve the problem defined by Eq. (18), for
which we assume again the existence and uniqueness of a
solution noted α?, we thus look for a deterministic con-
trol function uK(·;α?) that does not depend on the model
parameters, but depends this time on a transformation g to
be defined. And we can say that this control function is ro-
bust to uncertainties, in the sense that, whatever the value
z taken by Z for the true system, uK(·;α?) is supposed to
make the cost function be relatively small (minimization
of the integral of h on average), while being not too far
from (or even in) the admissible set (up to the distance
between uK(·;α?) and g(uK(·;α?); z f )).

In the rest of this work, we now propose to apply this
formalism (voluntarily theoretical) to the case of the opti-
mization of the driver commands of a high-speed train in
order to minimize the consumed energy while respecting
safety and punctuality criteria.

3. Railway application

The third part of this paper presents the application of the
strategy proposed in Section 2 to the optimization of train
speed with respect to energy efficiency criteria, under the
constraints of safety, comfort, and punctuality. After a
brief introduction of the railway application and its for-
mulation under the form of a constrained control opti-
mization problem, this section explains how the dynam-
ical model and the cost function are constructed, as well
as the way the parameters on which they depend are esti-
mated from on-track measurements. It concludes with the
approximated solving of this problem and shows the effi-
ciency of the proposed approach on a particular journey.

3.1. General context
Although rail transport is often considered to be environ-
mentally friendly due to its low-carbon emissions, it is one
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of the largest electricity consumers. For environmental
reasons and because of the recent spike in energy prices,
railway companies are encouraged to limit their electric-
ity consumption. To do this, one of the levers is to build
speed trajectories that limit energy consumption and/or
allow for load shedding during demand peaks. The con-
struction of these optimal speed trajectories is however
complex for several reasons.

• First, it is not possible to directly choose the train
speed, as this speed is only the (nonlinear) conse-
quence of all the solicitations imposed on the train
by its environment, including the driver commands
that are in charge of the braking and the motor trac-
tion. Thus, the driver commands are the real levers
of action of the train dynamics.

• Second, if we want to minimize the energy con-
sumed by the train on a particular route by playing
on the driver commands, it is necessary to be able to
predict the train dynamics associated with a partic-
ular control function, as well as the associated con-
sumed (or recovered) energy. Keeping in mind that
these models will have to be called many times dur-
ing the optimization phase, a compromise between
realism and numerical efficiency is necessary for
these models. Moreover it is clear that many sources
of uncertainty will affect these models [16, 17]. For
instance, the mechanical properties of the train may
change over time due to wear and are therefore not
very well determined [18]: the wind causes always
changing aerodynamic loads, humidity alters the ad-
hesion between the wheel and the rail, the number of
passengers modifies the mass of the carbodies, the
efficiency of the traction and braking chain is poorly
known...

• In addition, punctuality, safety, and comfort impose
nonlinear constraints (as a result of the nonlinear dy-
namic behavior) on speed and jerk that are also very
sensitive to the uncertain model parameters.

Hence, in agreement with the notations of Section 2, for a
particular railway track T and a particular train V, we
can denote by u the time evolution of the driver com-
mands during the train journey. Function u is continuous
due to mechanical constraints and takes its values in the

interval [−1, 1], where −1 (resp. 1) corresponds to the
use of a maximal braking torque (resp. traction torque).
The relation between the driver commands and the trac-
tion and braking forces applied to the train are given in
Equations (A.2) and (A.3). The positions and speeds of
each mass body of the train are gathered in the state vec-
tor x, the model representing the train dynamics is noted
f , and the parameters on which this model rely are noted
z f . It is important to notice that the train dynamics at a
given instant t, and therefore its state vector x(t), depends
on all the values of u at the previous states. In the same
manner, the model of the total electrical power is written
h and we denote by zh the parameters that need to be es-
timated for this model to be evaluated. Assuming that the
duration of the journey must be 1 for punctuality reason
(up to a time renormalization), the constraints of maxi-
mum allowed speed on the track, departure and arrival at
the right place can again be formulated in the form of an
envelope E for x at any time between 0 and 1.
At this stage, the problem of minimizing, under speed
limitation and punctuality constraints, the energy con-
sumed by a train V to go from a particular position at
t = 0 to another specific position at t = 1 along a rail-
way trackT can be formulated exactly as the optimization
problem defined by Eq. (4).

3.2. Construction and calibration of approximate quick-
to-evaluate models

This section briefly presents the mathematical/physical
models that have been constructed in order to represent
the train behavior, as well as the way the parameters on
which they depend are estimated. Only the most useful
elements are presented in this section and more details fol-
lowing the works presented in [19] and [20] can be found
in Appendix A.

3.2.1. Longitudinal dynamics of the train
In order to limit the numerical costs, only the longitudi-
nal dynamic behavior of the train is considered and it is
modeled with rigid bodies as it is done most often in rail-
way dynamics. The model f aims thus at computing the
time evolution of the state vector x, which gathers the lon-
gitudinal positions and speeds of the centers of gravity of
the different elements composing the train. This dynamics
mostly depends on three external forces (the inner forces
have very little impact on total energy consumption):
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• the (nonlinear) resistance (gathering contact and
aerodynamic) force f R modelled according to the
Davis law [21],

• the (nonlinear) traction f T and braking forces f B,
which amplitudes depend on the driver commands,
and therefore on control function u,

• the projection f W of the weight on the longitudinal
to the track axis in case of ramp (positive declivity)
or slope (negative declivity).

Some of the parameters considered in this model vary
from one train to another because of damage, of weather,
and of the train loading. A sensitivity analysis made it
possible to select only four main parameters for the mod-
eling of the train dynamics: the total mass of the train,
m, and the three Davis coefficients noted a, b, and c. All
these coefficients are gathered in vector z f = (m, a, b, c).
Finally, the Newton laws of motion allows us to model
the train behavior in the form of a nonlinear system of
differential equations, which can be rewritten as in Eq. (1)
(see Appendix A for more details about the precise rela-
tion between function f and the forces f R, f T , f B, and
f W ).
This system of differential equations is solved using a
Runge-Kutta scheme and we assume that for a given con-
trol function u and for a given parameter z f , it admits a
unique solution noted x(·; u, z f ).

3.2.2. Energy consumption of the train
The performance of the train is monitored thanks to the
electrical power transmitted by the catenary, which can
be decomposed in several terms: pT , the electrical power
used for the traction, pB, the electrical power recovered by
the braking, and pa, the power transmitted to the auxiliary
equipment of the train. This latter is poorly known and
is considered constant in this work. In addition, models
are introduced for the traction efficiency (resp. the brak-
ing efficiency), which depend on new coefficients aη, bη
(cη and dη) that also need to be adapted to the considered
train. These five uncertain parameters are gathered in vec-
tor zh = (pa, aη, bη, cη, dη). The energy consumed by the
train is finally given by the integral of the total electrical
power during the journey:∫ 1

0
h
(
x(t; u, z f ), u(t); zh

)
dt. (20)

Function h is thus positive during the traction phases but
can be negative in case of electrodynamic braking since
power may be restored to the network. Once again, we
refer the interested reader to Appendix A for more details
on the explicit relation between h, pT , pB, and pa.

3.2.3. Bayesian model calibration
The accuracy of the prediction of the train models con-
structed in Sections 3.2.1 and 3.2.2 strongly depends on
the vehicle parameters. As was proposed in [22], a
Bayesian calibration [23, 24, 25, 26] is therefore set up to
identify the characteristics of the studied train. It amounts
to assuming that the value of z to be estimated can be
modeled by a random vector Z to account for its uncer-
tain nature. Estimating the value of the vehicle param-
eters in a Bayesian formalism requires first to introduce
a prior probability distribution for Z and then to charac-
terize as well as possible the statistical distribution of Z
given observations of the system.

Definition of the prior
The maximum entropy principle [27, 28, 29] is used to
define the prior probability distribution of Z. It first leads
us to assume that the components of Z are independent.
It then leads to uniform prior probability distributions for
the mass, the auxiliary power, and the traction and braking
efficiencies, and to gamma prior probability distributions
for the Davis coefficients. Let pZ be this prior probability
distribution of Z.

Introduction of two model errors
In order to model the various simplifications of the mod-
els, two model errors are introduced (see Appendix B for
a precise description of these errors):

• the first term, noted ε f , is similar in nature to a force
and is added in the physical model f ,

• the second term, noted εh, is similar in nature to an
electrical power and is added in the energy model h.

In the same manner than for the vehicle parameters, these
two errors are assumed to be random and they are mod-
eled by two Gaussian centered white noises indexed by
the time. They are assumed to be statistically indepen-
dent, which make them be characterized by two positive
constants characterizing their variance, written σ2

f and σ2
h
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respectively. These two constants are a priori unknown
and also need to be identified from system observations.

Bayesian inference using on-track measurements
To identify σ := (σ f , σh) and Z, the time evolution of the
train dynamics (train speed and position) and the associ-
ated energy consumption have been measured on N = 30
different journeys. All these measurements, which char-
acterize the maximum information available for parame-
ter inference, were performed with the same high-speed
train (without passengers) on the same high-speed rail-
way track, but on different subsections (i.e. with different
starting and ending points), at different speeds and dif-
ferent dates, and therefore for different wind conditions
to describe as many different situations as possible. These
on-track measurements were collected with high accuracy
compared to the modeling errors, so that the measure-
ment errors are assumed to be negligible in the follow-
ing. Let DN be the set gathering all these measurements.
Wind forecasts along the train path were also available
for these journeys. Given these data, a two-step approach,
also called plug-in approach (see [30] for further justifi-
cations about this approach), is proposed to estimate σ
and Z because of their different nature. First, we denote
by (z,σ) 7→ LN(z,σ) the likelihood function, which is
introduced to compare measurements and model previ-
sions (see Appendix B for a precise definition of the like-
lihood function). The maximum likelihood estimator of
(Z,σ), that is to say the value of (z,σ) that maximizes
the likelihood function in Z×]0,+∞[2, is then denoted by
(ZMLE,σMLE). The Basin-hopping algorithm [31] is used
to solve this problem, because of its robustness and its
ability not to get stuck in local minima.

We then propose to fix σ to σMLE (hence the name plug-
in) and then only focus on the posterior probability dis-
tribution of Z given σMLE. In that prospect, the Bayes
formula tells us that the probability distribution of Z
knowing σMLE and the available measurements, noted
pZ|DN ,σMLE , can be decomposed as:

pZ|DN ,σMLE (z) ∝ pZ(z)LN(z,σMLE), (21)

here ∝ indicates a proportional relationship. The
Metropolis-within-Gibbs (MwG) algorithm [32] is finally
used to sample the posterior distributions. It combines

the single component Metropolis-Hastings (SCMH) algo-
rithm [33] with the Gibbs Sampling (GS) [34], changing
component each 5 iterations. The interest is that the com-
ponents of Z are considered one-by-one so that the ef-
fects of the less influential parameters are not hidden by
the most influential ones. Here, several iterations of the
Metropolis-Hastings algorithm are performed for each it-
eration of the Gibbs algorithm to ensure a better homo-
geneity in the number of different points per component.
After several numerical tests, it turned out in particular
that performing 5 iterations of Metropolis-Hastings of-
fered an interesting compromise between conditional law
exploration and full joint probability distribution explo-
ration. To accelerate convergence, the algorithm is more-
over initialized in ZMLE and the likelihood functions for
the N different journeys are computed in parallel. There’s
however no guarantee that this choice of initialization is
optimal, and other choices could have been made (see [35]
for more details). The proposal is a normal centered dis-
tribution, whose standard deviation is constant and deter-
mined empirically for each uncertain parameter to reach
an acceptation ratio close to 50%. In order to assess the
convergence of the method, we estimate the second-order
moment E{‖Z‖2} (see Figure 1). Its value remains rel-
atively stable after NMwG = 4900 iterations. Keeping
the iterations following the NMwG-th iteration allows us to
gather points that are approximately distributed according
to the posterior probability distribution of Z (see Figure 2
for a trace plot of the samples obtained after the NMwG-th
iteration). Despite all the precautions taken to maximize
the relevance of the inference results, it is nevertheless not
possible to guarantee that the inference results are not af-
fected by a slight bias linked to the finite character of the
number of MCMC iterations.
The posterior probability distribution of Z is finally recon-
structed using a kernel-based method (see [36] for more
details) and its marginal distributions are presented in Fig-
ure 3. In this figure, we notice that the posterior prob-
ability distributions of the components of Z associated
with the resistance forces, A, B, and C, remain close to
their prior ones. This means that the nominal values used
for constructing the prior distributions were well adapted.
This is not the case for the posterior distributions of the
mass M, the auxiliary power Pa, and the four efficiency
coefficients Aη, Bη, Cη, and Dη, for which the posterior
distributions are relatively different from the prior ones.
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Figure 1: Second-order moment of the uncertain parameters as a func-
tion of the number of iterations. From top left to bottom right: ∆M , Pa,
A, B, C, Aη, Bη, Cη, and Dη. Iteration number NMwG is represented by a
vertical dashed line in each figure.
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Figure 2: Samples of z obtained after iteration number NMwG . From top
left to bottom right: ∆M , Pa, A, B, C, Aη, Bη, Cη, and Dη.
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Figure 3: PDFs of the prior (blue dashed line) and posterior (orange
solid line) probability distributions for each component of the vector
of vehicle parameters Z = (M, A, B,C, Pa, Aη, Bη,Cη,Dη). From top
left to bottom right (line-by-line): Mass M, auxiliary power Pa, Davis
coefficients A, B, C, and the traction and braking efficiency parameters
Aη, Bη, Cη, and Dη.

This can be explained by the fact that in those cases, only
little information was available for constructing the priors,
whereas the energy consumption is sensitive to them.

3.2.4. Model evaluation
In this section, we propose to propagate the uncertainties
in the model and to compare in Figures 4 and 5 the mea-
sured and simulated energy consumptions. We point out
that all these comparisons between model predictions and
measurements are associated with the same driver com-
mands, and therefore the same control function u, without
taking into account potential operational constraints for
the train journey (punctuality, zero speed at arrival, and
so on).

Figure 4 corresponds to one of the journeys used for the
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Figure 4: Measurement 1 - (i) Realizations of the random energy con-
sumption generated with the posterior distribution (in blue dashed line),
(ii) its mean value (in black solid line), (iii) realizations including the
modeling error εh (green curves), and (iv) envelope of the confidence
regions for the 95% quantiles. The PDFs of (i) and (iii) are plotted at
three given times. Finally, the energy measurements are plotted with a
red dotted line

Bayesian inference. In this case the measurements are
very close to the mean value estimated with the posterior
distribution. In general, most of the energy consumption
measurements used in the Bayesian inference are well
described by the blue envelope, but some of them are
slightly outside (but never outside the green envelope).
In other words, the estimated posterior distribution cor-
rectly characterizes the variability encountered during all
the measured journeys. Note that most of the uncertainty
results from the model error since the green envelope (de-
scribing the model error) is larger than the blue envelope
(describing the parameters’ uncertainty).
We also propose to assess the quality of the posterior
distribution by plotting the predicted energy consump-
tion for measurements that have not been used during the
Bayesian inference. This is shown in Figure 5, using the
same conventions as the ones used in Figure 4. Once
again, the blue envelope is sufficient to describe the mea-
surements, but in a slightly higher number of journeys, we
observe measurements that are outside this blue envelope
while remaining inside the green one. All these results
justify the importance of the two model errors and seem to
indicate a good estimate of the posterior distribution of Z,
as the model makes it possible to reproduce the measure-
ment with a controlled confidence (once the uncertainties
are propagated). Looking at Figures 4 and 5, we can no-
tice that the impact of model errors and uncertainties on
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Figure 5: Measurement 2 - (i) Realizations of the random energy con-
sumption generated with the posterior distribution (in blue dashed line),
(ii) its mean value (in black solid line), (iii) realizations including the
modeling error εh (green curves), and (iv) envelope of the confidence
regions for the 95% quantiles. The PDFs of (i) and (iii) are plotted at
three given times. Finally, the energy measurements are plotted with a
red dotted line

Z is far from negligible on the consumed energy, which
justifies their use in the optimization problem.

3.3. Optimization of the driver commands to save energy

As explained at the beginning of Section 3, for a given
railway journey and a given train, the objective of this
work is to identify a deterministic driver command allow-
ing to minimize the energy consumed by the train on av-
erage. This command can be used as a guide for current
drivers, while preparing the arrival of autonomous trains.
Taking into account the operational constraints related to
the fact that the train departing from a given point stops
at the right place at the right time without exceeding the
speed limits is then essential in this research. Without
these constraints, which can be written as an envelop E
for the state vector x gathering the position and the speed
of the train at each time t, the optimization problem is
as trivial as it is useless, as the absence of train motion
clearly minimizes energy consumption. The problem is
thus complex and the transformation and reduction meth-
ods proposed in section 2 are introduced for the solving.
The search for the optimal control function u? finally re-
quires the solving of the optimization problem defined in
Eq. (18):

u?(t) = uK(t;α?) =

K∑
k=1

α?k vk(t), 0 ≤ t ≤ 1, (22)
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α? := arg min
α∈AK

∫ 1

0
EZ

h  x(t;g(uK(·;α); Z f ), Z f ),
g(uK(t;α); Z f ); Zh

 dt.

(23)
Here, models f and h are the train dynamics and en-
ergy consumption models presented in Sections 3.2.1
and 3.2.2, Z = (Z f , Zh) is the random vector gathering the
parameters on which these models depend, whose distri-
bution has been estimated in Section 3.2.3. Nevertheless,
we note the absence of the model errors in this formu-
lation. Indeed, as these errors play in a linear way on
the model outputs and as they have been assumed to be
centered (see Appendix B), their impact is cancelled out
when we turn to the expectation of the consumed energy.
The search set,

AK :=
{
α ∈ RK | uK(·;α) ∈ Ud

}
, (24)

is nevertheless non-trivial, since it assumes the prior
identification of a relevant projection basis of dimension
K, {v1, . . . , vK}, while allowing the reconstructed control
function to take values in [−1, 1]. Note also in this for-
malism the presence of the function g (described in sec-
tion 3.3.2), whose role is to allow the control function to
verify the operational constraints whatever the values of
Z.

3.3.1. Definition of the search set
As explained in Section 2.2, the choice of the search set
relies on a three-step procedure. Each control function is
characterized by its value on a given d-dimensional time
grid to limit the dimension of the search space for the op-
timization. In this work, the discretization step is chosen
constant in time and corresponds to the case where the
driver can modify the commands every 4 s (which is a
reasonable value for the driver), which leads to d = 200
(for a journey of about 800 s). Given this fixed time dis-
cretization, the (deterministic) constrained optimization
problem defined by Eq. (5) is solved for M = 100 val-
ues of Z picked at random according to its posterior prob-
ability distribution. Let us denote by z(1), . . . , z(M) these
sampled values of Z. To solve these problems, we focus
on the Covariance Matrix Adaptation - Evolution Strat-
egy (CMA-ES), when using an adaptive augmented La-
grangian method to handle the constraints. In brief, at

each step, the algorithm randomly draws a small popula-
tion of points (18 in the considered application), accord-
ing to a multivariate Gaussian distribution. For each of
these points, the algorithm evaluates the cost function,
possibly penalized by the constraints. From these evalu-
ations, it updates the center point and the covariance ma-
trix of the Gaussian distribution, which will be used at
the next iteration. More details about the general method
are given in [37, 38, 39], and indications on how to adapt
the hyperparameters of the algorithm, such as the size of
the population, the adaptation coefficient or the number of
draws selected are given in [40]. Let u(1), . . . , u(M) be the
M optimal control functions associated with the M chosen
values of Z. In addition to these solutions, 30 000 control
functions close to verify the constraints are extracted from
all the control functions tested during these optimizations,
from which an empirical estimate of the control function
covariance was constructed. We finally keep the K = 60
first eigenfunctions associated with this estimate to define
the reduced basis {v1, . . . , vK}, corresponding to a conser-
vation on average of 99% of the information contained in
each control function.

3.3.2. Definition of a transformation of the control func-
tion

The introduction of the function g is mainly motivated by
the fact that, for the considered application, it is not pos-
sible for a single control function u to be valid from the
constraints point of view when associated with different
values of Z. As an illustration, Figure 6 shows the pre-
dicted arrival positions (using model f ) of a train when
associating the same control function u (the same kind of
conclusions would have been obtained for another control
function) with different realizations of Z chosen accord-
ing to its posterior probability distribution. We thus note
that even if on average the train arrives at the right place
(distance 0 with respect to the target position), the uncer-
tainties on Z can lead to an arrival position that can be
750 m away from the target position, which would be un-
acceptable.

As explained in Section 2.2, the choice of g strongly de-
pends on the studied problem. For the railway application
presented in this work, this function is associated with
two distinct modifications of the control function, corre-
sponding respectively to the verification of the speed limit
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Figure 6: Distribution of the distances to the arrival point at arrival time
t = 1 obtained for one choice of u and 100 values of Z.

and the punctuality. First, for a given value z of Z, if
the control function does not respect the speed limitation
at a given time, we propose to directly modify it so that
the train speed reaches the speed limitation without over-
taking it (saturation of the constraint). This can be done
explicitly using the train dynamics equations when play-
ing on the braking and traction forces. If it is necessary
to modify the control command at several time steps, the
algorithm sets the value of the control function to −1 at
these time steps (braking with maximum amplitude) until
the train speed is below the speed limitation. As braking
is equivalent to a loss of energy, these candidates will not
be selected by the algorithm.

Regarding the punctuality constraints, we then propose
to multiply the whole control function by two constants:
cT (z) is a factor applied on the traction parts of the jour-
ney and cB(z) is a factor applied on the braking parts only.
Dichotomy approaches can finally be applied to find these
values of cT (z) and cB(z) in very few iterations.

3.3.3. Solving the final constrained optimization problem
Once search set AK and function g have been defined,
we can turn to the solving of the optimization problem
defined by Eq. (23). First, since the computation of the
expectation in Z cannot be performed explicitly, we pro-
pose to replace it by an empirical estimate based on 30
independent and identically distributed realizations of Z

renewed at each step of the algorithm. Then, this prob-
lem being a priori nonlinear and nonconvex, we propose
to apply again the CMA-ES algorithm to solve this prob-
lem. As an evolutionary strategy, this algorithm makes a
small population of points evolve in AK following a mul-
tivariate Gaussian distribution, whose mean vector and
covariance matrix are re-estimated at each iteration. To
accelerate the convergence of this algorithm, the initial
value of the mean vector is chosen equal to the empirical
mean of the projection coefficients obtained when project-
ing the solutions of the constrained optimization problem
defined by Eq. (5) on {v1, . . . , vK}. The initial value of the
covariance matrix is defined as the identity matrix, not
to favor a specific direction. The size of the population
of new search points is N pop = 16 points, as proposed
by the semi-empirical population size, which is equal to
4 + 3 log(K). The other hyperparameters are chosen in or-
der that the algorithm explores a relatively large range of
possible solutions.
The evolution of the cost function with respect to the it-
eration number i of the CMA-ES algorithm is shown in
Figure 7. During the first iterations, we see that the mean
value decreases rapidly with i and that the convergence
seems relatively well stabilized after i = 4 000. This can
be explained from the sample approximation of the expec-
tation value of the cost function. Indeed, for each point of
the population, the mean sample of the expectation value
will be slightly deviated from its true value. During the
first iterations of CMA-ES algorithm, the deviation will
be small compared to the gain of the cost function, so the
algorithm will manage to find an interesting direction to
explore. But when the algorithm is close to convergence,
this deviation is no longer negligible and the algorithm
shows difficulties to converge. Note that it is expected
that the width of the grey envelope can be reduced by fur-
ther discretizing the expectation in Z, but at the cost of a
higher numerical cost. For the optimal value, we propose
to take the mean of the last 500 iterations.

Remark. Even if evaluating the performance of a partic-
ular control function only takes 4 seconds for the con-
sidered journey, doing it for 30 values of Z, for all the
N pop = 16 points, and for a large number of CMA-ES
steps can be very long. In practice, two different termina-
tion criteria were selected regarding the dispersion of the
new search points and the cost function decrease between
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Figure 7: Convergence of the cost function depending on the iteration
number i: mean value over the population (black solid line), standard
deviation envelope of the population (grey envelope).

two steps, leading to approximately 8 000 CMA-ES steps.
With a 30 cores parallelization of the model evaluations,
this has represented about 6 days of computation for the
estimation of optimal coefficients α?. Working on meth-
ods to speed up these evaluation times is a very important
perspective for this work.

3.3.4. Analysis of the results
The efficiency of the proposed method is now evaluated
for a particular railway journey, for which on-track mea-
surements of the train speed and energy consumption
were available. Hence, Figure 8 compares to the measure-
ments what could be the train speed profile and the asso-
ciated energy consumption, if the optimal control func-
tion was applied. We note strong differences in speed,
which translate into a significant and very promising gain
in energy for the proposed method (about 25% of energy
saved).
Let us notice that we are representing in this figure not a
single speed profile (and the associated energy consump-
tion), but the 95% interquantiles and the average of the
speeds (and consumed energies) when varying the values
of Z according to its posterior probability distribution.
For each value of Z = (Z f , Zh) tested, it is not directly
u? = uK(·;α?) that is applied, but g(uK(·;α?); Z f ) so that
the constraints are well respected. This can explain that,
in spite of the variability of the train configurations, the
optimal speed profile has a variance close to 0 (The func-
tion g attenuating the influence of Z f ).
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Figure 8: Speed profile (left) and energy consumption (right) associ-
ated with the transformed optimal driver commands g(uK (·;α?); Z f ).
The black lines represent the mean value and the envelopes stand for
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Figure 9: Normalized PDFs of the consumed energy (left) and of the
distance to arrival position (right) for the optimal solution of the deter-
ministic problem umode (in blue), the family of optimal solutions of the
deterministic problems u(1), . . . , u(M) (in green), and the optimal solution
under uncertainty uK (·;α?) (in red) empirically estimated from realiza-
tions z(1), . . . , z(M) of Z. zmode is represented with a vertical dotted line.

We now propose to evaluate the relevance of the proba-
bilistic formulation of the problem, compared to a more
classical deterministic formulation. To this end, we de-
note by zmode the (deterministic) most likely value of
Z and by umode the optimal control function associated
with zmode, that is to say the solution of problem (13) for
Z = zmode. We then compare in Figures 9 and 10 the
energy consumptions (computed using models f and h)
that would be obtained if umode or uK(·;α?) was chosen as
control function for the M = 100 values of Z introduced
in Section 3.3.1 and noted z(1), . . . , z(M). A reference is
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Figure 10: Normalized PDFs of the consumed energy (left) and of the
distance to arrival position (right) for the transformed optimal solution
of the deterministic problem g(umode; Z f ) (in blue), the family of opti-
mal solutions of the deterministic problems u(1), . . . , u(M) (in green), and
the transformed optimal solution under uncertainty g(uK (·;α?); Z f ) (in
red) empirically estimated from realizations z(1), . . . , z(M) of Z. zmode is
represented with a vertical dotted line.

added to this graph, which corresponds to the consumed
energy when applying for each z(k) the optimal control
function u(k) obtained in Section 3.3.1. These values are
named as reference because they are optimal in terms of
energy saving while verifying the constraints for each re-
alization z(k). Nevertheless, they have no practical reality
as they suppose that the train characteristics are perfectly
known in advance, which is not the case. The consumed
energy (and the associated distance to target position) for
the particular case Z = zmode is represented with a vertical
line.

Focusing first on Figure 9, we see that umode allows to
further reduce the consumed energy than uK(·;α?) (while
being less efficient than the reference as expected), but all
this at the cost of a poor respect of the constraints (the ar-
rival position is in average several hundreds meters away
from the target position). We also observe that these fi-
nal position constraints are even less verified for the val-
ues associated with uK(·;α?). This just means that the
uK(·;α?) function relies heavily on the transformation g
to verify the constraints, and therefore has no real mean-
ing taken alone.
Focusing on Figure 10, we see that the constraints are cor-
rectly taken into account (up to the numerical tolerance
of the minimization algorithm that was ±5 m for the tar-
get distance) when applying the transformation g on umode

and uK(·;α?). We also notice that the performance of the

solution in terms of energy saving is reduced as the PDFs
are shifted to the right (higher energy consumption). As
expected, the reference (in green) is still the best solution,
but we see that this time, the solution of the problem under
uncertainty (in red) is closer to the reference than the solu-
tion of the deterministic one (in blue). Since the determin-
istic solution is already particularly efficient for this par-
ticular journey, this gain is nevertheless smaller than the
one obtained when compared to the measurement. Com-
paring the vertical bars, we also observe that the solution
under uncertainties behaves slightly better than the deter-
ministic solution for Z = zmode. This result was not ex-
pected a priori. But it can be explained a posteriori by
the fact that the deterministic problem being solved in a
space of dimension d = 200 may have more difficulties
to identify the global optimum than the problem under
uncertainties, which is defined on a space of dimension
K = 60.

4. Conclusions

This paper focuses on the optimization of driver com-
mands to minimize the energy consumed by high-speed
trains, under punctuality and safety constraints, using
simplified physical models for the train dynamics and its
energy consumption. This problem can be seen as a par-
ticular instance of a constrained control optimization in
presence of uncertainties. Indeed, the first difficulty of
the presented problem comes from the unknown nature of
several parameters characterizing the models on which it
depends. A Bayesian formalism exploiting on-track mea-
surements made on commercial trains is thus presented
to identify them. But when the residual uncertainties as-
sociated with these parameters are propagated in the op-
timization problem, not only the objective function be-
comes random, but also the search set through the im-
posed constraints. This difficulty led us to propose a re-
formulation of the optimization problem, so that it can
correctly integrate these uncertainties. The solving of the
reformulated problem poses another series of difficulties.
Indeed, the new optimization problem has no reason to be
convex, the gradient of the cost function is most of the
time not accessible, and the solution has a priori to be
searched in a space of infinite dimension. This motivated
the development of a novel method to approach the solu-
tion of this problem in reasonable time. This method is
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mostly based on dimension reduction techniques and the
use of evolutionary algorithms.
From a methodological point of view, the approaches pro-
posed in this paper to solve the optimization problem are
presented in a general framework and their interest is not
limited to the railway application motivating this work.
From an application point of view, this work seems to
make it possible to envisage significant gains in terms
of energy consumption. Testing these identified driver
command profiles during future measurement campaigns
would indeed be very interesting. These optimized con-
trols could thus serve as a guide for drivers, but also as
instructions for future trains that are expected to be in-
creasingly autonomous.
Many directions might be explored to extend this work.
For instance, we can think of configurations managing
several trains, or taking into account traffic delays or ex-
treme weather events such as a violent wind or snow.

Appendix A. Definition of the train dynamics and
electrical power models

This appendix details the physical models introduced to
model the train behavior. The first section focuses on the
description of the longitudinal dynamics model. The sec-
ond section presents the energy consumption model of the
train. More details about these models can also be found
in [19] and [20].
To begin, let us consider a trainV, moving in an environ-
ment T (including the railway track, the wind, ...). The
driver commands are denoted with the time-dependent
function u, which takes its values in the interval [−1, 1]:
−1 corresponds to the position of the manipulator dur-
ing maximal braking and 1 stands for the position of
the manipulator during maximum traction. At each time
t ∈ [0, 1], we note y(t) := y (t; u,T ,V) the longitudinal
position of the train, ẏ(t) := ẏ (t; u,T ,V) its longitudinal
speed, and ÿ(t) := ÿ (t; u,T ,V) its longitudinal accelera-
tion.

Appendix A.1. Definition of the train dynamics model

A first approach is to consider the train as a set of rigid
bodies interacting with each other as it is done in [41].
This approach describes the complete train with about 50
rigid bodies (wheelsets, bogies, and carbodies). And for

each of them, we have to solve 6 equations (one for each
degree of freedom in rotation and translation). In prac-
tice, solving the train dynamics by this approach approxi-
mately takes 2 minutes for a 5 km journey using commer-
cial softwares such as Vampire [42]. It seems obvious that
this approach is not applicable in the context of our study
(journey of 100 km and several tens of thousands of eval-
uations to solve one deterministic problem (5)).
For this reason, a second approach consists in considering
only the longitudinal direction of the problem and consid-
ering the train as a single element. This approach reduces
the number of equations to be solved to only one at the
cost of simplifications whose validity have to be verified.
The passage from the first to the second approach is car-
ried out in detail in [20].
The dynamics of the train mainly depends on three ex-
ternal forces. First, the resistance force (also known as
Davis force) f R approaches the contact and the aerody-
namic forces projected on the longitudinal axis. It de-
pends on the train speed ẏ(t) but also on the mean speed
of the wind vw projected on the track at the train position
y (t). The resistance force is detailed in [21] and is given
by:

f R (ẏ (t) , vw (y (t) ,T ) ,V) = a + bẏ (t)

+ c (ẏ (t) − vw (y (t) ,T ))
∣∣∣ẏ (t) − vw (y (t) ,T )

∣∣∣ . (A.1)

Coefficient c refers to an aerodynamic coefficient, coeffi-
cient b is associated with the dynamic friction, and coef-
ficient a refers to the static friction. Thus, a and b corre-
spond to the longitudinal contact force and c to the longi-
tudinal aerodynamic force applied to the train. A correc-
tive term is often added in curve, where the friction force
is naturally higher.
The traction and braking forces f T and f B are then cal-
culated from the driver commands and the maximum ca-
pacity of the motors or brakes f T,max and f B,max (which
depends on the train speed and the vehicle) as

f T (ẏ (t) , u(t),V) =

{
u(t) f T,max (ẏ (t) ,V) if u(t) > 0,
0 otherwise,

(A.2)

f B(ẏ (t) , u(t),V) =

{
0 if u(t) > 0,
u(t) f B,max (ẏ (t) ,V) otherwise.

(A.3)
Empirical models based on experiments are chosen for
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these maximal capacities. For confidentiality reasons,
these models are however not provided in details here.
Finally, the weight affects the dynamics of the train when
the declivity of the track is different from zero. Its pro-
jection on the track axis is expressed as a function of the
train mass m, the gravity g, and the track gradient θ at the
train position y (t) as

f W (y (t) ,T ,V) = −mgθ (y (t) ,T ) . (A.4)

The dynamics of the train is described by the following
Newton law:

mkrotÿ (t) = f T (ẏ (t) , u(t),V) − f B(ẏ (t) , u(t),V)

− f R (ẏ (t) , vw (y (t) ,T ) ,V) + f W (y (t) ,T ,V) ,
(A.5)

for t ∈ [0, 1] and with initial Cauchy conditions. It is
assumed that for given u, T , and V, and without con-
straints, this nonlinear differential equation has a unique
solution. The left-hand side of Eq. (A.5) represents the
inertial term, including the rotation of the wheels thanks
to the corrective factor krot. In the literature, we often find
krot = 1.04.
To match the notations of the first section, the state vector
is therefore written:

x(t) =

(
y(t)
ẏ(t)

)
. (A.6)

Vector z f contains all the parameters of the dynamic
model, that is to say z f = (T ,V). We propose to only
keep the most influential model parameters to simplify the
notations (the others are fixed at their nominal value). In
this case, we have z f = (m, a, b, c).
Finally, using Eq. (A.5), it is possible to explicit the non-
linear function f introduced in Eq. (1).
The elapsed time for one evaluation justifies the use of
this second approach consisting in a longitudinal model.
Indeed, it is much shorter than the one obtained with the
rigid body model (4 seconds are enough for a 100 km jour-
ney). This reduction of the computation time results from
several simplifications and approximations (longitudinal
dynamics, Davis forces, ...) introducing a source of error
in our model. This source of error needs to be monitored
and will justify the introduction of an error model (see
Section 3.2.3).

Appendix A.2. Definition of the electrical power model
To estimate the energy consumed by the train, we need
to build a model for the efficiency of the traction chain
ηT and for the braking energy recovery ηB. As explained
in [20], the following models can be considered:

ηT (ẏ (t) , u(t),V) = aη f T (ẏ (t) , u(t),V) ẏ (t) + bη , (A.7)

ηB (ẏ (t) , u(t),V) = cη f B(ẏ (t) , u(t),V) ẏ (t) + dη , (A.8)

with aη, bη, cη, and dη four coefficients that need to be
identified (as it is done in Section 3.2.3). From these ef-
ficiency models, we can deduce the electrical power con-
sumed by the traction pT and recovered by the braking
pB, which are given by:

ηT (ẏ (t), u(t),V) pT (ẏ (t), u(t),V) = f T (ẏ (t), u(t),V) ẏ(t) ,
(A.9)

pB(ẏ (t), u(t),V) = ηB(ẏ (t), u(t),V) f B(ẏ (t), u(t),V) ẏ(t) .
(A.10)

Note here that the traction and braking efficiencies are de-
fined from two different points of view. On the one hand,
the traction efficiency describes the quantity of electrical
traction power converted into mechanical power. On the
other hand, the braking efficiency is defined in inverse,
that is to say the quantity of mechanical power that is in-
jected in the catenary. This choice of notation allows the
efficiencies to be always in [0, 1].
Finally, the total electrical power pE is calculated from
the power consumed by the traction chain pT , the power
recovered during braking pB, and the auxiliary power pa,
i.e. the power transmitted to the elements of the train that
do not contribute directly to the traction (air conditioning,
...). This relation is given by:

pE(ẏ (t), u(t),V) = pT (ẏ (t), u(t),V)−pB(ẏ (t), u(t),V)+pa.
(A.11)

Since we are trying to minimize the consumed energy,
i.e. the integral of the electrical power, the function
h introduced in Section 2 can be chosen equal to the
electrical power pE defined in Eq. (A.11), with zh =

(pa, aη, bη, cη, dη).
Once again, the simplifications made to build this energy
consumption model (simplified energy efficiency model,
constant auxiliary power, ...) has the advantage of be-
ing fast to evaluate (less than one second). Nevertheless,
these simplifications may also introduce some errors in
the model, which have to be quantified (see Section 3.2.3).
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Appendix B. Definition of the likelihood function

To define the likelihood function, we need to quantify the
distance of a simulation with respect to reality. In partic-
ular, this implies being able to quantify the error of the
model (presented in Appendix A) and the error linked to
the measurements. In our case, we have access to energy
consumption and dynamics (position and speed) measure-
ments carried out on a commercial train. These measure-
ments are associated with an error whose variance is very
low. Thus, we assume that the measurement error can be
neglected and we only integrate the model error source in
the representation.
Another difficulty lies in the incompleteness of the mea-
surements. Indeed, solving the inverse problem in or-
der to identify the a posteriori distributions of the uncer-
tain parameters requires to have dynamic and energy con-
sumption measurements knowing the train environment,
as well as the driver commands used during the measure-
ments. In our case, we do not have access to these com-
mands. We therefore propose to use the dynamic mea-
surements to identify in inverse the “experimental” com-
mands before identifying the uncertain parameters from
the energy measurements (see [19] for more details).
The likelihood function is thus defined from two distinct
sources of model error:

• A first source of error is associated with the dynamic
model. It is represented by a centered additive Gaus-
sian process ε f whose covariance matrix (once dis-
cretized in time) is diagonal, with constant coeffi-
cients equal to σ2

f , which is added in the expres-
sion of the traction and braking forces (Eq. (A.2)
and (A.3)): FT,mod

(
ẏ (t) , u(t), Z, σ f

)
= f T (ẏ (t) , u(t), Z) + ε f (σ f ) ,

FB,mod
(
ẏ (t) , u(t), Z, σ f

)
= f B(ẏ (t) , u(t), Z) + ε f (σ f ) .

(B.1)

• A second centered Gaussian process εh is added in
the calculation of the electrical power (Eq. (A.11)).
Its covariance matrix is also assumed diagonal (once
discretized in time) with coefficients constant and
equal to σ2

h. It comes:

PE,mod (ẏ (t) , u(t), Z,σ) = PT,mod
(
ẏ (t) , u(t), Z, σ f

)
− PB,mod

(
ẏ (t) , u(t), Z, σ f

)
+ Pa + εh(σh) ,

(B.2)

with σ := (σ f , σh).
Once the structure of the model error has been defined,
we can propagate it in the models to quantify its impact
on the energy consumption. It is described by the random
process εmod such that

F mod(ẏ (t) , u(t), Z,σ) = F (ẏ (t) , u(t), Z) + εmod(Z,σ) .
(B.3)

It can easily be verified that εmod is also a centered Gaus-
sian process (from the propagation of ε f and εh). Once
discretized in time, it is described by a random vector εmod

whose covariance matrix can be expressed using σ f and
σh (this development is realized in [20]).
Finally, the local likelihood function Li for a given envi-
ronment Ti is directly deduced from εmod. Since the train
speed ẏ depends on the realization z of Z, the discretized
driver commands u, and the environment Ti, we propose
to write the local likelihood function Li with its original
dependencies as presented below:

Li(e; z,u,Ti,σ) = gεmod(z,σ)(e − F (z,u,Ti)) , (B.4)

in which gεmod(z,σ) is the multivariate Gaussian probabil-
ity density function with zero mean vector and with co-
variance matrix [Cmod] (it can be verified that this covari-
ance matrix is invertible for all z and Ti). The complete
likelihood function LN is the product of all the local like-
lihood function Li (as they are supposed independent to
each other), such that

LN(e; z,u,T ,σ) =

N∏
i=1

Li(e; z,u,Ti,σ) . (B.5)

As explained in the body of the paper, this likelihood
function will be optimized to identify values for σ f and
σh and will be used in the MwG algorithm once applied to
the measurements. Thus, one evaluation of the likelihood
function is equivalent to N identifications in inverse of
the “experimental” driver commands, as well as N direct
evaluations of the models f and h to estimate the energy
consumption. This computational capacity remains ac-
ceptable thanks to the simplified models presented in Ap-
pendix A, especially since the evaluations of the different
local likelihood functions can be parallelized for each of
the N journeys.
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