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Polynomial-chaos-based conditional statistics for probabilistic learning with
heterogeneous data applied to atomic collisions of Helium on graphite substrate

Christian Soizea,∗, Quy-Dong Toa

aUniversité Gustave Eiffel, MSME UMR 8208, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

A formulation and an algorithm are presented to construct a truncated polynomial chaos representation of a vector-
valued random output. This representation depends on a vector-valued random input with a known probability mea-
sure and a vector-valued random latent variable with an unknown probability measure. The construction of this
PCE representation relies solely on a training set comprising a small number of independent realizations of the non-
Gaussian dependent random output and input vectors. The training set consists of heterogeneous data, which poses
challenges in accurately estimating the chaos coefficients. Despite the heterogeneity of the data, the proposed formu-
lation and algorithm allow for the construction of a highly accurate global surrogate model. Additionally, we propose
an alternative approach by constructing a surrogate model based on prior separation of the heterogeneous dataset
into subsets, each containing ”quasi-homogeneous” data. The separation method is designed to account for a partial
overlap of the probability measure supports associated with the subsets. The identification of the PCE is performed
offline. By utilizing the PCE, a fast online surrogate model is obtained, enabling analysis of large dynamical systems
beyond the computational capabilities currently available. An application to atomic collisions of Helium on a graphite
substrate is presented, where the training set was generated by Molecular Dynamics simulations done in a previous
paper. The obtained results demonstrate accuracy of the proposed approach.

Keywords: Polynomial chaos expansion, Statistical surrogate model, Probabilistic learning, Heterogeneous data,
Uncertainty quantification, Atomic collisions.

1. Introduction

Physics problem addressed in the paper and its statistical surrogate model. To solve gas flow problems in engineering
applications, a variety of simulation methods have been developed in the literature. They can be classified into two
main types: continuum-based methods (Navier Stokes, moment equations, Burnette etc) and particle-based methods
(Direct Simulation Monte Carlo, Lattice Boltzmann, Molecular Dynamics, etc.). In addition to the bulk behavior
representing fluid-fluid interaction, it must be completed by the interaction between the fluid and the solid boundary.
To avoid the huge computation cost relating to the modeling the solid phase, the interaction fluid-solid is usually
substituted by statistical surrogate models. The construction of the latter can be done by studying separately the
gas-wall collisions using the Molecular Dynamics. The presented application is the case of Helium and graphite at
low temperature where complex phenomenon like adsorption and surface diffusion are present and dominant. How-
ever, the developed methodology is general and can be used for any complex dynamical systems and in particular,
in the context of the application presented, can be applied to any gas-wall couple. The input vector to this statistical
surrogate model consists of a realization (sample) w j = v j

in of the random velocity vector W (the control variable)
representing the velocity of the incident particle on the layer. The output vector is the corresponding realization q j

of the random vector Q = (Vout,∆t,Dx,Dy). This vector includes the random reflected velocity vector Vout (output)
of the particle, the random absorption duration ∆t (residence time), and the two displacement components Dx and
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Dy in the (oxy) plane within the layer. There exist two primary physical regimes depending on the realization w j

of W. In one regime, the particle undergoes quasi-reflection by the layer, resulting in a short absorption time. In
the other regime, the particle is absorbed within the layer and then emerges after a more or less extended random
duration and with random displacements in the plane of the layer. On the other hand, the dynamical system is ex-
tremely complex, and the state Q cannot be solely explained by W. This implies that a deterministic mapping such as
Q = f̃(W) does not exist. Instead, there exists a random mapping F such that Q = F(W). To construct the statistical
surrogate model, it is necessary to introduce a hidden explanatory vector-valued random variable (latent variable).
We can introduce a random vector U of unknown dimension, which is assumed to be statistically independent of
W. Thus, the relationship for Q can be expressed as Q = f(W,U). The only available information consists of the
realizations {(q j

d,w
j
d), j = 1, . . . , nd} of (Q,W) obtained from the MD simulations, where nd is relatively small. The

objective is to construct a truncated polynomial chaos representation, Qchaos = fchaos(W,U), of Q = F(W), which
defines the statistical surrogate model for Q. A probability measure PU(du) for U is then constructed to make the
probability measure of Qchaos as close as possible to the probability measure of Q. This representation allows us to
generate a realization q0 of Qchaos

≃ Q corresponding to a given realization w0 of W, ensuring that (q0,w0) is a consis-
tent realization with respect to the probability measure of (Q,W). Therefore, computing the realization q0 of Qchaos,
given W = w0, is done quickly using q0 = fchaos(w0,u0), where u0 is any realization of U (which is independent of w0).

Main difficulties related to the construction of the statistical surrogate model. There are three main difficulties. The
first is that only a small training dataset {(q j

d,w
j
d), j = 1, . . . , nd} of dimension nd is available. The number of points,

nd, is too small to construct the chaos representation Qchaos of Q. Therefore, it is necessary to generate a large learned
dataset {(qℓ,wℓ), ℓ = 1, . . . ,N} consisting of N ≫ nd learned realizations that follow the probability measure of
(Q,W). This dataset will be created using only the information provided by the training dataset. The second prob-
lem is associated with the presence of the hidden random vector U, of which we do not know the dimension and its
probability measure. The third is related to the training dataset, which comprises heterogeneous data. Within this
dataset, there is a combination of data related to two different regimes of physics processes. As we have explained,
one regime corresponds to the scenario where the particle reflects off the layer, meaning there is no absorption of the
particle. In this case, the duration ∆t and the displacements (Dx,Dy) are small. The other regime corresponds to the
possibility of particle absorption by the layer. Here, the particle moves inside the layer and emerges after a random
duration ∆t and random displacements (Dx,Dy), which can be large. Separating these two probabilistic phenomena
(and therefore separating the points of the training dataset into distinct clusters) is challenging due to partial overlap
in the supports of the probability measures associated with these two regimes. Consequently, the training dataset
consists of heterogeneous data.

Rewriting the addressed physics problem within a broader context. We will present a general methodology that can
be applied to other situations. To do this, we reformulate in a broader context, the problem we presented earlier for
the specific physics problem in question. We consider a large-scale stochastic computational model that depends on
an unknown (and therefore uncontrolled) random parameter, which is modeled by a random variable with value Rnu ,
denoted U (the latent variable). The dimension nu and the probability measure PU(du) of U are both unknown. The
control parameter is the random variable W with values in Rnw , whose probability measure is PW(dw). We assume
that W and U are independent, so we have PW,U(dw, du) = PW(dw) ⊗ PU(du). The quantity of interest is the Rnq -
valued random variable Q = F(W). Let Cw ⊂ Rnw be the support of PW(dw). The random mapping F is unknown.
The joint probability measure of Q and W is denoted by PQ,W(dq, dw). In such a scenario, the random mapping F
can be rewritten as w 7→ F(w) = f(w,U) in which the deterministic mapping f is also unknown. Let X = (Q,W)
be the Rnx -valued random variable, where nx = nq + nw, and its probability measure is denoted by PX(dx). Random
vector X is associated with the random manifold defined by the random graph {(F(w),w),w ∈ Cw} and is fully char-
acterized by its probability measure PX(dx), which represents the joint probability measure PQ,W(dq, dw) of Q and
W. For this problem, the only available information is the training set Dtrain(X) = {x j

d, j = 1, . . . , nd} consisting of nd

independent realizations x j
d = (q j

d,w
j
d) ∈ Rnx of the Rnx -valued random variable X = (Q,W). It is assumed that nd is

small. For each given realization w j
d of W, the corresponding realization q j

d of Q is obtained from the computational
model. However, there are no corresponding realizations uℓd of U available for the given x j

d. In addition, as we have
explained, it will be necessary to construct a large learned datasetDlearn(X) = {xℓ, ℓ = 1, . . . ,N} with N ≫ nd in order
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to build fchaos. The estimation of the probability measure PX will be performed using the learned dataset. Note that the
realization uℓ of U corresponding to xℓ is also not usable.

Short overview of the related works on polynomial chaos expansion (PCE) for developing a methodology to solve the
problem. Given the statistical dependence between Q and W, the joint probability measure PQ,W(dq, dw) = PX(dx)
can be accurately estimated using the large learned datasetDlearn(X) as well as the probability measure PW of W. If Q
did not depend on U, then the problem would easily be obtained by a projection on the chaos polynomials constructed
with PW. When Q depends on U, the coefficients obtained with such a projection become random coefficients yielding
a truncated PCE Qchaos with random coefficients for which a detailed analysis has been proposed in [1].

The concept of PCE for stochastic processes was first introduced by Wiener and Cameron in their seminal works
[2, 3], while Ghanem and colleagues pioneered an effective Karhunen-Loève-based construction for random fields
[4, 5]. The Wiener-Askey PCE was employed by Xiu [6], and the development of random fields in polynomial chaos
for arbitrary probability measures was introduced by Soize [7]. The PCE with random coefficients were explored by
[8, 1, 9], while Tipireddy presented a basis adaptation in homogeneous chaos spaces [10]. A compressed principal
component analysis of non-Gaussian vectors using symmetric polynomial chaos was proposed by Mignolet [11]. Sig-
nificant works are also devoted to the acceleration of stochastic convergence of PCE [12, 13, 14, 10, 15]. Polynomial
chaos expansions have been and continue to be intensively used in both finite and infinite dimensions for uncertainty
modeling and propagation [16, 17, 18, 19, 20, 1, 21, 15] (see also hereinafter the stochastic solvers and the stochastic
finite elements).

After constructing probabilistic models of uncertainties, it becomes essential to investigate how these uncertainties
propagate within systems. This requires the use of methods for solving stochastic equations. The initial set of methods
is grounded on Monte Carlo numerical simulation techniques. The second set is based on spectral projection methods
[22, 23, 24, 25, 26, 27, 28], such as those based on polynomial chaos expansions [4, 5, 29, 30] and called stochastic
finite element method when the discretization method of the boundary value problems are performed using the finite
element method [5, 31, 32, 33, 34, 35, 36] and also [37, 38, 39, 40, 41, 42].

Most often, the uncertainties probability model is a prior model. If targets are available for observations of the
system, coming from experimental measurements or from more precise numerical simulations, a posterior probability
model of uncertainties can be estimated by solving inverse statistical problems based on the maximum likelihood, the
Bayesian inference, and machine learning. For general overviews on statistical inverse methods, see [43, 44, 45, 46,
47, 48, 49, 50], and for complements, see [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. The statistical identification
of the coefficients of polynomial chaos representations of random fields can be found in [62, 63, 64], in particular in
[65, 66, 67] for high dimension, and for representations of random vectors in [14, 68, 69, 70, 71, 72, 73]. The inverse
identification of random matrices have been proposed in [74, 75, 76]. Statistical inverse methods are also used to
perform model updating [77, 78, 79, 80], model selection [81, 82], and to construct surrogate models (or metamodels)
[83, 84, 85, 86, 87, 88, 89].

The machine learning tools and artificial intelligence [90, 91, 92, 93] provide methods that make it possible to solve
problems in UQ in the field of physics and engineering sciences. These problems could not be solved without these
learning methods because the use of the usual methods would require computer resources, which are not available. Re-
garding these learning methods, let us cite, for example, learning with kernels [94, 95, 96], probabilistic and statistical
learning [97, 98, 99, 100], learning on the manifolds [101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113],
and probabilistic physics-based learning [114, 115, 116, 117, 118].

Heterogeneous data are ubiquitous in many scientific fields, and their importance continues to grow. As a result,
research on heterogeneous data is important, leading to the emergence of new methods and techniques for analysis
and modeling. Common methods for analyzing heterogeneous data at various levels of abstraction include regression
methods that use polynomial chaos representations, kriging methods that are statistical interpolation techniques, and
neural network and deep learning methods that can model complex relationships between input and output variables
but require large training datasets. More advanced techniques comprise Hidden Markov Models (HMM) [119] that
are particularly useful for modeling time series data with different regimes, Dirichlet Processes (DP) [120] that are
nonparametric probabilistic models capable of clustering, hierarchical clustering methods that group similar data into
clusters [121], Probabilistic Graphical Models (PGM)[122] that are effective for modeling systems with complex
variable interactions, Hidden Markov Networks (HMN) [123] that are suitable for modeling complex systems with
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unknown graph structures, and kernel algorithm [95].

Novelty. The novelty of this work is directly linked to the main challenges that we have identified. First, we present a
formulation and an algorithm to build a surrogate statistical model in the form of a truncated polynomial chaos rep-
resentation, Qchaos = fchaos(W,U), of the vector random variable Q = F(W). In this context, F represents an unknown
random mapping, and the available information solely consists of nd independent realizations of the non-Gaussian
dependent random vector (Q,W), where the value of nd is small and the realizations correspond to heterogeneous
data. Due to this limited heterogeneous dataset, accurately estimating the chaos coefficients becomes challenging.
Furthermore, the vector-valued random variable U represents the latent random variables within F, and it is necessary
to determine its dimension and to chose its probability measure. Although the data is heterogeneous, the proposed
formulation and algorithm enable the construction of a global surrogate model with excellent accuracy. Although
the global surrogate model is highly accurate, we also propose an alternative approach by constructing a surrogate
model based on a prior separation of the heterogeneous dataset into subsets, each consisting of ”quasi-homogeneous”
data. The proposed separation method is developed in the context of the existence of a partial overlap of the supports
of probability measures associated with the subsets. It should be noted that in this case, no method can achieve an
”exact” separation based solely on the available information.

Organization of the paper. It should be noted that Section 1 presents the physics problem addressed in the paper. It
provides a definition of the statistical surrogate model of interest and presents the broader context in which the physics
problem is posed. Section 2 focuses on the generation of a large learned dataset from a given small training dataset.
To circumvent the numerical difficulties during the construction of the polynomial chaos representations, a normaliza-
tion and a scaling of the learned dataset are carried out. This involves transforming Q and W into normalized/scaled
random variables, denoted as Y and Ξ respectively. Section 3 deals with the construction of the non-separated multi-
variate polynomial chaos for Ξ, while Section 4 addresses the construction of separated multivariate polynomial chaos
for the latent random variable U. In Section 5, we present the polynomial chaos expansion of random vector Y. This
expansion is obtained in tensorizing the two Hilbert bases related to Ξ and U. Subsequently, we can construct the
truncated polynomial chaos expansion of random vector Y, which serves as the basis for constructing the statistical
surrogate model. Section 7 is devoted to the identification of the unknown coefficients in the truncated PCE of Y. The
optimization problem involved is nonconvex, with a constraint, and its cost function is based on the Overlap criterion.
To simplify the search for an optimal solution, we transform this problem into an unconstrained optimization problem.
Section 8 finalizes the first part dedicated to the construction of the global statistical surrogate model, which is based
on a representation of Q in polynomial chaos of W and U. In section 9, we present an alternative approach, which
consists in using the separation into clusters of the learned dataset, to construct the conditional statistics based on the
polynomial chaos. The last section deals with the application to atomic collisions of Helium on graphite substrate.

Notations
x, η: lower-case Latin or Greek letters are deterministic real variables.
x, η: boldface lower-case Latin or Greek letters are deterministic vectors.
X: upper-case Latin letters are real-valued random variables.
X: boldface upper-case Latin letters are vector-valued random variables.
[x]: lower-case Latin letters between brackets are deterministic matrices.
[X]: boldface upper-case letters between brackets are matrix-valued random variables.

C: set of all the complex numbers.
Mn,m: set of the (n × m) real matrices.
Mn: set of the square (n × n) real matrices.
M+n : set of the positive-definite (n × n) real matrices.
M+0

n : set of the positive (n × n) real matrices.
N: number of points in the learned dataset.
nd: number of points in the training dataset.
N: set of all the integers {0, 1, 2, . . .}.
R: set of all the real number.

Rn: Euclidean space of dimension n.
[In]: identity matrix in Mn.
x = (x1, . . . , xn): point in Rn.
[x]T : transpose of matrix [x].
tr{[x]}: trace of the square matrix [x].
α: multi-index α = (α1, . . . , αn) in Nn.
δ0: Dirac measure on R at point 0.
δkk′ : Kronecker’s symbol.
δαβ: δα1β1 × . . . × δαnβn .
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E: mathematical expectation operator.
KDE: kernel density estimation.
PDF: probability density function.

PCE: polynomial chaos expansion.

Convention used for random variables. In this paper, for any finite integer m ≥ 1, the Euclidean space Rm is equipped
with the σ-algebra BRm . If Y is a Rm-valued random variable defined on the probability space (Θ,T ,P), Y is a
mapping θ 7→ Y(θ) from Θ into Rm, measurable from (Θ,T ) into (Rm,BRm ), and Y(θ) is a realization (sample) of
Y for θ ∈ Θ. The probability measure of Y is the probability measure PY(dy) on the measurable set (Rm,BRm ) (we
will simply say on Rm). The Lebesgue measure on Rm is noted dy and when PY(dy) is written as pY(y) dy, pY is the
probability density function (PDF) on Rm of PY(dy) with respect to dy.

2. Generation of a large learned dataset, its normalization and scaling

Generation of a large learned dataset. As described in Section 1, a large learned datasetDlearn(X) = {xℓ, ℓ = 1, . . . ,N}
is generated from the training dataset Dtrain(X) = {x j

q, j = 1, . . . , nd}, where N ≫ nd. The learned dataset is generated
using the PLoM algorithm under constraints [102, 108, 115, 110] to enforce the learned probability measure to match
the given mean value and covariance matrix. From this, we obtain the learned realizations {qℓ, ℓ = 1, . . . ,N} and
{wℓ, ℓ = 1, . . . ,N} for the random vectors W and Q, respectively, where (qℓ,wℓ) = xℓ ∈ Rnq × Rnw = Rnx .

Scaling the control random parameter W to obtain the random vector Ξ. Since W = (W1, . . . ,Wnw ) is a Rnw -valued
random variable, in order to avoid numerical difficulties while constructing its polynomial chaos, we introduce a
scaled Rnw -valued random variable Ξ = (Ξ1, . . . ,Ξnw ) such that W = sw(Ξ) in which sw = (sw,1, . . . , sw,nw ) is the
mapping from [−1 ,+1]nw into Rnw such that, for all k ∈ {1, . . . , nw}, we have wk = sw,k(ξk) = ak ξk + bk in which ak

and bk are such that sw,k(−1) = minℓ wℓ
k and sw,k(+1) = maxℓ wℓ

k. The support of the probability measure PΞ(dξ) of
Ξ on Rnw is chosen as the compact subset Cξ = [−1 ,+1]nw ⊂ Rn

w. The N independent realizations {ξℓ, ℓ = 1, . . . ,N}
of Ξ are given by ξℓ = s−1

w (wℓ). With such a scaling, the support of the probability measure PW(dw) is defined as the
compact subset Cw = sw(Cξ). We then have introduced the mapping,

ξ 7→ w = sw(ξ) : Cξ → Rnw such that W = sw(Ξ) . (2.1)

Normalization and scaling of the random vector Q to obtain random vector Y. To address potential numerical dif-
ficulties in constructing the polynomial chaos expansion of Q, we employ a normalization technique that involves a
principal component analysis (PCA) followed by scaling. This process yields the Rnq -valued random variable Y. Let q
be the empirical mean value of Q and [ĈQ] its empirical covariance matrix, which are estimated with the independent
realizations {qℓ, ℓ = 1, . . . ,N}. Note that nq ≪ N and we assume that [ĈQ] belongs to M+nq

. Let [V] ∈ Mnq be the or-
thogonal matrix, such that [V]T [V] = [V] [V]T = [Inq ], constituted of the eigenvectors of matrix [ĈQ] and let [ζ] ∈M+nq

be the diagonal matrix of the eigenvalues that are all positive. We thus have [ĈQ] = [V] [ζ] [V]T . We then define the
normalized Rnq -valued random variable R such that Q = q + [V] [ζ]1/2 R and consequently, R = [ζ]−1/2[V]T (Q − q).
The realizations {rℓ, ℓ = 1, . . . ,N} of R are therefore computed by rℓ = [ζ]−1/2[V]T (qℓ − q). Consequently, the
empirical mean value r and the empirical covariance matrix [ĈR] estimated with {rℓ, ℓ = 1, . . . ,N} are such that
r = 0nq and [ĈR] = [Inq ]. The random variable R is now scaled in a random variable Y. Let Y = (Y1, . . . ,Ynq ) be
the scaled Rnq -valued random variable R = (R1, . . . ,Rnq ) such that for all i ∈ {1, . . . , nq}, we have Ri = si × Yi in
which si = (maxℓ |rℓi |) > 0, yielding Yi = Ri/si. The N independent realizations {yℓ, ℓ = 1, . . . ,N} of Y are such that
yℓi = rℓi /si. The composition of these two transformations allows the bijective mapping q to be defined,

y 7→ q = q(y) : Rnq → Rnq such that Q = q(Y) and Y = q−1(Q) . (2.2)

The empirical estimate of the covariance matrix [ĈY] ∈ M+nq
of Y is such that [ĈY]ii′ = (si)−2δii′ . Since R is centered,

Y will be centered, and the second-order moment-matrix [MY] = E{Y YT } ∈ M+nq
estimated by [MY] = (N −

1)−1 ∑N
ℓ=1 yℓ(yℓ)T is equal to [ĈY]. Matrix [MY] can then be rewritten as [MY] = [LY]2 with [LY]ii′ = (si)−1δii′ . The
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mapping f from Rnw × Rnu into Rnq , which have defined in Section 1 and which is such that Q = f(W,U), is then
transformed in a mapping y from Rnw × Rnu into Rnq such that

Y = y(Ξ,U) = q−1(f(sw(Ξ),U)) . (2.3)

3. Non-separated multivariate polynomial chaos for Ξ

Hilbert space H associated with the random vector Ξ. Let Ξ = (Ξ1, . . . ,Ξnw ) be the Rnw -valued random variable
defined in Section 2. Let H = L2

PΞ (Rnw ,R) be the Hilbert space of all the functions from Rnw into R, equipped with the
inner product ⟨h , h̃⟩H =

∫
Rnw h(ξ) h̃(ξ) PΞ(dξ), and the associated norm ∥h ∥H = ⟨h ,h⟩

1/2
H . For any h in H, H = h(Ξ)

is a second-order real-valued random variable such that E{H2} = E{h(Ξ)2} =
∫
Rnw h(ξ)2 PΞ(dξ) < +∞.

Non-separated multivariate polynomial chaos in H. Let α = (α1, . . . , αnw ) ∈ Nnw be the multi-index, which includes
α(1) = (0, . . . , 0). For all α in Nnw , let Ψα1,...,αnw

(ξ1, . . . , ξnw ), rewritten as Ψα(ξ), be the multivariate polynomials (non-
separated with respect to ξ1, . . . , ξnw ), which are orthonormal in H, ⟨Ψα ,Ψβ⟩H = δαβ, and such that Ψα(1) (ξ) = 1. It is
known that {Ψα,α ∈ Nnw } is a Hilbert basis of H.

Polynomial chaos expansion of H = h(Ξ). For any h in H, the PCE of the second-order random variable H is written as
H =

∑
α∈Nnw hαΨα(Ξ), where the series of the PCE converges with respect to the norm of H. The real coefficients hα

are such that ∥H∥2H =
∑
α∈Nnw (hα)2 < +∞ and can be calculated by hα = ⟨H ,Ψα⟩H = E{HΨα(Ξ)} = E{h(Ξ)Ψα(Ξ)} =∫

Rnw h(ξ)Ψα(ξ) PΞ(dξ).

Truncated PCE Hchaos = hchaos(Ξ) for representing H = h(Ξ). Let Ng be the maximum degree of the considered
truncated polynomial chaos expansion. We then have |α| = α1 + . . . + αnw ≤ Ng. The set {α ∈ Nnw , |α| ≤ Ng} of all the
multi-indices in Nnw such that |α| ≤ Ng is rewritten as {α(k) = (α(k)

1 , . . . , α(k)
nw

) ∈ Nnw , k = 1, . . . , κ} with α(1) = (0, . . . , 0)
and where κ = (Ng + nw)!/(Ng! nw!). To simplify the notation, the polynomial chaos of multi-index α(k) is rewritten as
ψk(Ξ) = Ψα(k) (Ξ). We then have,

ψ1(Ξ) = 1 , ⟨ψk , ψk′⟩H = δkk′ , E{ψk(Ξ)} = δ1k . (3.1)

The truncated PCE of H = h(Ξ) is thus given by

Hchaos = hchaos(Ξ) =
κ∑

k=1

hk ψk(Ξ) , hk = ⟨H , ψk⟩H , (3.2)

in which hk is the rewriting of hα
(k)

.

4. Separated multivariate polynomial chaos for U

As previously mentioned, the vector-valued random variable U is a latent variable for which no information is
available. Consequently, in the context of PCE, we choose U as a normalized Rnu -valued Gaussian random variable
whose probability measure is written as PU(du) = (2π)−nu/2 exp(−∥u∥2/2) du. The dimension nu ≥ 1 is unknown and
needs to be determined. We use notations similar to those introduced in Section 3.

Hilbert space G associated with the random vector U. Let G = L2
PU

(Rnu ,R) be the Hilbert space of all the func-
tions from Rnu into R, equipped with the inner product ⟨g , g̃⟩G =

∫
Rnu g(u) g̃(u) PU(du), and the associated norm

∥ g ∥G = ⟨g , g⟩
1/2
G . For any g in G, G = g(U) is a second-order real-valued random variable such that E{G2} =

E{g(U)2} =
∫
Rnu g(u)2 PU(du) < +∞.

Normalized multivariate Hermite polynomials as the separated polynomial chaos in G. Let a = (a1, . . . , anu ) ∈ Nnu

be the multi-index, which includes the zero multi-index a(1) = (0, . . . , 0). For all a in Nnu , let Φa1,...,anu
(u1, . . . , unu ) =

6



Φa1 (u1)× . . .×Φanu
(unu ), rewritten as Φa(u), such that Φa(1) (u) = 1, and where Φai are the normalized Hermite polyno-

mials on R. Therefore, {Φa, a ∈ Nnu } is an orthonormal family in G, ⟨Φa ,Φb⟩G = δab, and constitutes a Hilbert basis
of G.

Polynomial chaos expansion of G = g(U). For any g in G, the PCE of the second-order random variable G is written
as G =

∑
a∈Nnu gaΦa(U), where the series of the PCE converges with respect to the norm of G. The real coefficients ga

are such that ∥G∥2G =
∑

a∈Nnu (ga)2 < +∞ and can be calculated by ga = ⟨G ,Φa⟩G = E{GΦa(U)} = E{g(U)Φa(U)} =∫
Rnu g(u)Φa(u) PU(du).

Truncated PCE Gchaos = gchaos(U) for representing G = g(U). Let ng be the maximum degree of the considered
truncated polynomial chaos expansion. We then have |a| = a1 + . . . + anu ≤ ng. The set {a ∈ Nnu , |a| ≤ ng} of all the
multi-indices in Nnu such that |a| ≤ ng is rewritten as {a(m) = (a(m)

1 , . . . , a(m)
nu

) ∈ Nnu ,m = 1, . . . , µ} with a(1) = (0, . . . , 0)
and where µ = (ng + nu)!/(ng! nu!). To simplify the notation, the polynomial chaos of multi-index a(m) is rewritten as
φm(U) = Φa(m) (U). As in Section 3, we have,

φ1(U) = 1 , ⟨φm , φm′⟩G = δmm′ , E{φm(U)} = δ1m . (4.1)

The truncated PCE of G = g(U) is thus given by

Gchaos = gchaos(U) =
µ∑

m=1

gm φm(U) , gm = ⟨G , φm⟩G , (4.2)

in which gm is the rewriting of ga(m)
.

5. Polynomial chaos expansion of random vector Y

Hilbert space F associated with the random variable (Ξ,U). Let F = H⊗G be the Hilbert space defined according to
the universal property of the tensor product of H and G, which has to be understood as the completion H⊗̂G of space
H ⊗G. Hilbert space F is equipped with the inner product

⟨f , f̃⟩F =
∫
Rnw

∫
Rnu

f(ξ,u) f̃(ξ,u) PΞ(dξ) ⊗ PU(du) , (5.1)

and the associated norm ∥ f ∥G = ⟨f , f⟩
1/2
F .

Multivariate polynomial chaos in F. The family of functions {Γαa = Ψα ⊗ Φa , α ∈ Nnw , a ∈ Nnu }, in which Ψα and
Φa are defined in Sections 3 and 4, is a Hilbert basis of F. We then have

⟨Γαa,Γβb⟩F = ⟨Ψα,Ψβ⟩H × ⟨Φa,Φb⟩G = δαβ δab , (5.2)

and Γα(1)a(1) (ξ,u) = Ψα(1) (ξ) × Φa(1) (u) = 1.

Polynomial chaos expansion of Y = y(Ξ,U). Let Fnq = L2
PΞ⊗PU

(Rnw × Rnu ,Rnq ) denote the Hilbert space of the
square-integrable functions on Rnw × Rnu with values in Rnq , with respect to the probability measure PΞ ⊗ PU. Since
Fnq = L2

PΞ⊗PU
(Rnw × Rnu ) ⊗ Rnq , it can be deduced that Fnq = F ⊗ Rnq . Considering the introduced hypotheses, the

mapping (ξ,u) 7→ y(ξ,u) defined by Eq. (2.3) belongs to Fnq . Hence, the second-order Rnq -valued random variable
Y = y(Ξ,U) admits the polynomial chaos expansion,

Y =
∑
α∈Nnw

∑
a∈Nnu

zαa Γαa(Ξ,U) , (5.3)

whose coefficients zαa in Rnq are such that
∑
α∈Nnw

∑
a∈Nnu ∥zαa∥2 < +∞. The series of the PCE is convergent for the

norm of Fnq .
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Remark on the impossibility of using projection to compute the coefficients. It may seem that coefficients zαa in
Rnq could be computed by the projection zαa = E{YΓαa(Ξ,U)}. However, it is not possible due to the fact that
the random vector U, introduced as a latent random variable, is independent of Y despite the statistical dependence
between Y and Ξ. Consequently, we have E{YΨα(Ξ)Φa(U)} = E{YΨα(Ξ)} E{Φa(U)} = 0nq for all a ∈ Nnu , except
for a = a(1) = (0, . . . , 0).

6. Truncated polynomial chaos expansion of random vector Y

Using the index renumbering introduced in Eqs. (3.2) and (4.2), the truncated PCE of Y = y(Ξ,U)) is written as,

Ychaos = ychaos(Ξ,U)) =
κ∑

k=1

µ∑
m=1

zkm γkm(Ξ,U) , (6.1)

in which, for k = 1, . . . , κ and m = 1, . . . , µ, the vector-valued coefficient zkm is a rewriting of zα(k)a(m)
and where

γkm(Ξ,U) = Γα(k)a(m) (Ξ,U) = ψk(Ξ)φm(U) , ⟨γkm, γk′m′⟩F = ⟨ψk , ψk′⟩H × ⟨φm , φm′⟩G δkk′ δmm′ . (6.2)

Equation (6.2) with Eqs. (3.1) and (4.1) yields γ11(Ξ,U) = 1, γk1(Ξ,U) = ψk(Ξ), γ1m(Ξ,U) = φm(U), and Eq. (6.2)
yields E{γkm(Ξ,U)} = δ1k δ1m. In addition, it can easily be seen that E{∥Ychaos∥2} =

∑κ
k=1

∑µ
m=1 ∥zkm∥2 < +∞. From

Eqs. (6.1) and (6.2), it can be deduced that

E{Ychaos} = z11 , E{Ychaos(Ychaos)T } =

κ∑
k=1

µ∑
m=1

zkm (zkm)T . (6.3)

As explained at the end of Section 5, the projection of Y yields zkm = E{Y γkm(Ξ,U)}. However, only the vector-valued
coefficients {zk,1, k = 1, . . . , κ} can be calculated through this projection. By rewriting zk,1 as zk, these coefficients are
given by

zk = E{Yψk(Ξ)} . (6.4)

We then obtain the PCE Ychaos
proj of Y through a projection without considering the latent random variable U. In other

words,

Ychaos
proj =

κ∑
k=1

zk ψk(Ξ) . (6.5)

The error, ∥Y − Ychaos
proj ∥Fnq

, between Y = y(Ξ,U) (see Eq. (2.3)) and Ychaos
proj , is significant and can only be reduced by

including the latent random vector U.

Matrix representation of the realizations of the PCE Ychaos of Y. The N realizations of Ychaos, as defined by Eq. (6.1),
are given by

ychaos,ℓ =

κ∑
k=1

µ∑
m=1

zkm γkm(ξℓ,uℓ) . (6.6)

Instead of using indices k and m, we introduce the global index j such that

j = (k,m) ∈ {1, . . . , J} for (k,m) ∈ {1, . . . , κ} × {1, . . . , µ} with J = κ × µ .

In the following, it is assumed that N ≫ J. By employing the global index j, Eq. (6.6) can be rewritten in the following
matrix form,

[ychaos] = [z] [γ] ∈Mnq,N , [z] ∈Mnq,J , [γ] ∈MJ,N , (6.7)

in which the entries of matrices [ychaos], [z], and [γ] are

[ychaos]iℓ = ychaos,ℓ
i , [z]i j = zkm

i , [γ] jℓ = γkm(ξℓ,uℓ) . (6.8)
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Using Eqs. (6.6) to (6.8), Eq. (6.2) can be rewritten as

1
N − 1

[γ] [γ]T = [IJ] . (6.9)

It should be noted that the factor 1
N−1 , which is used instead of 1

N , originates from the statistical estimator employed
to compute the realizations of polynomial chaos (refer to Page 122 of [124]).

Computation of matrix [γ]. Since [γ] jℓ = γkm(ξℓ,uℓ) = ψk(ξℓ)φm(uℓ) (see Eq. (6.2)), by introducing the matrices
[ψ] ∈ Mκ,N and [φ] ∈ Mµ,N such that [ψ]kℓ = ψk(ξℓ) and [φmℓ] = φm(uℓ), the entries of matrix [γ] ∈ MJ,N can be
written as [γ] jℓ = [ψ]kℓ [φmℓ] with j = (k,m). Matrix [ψ], which is associated with the N realizations of the non-
separated Hilbert basis constructed with PΞ(dξ) on Rnw , and matrix [φ], related to the N realizations of the separated
normalized-Hermite-based Hilbert basis constructed with PU(du) on Rnu , are computed using the algorithm detailed
on Page 122 of [124]) (see also [125, 67]).

Constraint on matrix [z] defined by the second-order moment-matrix [MY] of Y. Similarly to the introduced notation
[ychaos], we define [y] ∈ Mnq,N such that [y]iℓ = yℓi . The estimate of [MY] = E{YYT } is then expressed using the same
notation: [MY] = [y] [y]T /(N − 1) (note that [MY] is a given data derived from the learned dataset, as explained in
Section 2). Hence, by imposing the equation E{Ychaos(Ychaos)T } = [MY], we derive the following constraint,

[z] [z]T = [MY] , [z] ∈Mnq,J . (6.10)

Relationship between the matrix [ychaos] representing the realizations of Ychaos and its counterpart [qchaos] representing
the realizations of Qchaos. Using the mapping y 7→ q = q(y) defined by Eq. (2.2), we have for the random variables,

Q = q(Y) , Qchaos = q(Ychaos) . (6.11)

From the N realizations of Ychaos, represented by the matrix [ychaos] ∈ Mnq,N , we can derive the N corresponding
realizations {qchaos,ℓ, ℓ = 1, . . . ,N} as expressed in the matrix [qchaos] ∈ Mnq,N . In this matrix, each entry [qchaos]iℓ

represents qchaos,ℓ
i = qi(ychaos,ℓ). This relationship can be written in matrix form as:

[qchaos] = [Q([ychaos])] , Q : Mnq,N →Mnq,N . (6.12)

7. Optimization problem for estimating the coefficients of the truncated PCE

Optimal value [zopt] of matrix [z]. To estimate the matrix [z] ∈Mnq,J that contains the coefficients of the truncated PCE
of Y, as defined by Eq. (6.7), various approaches can be employed, in particular the maximum likelihood method (see
the references given in Section 1 regarding the statistical identification of PCE coefficients). Among all the methods,
we propose using the OVLi (Overlap) indicator, which quantifies the overlap between the PDF of the components Qi

of Q and the PDF of the components Qchaos
i of Qchaos. The OVLi indicator is associated with the L1-norm of functions

qi 7→ pQi (qi) − pQchaos
i

(qi; [z]) on R, where pQi and pQchaos
i

(· ; [z]) are the probability density functions of the real-valued
random variables Qi and Qchaos

i , respectively. These PDFs are estimated using Gaussian KDE applied to the realizations
{qℓi , ℓ = 1, . . . ,N} for Qi and to the realizations {qchaos,ℓ

i , ℓ = 1, . . . ,N} for Qchaos
i , which correspond to the columns of

matrix [qchaos] = [Q([z] [γ])] (see Eq. (6.12) with Eq. (6.7)). For i ∈ {1, . . . , nq}, OVLi([z]) is written as

OVLi([z]) = 1 −
1
2

∫
R
|pQi (qi) − pQchaos

i
(qi; [z])| dqi , (7.1)

and the cost function is defined by

J([z]) =
1
nq

nq∑
i=1

OVLi([z]) . (7.2)

It can be seen that 0 ≤ J([z]) ≤ 1 and the upper bound is reached when pQi = pQchaos
i

(· ; [z]) for all i. Hence, the
optimization problem is written as

[zopt] = arg max
[z]∈Cad

J([z]) , (7.3)
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in which the admissible set Cad ⊂Mnq,J allows the constraint defined by Eq. (6.10) to be taken into account,

Cad = { [z] ∈Mnq,J , [z] [z]T = [MY] } . (7.4)

Transforming the constrained optimization problem into an unconstrained optimization problem. The optimization
problem defined by Eq. (7.3) is nonconvex. We propose to solve it using an algorithm designed for unconstrained
optimization problem. Due to the nonconvex nature of the problem, the estimated solution will strongly depend on
the initial point [z0] chosen for the initialization of the optimization algorithm. We then need to transform the opti-
mization problem on Cad into an unconstrained optimization problem on Mnq,J , and also carefully choose the initial
point. To do this, we need to introduce a [ẑ] 7→ [z] transformation to eliminate the constraint, which will then be
automatically satisfied. Additionally, we have to introduce a second transformation [z̃] 7→ [ẑ] to search for an optimal
solution in the vicinity of [z0] = [z] ∈ Mnq,J . The columns of [z], denoted z1, . . . , zJ , are defined as the projection on
the polynomial chaos (see Section 6).

(a) Transformation [ẑ] 7→ [z] from Mnq,J into Mnq,J . Let [ẑ] be any unconstrained matrix given in Mnq,J . Let [c] in
Mnq be the upper triangular matrix resulting from the Cholesky factorization of the matrix [ẑ] [ẑ]T ∈ M+nq

. We have
[c]T [c] = [ẑ] [ẑ]T , which implies the existence of [c]−1. Utilizing the decomposition [MY] = [LY]2 introduced in
Section 2, the desired transformation is expressed as

[ẑ] 7→ [z] = [LY] [c]−T [ẑ] : Mnq,J →Mnq,J . (7.5)

It can easily be verified that for any [ẑ] in Mnq,J , we have [z] [z]T = [MY].

(b) Transformation [z̃] 7→ [ẑ] from Mnq,J into Mnq,J . Matrix [z] being constructed as the projection of [y] onto the
subspace spanned by [γ], using Eqs. (6.7) and (6.9) yields

[z] =
1

N − 1
[y] [γ]T . (7.6)

It is important to note that [z] [z]T = [y] [χ] [y]T where [χ] = [γ]T [γ]/(N − 1) , [IN]. Consequently, [z] [z]T , [MY].
For [z] ∈Mnq,J defined by Eq. (7.6), the transformation [z̃] 7→ [ẑ] from Mnq,J into Mnq,J is defined by

[ẑ]i j = [z]i j (1 + [z̃]i j) , i ∈ {1, . . . , nq} , j ∈ {1, . . . , J} . (7.7)

This transformation shows that as [z̃] explores Mnq,J in the vicinity of [z̃0] = [0], [ẑ] also explores Mnq,J in the vicinity
of [z], and [z] = [LY] [c]−T [ẑ] satisfies the constraint [z] [z]T = [MY].

(c) Transformation [z̃] 7→ [z] = [z([z̃])] from Mnq,J into Mnq,J . The composition of transformation [z̃] 7→ [ẑ] defined
by Eq. (7.5) and transformation [ẑ] 7→ [z] defined by Eq. (7.7) is a well-defined transformation [z̃] 7→ [z] = [z([z̃])].

(d) Reformulation of the optimization problem and algorithm. The optimization problem defined by Eq. (7.3) can be
rewritten as,

[zopt] = [z([z̃opt])] , [z̃opt] = arg max
[z̃]∈Mnq ,J

J̃([z̃]) , J̃([z̃]) = J([z([z̃])]) . (7.8)

This nonconvex optimization problem can be solved using various algorithms. As we are searching for a solution [z̃opt]
in the vicinity of [0nq,J], an appropriate choice for the algorithm may be the unconstrained quasi-Newton algorithm,
initialized with [z̃0] = [0nq,J], where the gradient is not explicitly provided.

Optimal truncated PCE of Y. The Gaussian probability measure PU(du) of the latent random variable U depends
on its dimension nu and the polynomial chaos expansion in U depends on the maximum degree ng (see Section 4).
Consequently, the PCE Ychaos = ychaos(Ξ,U) of Y = y(Ξ,U), which depends on Ng, also depends on nu and ng. The
presented methodology allows for estimating an optimal value [zopt(Ng, nu, ng)] that depends on Ng, nu, and ng. For a
given value of each of these three integers, the error between Y and its chaos representation Ychaos can be quantified
by evaluating

Jopt(Ng, nu, ng) = J([zopt(Ng, nu, ng)]) , (7.9)
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in whichJ([z]) is defined by Eq. (7.2). Consequently, the optimal truncated PCE of Y is obtained by using the optimal
values Nopt

g , nopt
u , and nopt

g of Ng, nu, and ng, respectively, such that

(Nopt
g , nopt

u , nopt
g ) = arg max

Ng≥2 , nu≥1 , ng≥1
Jopt(Ng, nu, ng) , (7.10)

Comments about the algorithm for solving the optimal values Nopt
g , nopt

u , and nopt
g . These optimal values are obtained

by solving the optimization problem defined by Eq. (7.10). A simple and direct approach, although it can be compu-
tationally expensive, is to compute the value of Jopt(Ng, nu, ng) at each point in a three-dimensional grid. This grid
corresponds to a discretization of the domain [2,Nmax

g ] × [1, nmax
u ] × [1, nmax

g ] ⊂ N3, in which Nmax
g , nmax

u , and nmax
g are

set to sufficiently large values. Another approach, which is less computationally expensive, is to use the assumptions
introduced in section 1, which are related to the underlying physical problem that generated the data. In this context,
if it were not necessary to introduce the latent variable U, then the solution would be [zopt(Ng)] = [z(Ng)] given by
Eq. (7.6). The corresponding value of the overlap can be expressed as follows,

J(Ng) = J([z(Ng)]) . (7.11)

Since the latent variable U is essential, at convergence with respect to Ng, the overlap J(Ng) will be less than 1.
The difference 1 − J(Ng) makes it possible to quantify the error induced by the projection method. We can then
quickly estimate an optimal value Nopt

g for Ng using a one-dimensional grid over [2,Nmax
g ] ⊂ N. In the presence of

the latent variable U, we set Ng to this optimal value Nopt
g and then we search for the optimal values nopt

u and nopt
g on a

two-dimensional grid over [1, nmax
u ] × [1, nmax

g ] ⊂ N2.

8. Polynomial-chaos-based statistical surrogate model

Presenting the problem to be solved. The problem at hand involves computing the realization qchaos
0 of Qchaos given

Ξ = ξ0, where ξ0 represents a realization of Ξ following the probability measure PΞ(dξ), and u0 represents a realiza-
tion of U following the probability measure is PU(du). In fact, a realization w0 of W is given, then the realization ξ0
is calculated by ξ0 = s−1

w (w0) (see Eq. (2.1)).

Polynomial chaos-based algorithm for computing the conditional realization qchaos
0 of Qchaos given Ξ = ξ0. Using the

optimal truncated PCE Qchaos of Q, we compute the corresponding realization qchaos
0 of Qchaos according to Eqs. (6.11),

(6.7), and (6.8), by
qchaos

0 = q(ychaos
0 ) , ychaos

0 = [zopt(Nopt
g , nopt

u , nopt
g )] γopt

0 , γopt
0 ∈ R

J . (8.1)

Validation. The verification of Eq. (8.1) is performed in a probability framework as follows. We generate Nv ∼ N
additional realizations ξ0 of Ξ and u0 of U, which are distinct from the realizations {(ξℓ,uℓ), ℓ = 1, . . . ,N}. For
each realization (ξ0,u0), we compute the realization qchaos

0 of Qchaos using Eq. (8.1). We quantify the error between
the reference Q (defined by the N realizations from the learned dataset) and Qchaos (defined by the Nv realizations
generated using Eq. (8.1)), by computing Jopt using Eq. (7.9) for the optimal values Nopt

g , nopt
u , and nopt

g . Additionally,
we compare the probability density functions of Qi and Qchaos

i for i = 1, . . . , nq.

9. Cluster separation of the learned dataset constituted of heterogeneous data

As we explained in Section 1, in the case of heterogeneous data, it can be interesting to use an adapted approach
based on the formulation presented in Sections 3 to 8. This approach involves performing a prior cluster separa-
tion of the learned dataset into distinct clusters, each consisting of ”quasi-homogeneous” data. It is important to
note that the objective remains the same as before, which is to construct a global polynomial chaos representation
Qchaos = fchaos(W,U) of Q = f(W,U) based on the polynomial chaos representation constructed for each distinct
cluster. This is particularly useful when the training dataset is generated by physical processes that exhibit multiple
regimes simultaneously. Although the numerical offline computation may increase, the online prediction with the
PCE Qchaos given Ξ = ξ0 remains unaffected. It should be noted that the cluster separation is performed on the learned
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dataset rather than the training dataset, which is too small. This choice offers an advantage because the PLoM al-
gorithm used to generate the learned dataset from the training dataset preserves the concentration of the probability
measure in the vicinity of the manifolds while enhancing the available information contained in the points of the train-
ing dataset. The use of prior separation into distinct clusters, allows us to better understand how the learned dataset is
structured and facilitates the construction of the representation in polynomial chaos for each cluster.

Hypothesis used for building the cluster separation of the heterogeneous learned dataset. It is assumed that there
are multiple physical regimes, which may involve a cluster separation of the learned dataset Dlearn(X) into K distinct
clusters based on their proximity or similarity.

Comments on existing algorithms for constructing cluster separation into distinct clusters of points. There are various
algorithms available for constructing a cluster separation of a set of points. The principal methods include K-means
[126, 127], Hierachical Agglomerative Clusturing [128], Divisive Clusturing [129], Density-Based Spectral Clustur-
ing with its variants [130, 131, 132], Mean-Shift Clusturing [133], Spectral Clusturing [134], Gaussian Mixture Model
[135], and more. In the context of the previously introduced hypothesis, our objective is to determine the number K
of clusters while considering the existence of K physical regimes. Therefore, algorithms based on Density-Based
Spectral Clustering are not well suited for this purpose. For large datasets, algorithms such as Agglomerative Cluster-
ing, Mean-Shift Clustering, or Spectral Clustering (which is well adapted to image segmentation) require significant
computational resources in terms of RAM and CPU. The Gaussian mixture model could be a candidate approach.
However, this method is sensitive to dimensionality and outliers, and gives for each identified cluster a Gaussian
measure, which may not be suitable for the non-Gaussian case. For the application presented in this paper, three clus-
tering algorithms have been tested: Divisive Clustering, Hierarchical Agglomerative Clustering, and K-means with
the squared Euclidean distance. In K-means, each centroid is calculated as the mean of the points in its respective
cluster.

Notation and formulation related to the cluster separation. The chosen algorithm is applied to perform the partition
into K clusters ofDlearn(Q) = {qℓ, ℓ = 1, . . . ,N}. For σ = 1, . . . ,K, let Iσ = {ℓ

(σ)
1 , . . . , ℓ(σ)

Nσ
} ⊂ {1, . . . ,N} be the subset

of indices resulting from this cluster separation. We then have N =
∑K

σ=1 Nσ, and

∪K
σ=1 Iσ = {1, . . . ,N} , ∩K

σ=1 Iσ = {∅} . (9.1)

Consequently, the resulting partition ofDlearn(X) can be expressed as,

Dlearn(X) = ∪K
σ=1Dσ(X(σ)) , ∩K

σ=1Dσ(X(σ)) = {∅} , Dσ(X(σ)) = {xℓ = (qℓ,wℓ) , ℓ ∈ Iσ} , (9.2)

where X(σ) = (Q(σ),W(σ)) is the Rnx -valued random variable for which {xℓ, ℓ ∈ Iσ} are Nσ independent realizations.
Furthermore, we introduce a discrete-valued random variable Bd with values in {1, 2, . . . ,K}, which is statistically
dependent on W. The realizations {bℓd, ℓ = 1, . . . ,N} of Bd, corresponding to {wℓ, ℓ = 1, . . . ,N}, are defined as
follows,

if ℓ ∈ Iσ then bℓd = 2σ − (K + 1) , σ ∈ {1, . . . ,K} . (9.3)

For instance, for K = 2, if ℓ ∈ I1, then bℓd = −1 while if ℓ ∈ I2, then bℓd = +1. It is important to note that it
is impossible to obtain a ”perfect” separation, regardless of the algorithm used within the framework of probability
theory, because of the potential partial overlap of the supports of the probability measures for the random variables
X(1), . . . ,X(K).

Smoothing the discrete random variable Bd into a real-valued random variable B. In order to use the same algorithm
as the one presented in Sections 3 to 8 for constructing the truncated PCE Bchaos = bchaos(W,U) of Bd = bd(W,U), we
introduce a real-valued random variable B that corresponds to smoothing Bd on R. The probability density function
of B = b(W,U) is constructed using the Gaussian KDE with the realizations {bℓd, ℓ = 1, . . . ,N} defined by Eq. (9.3). It
can be expressed as pB(b ; β) = 1

N

∑N
ℓ=1

1√
2π β

exp{− 1
2β2 (b − bℓd)2} where β represents the bandwidth. As β approaches

zero, pB(b, ; β), db converges to the discrete probability measure PBd (db) = 1
N

∑N
ℓ=1 δ0(b − bℓd). The smoothing of Bd

with B involves reducing the Silverman bandwidth, which is accomplished by selecting β = 1
2 ( 4

3N )1/5 σBd , where σBd
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is the standard deviation of Bd estimated using the realizations {bℓd, ℓ = 1, . . . ,N}.

Identifying the cluster numberσ based on a given realization of the real-valued random variable B. The presented for-
mulation for cluster separation enables the construction of the truncated PCE, Bchaos = bchaos(W,U), of B = b(W,U).
For a given realization w0 of W and u0 of U, we need to identify the σ-index in {1, . . . ,K} of the associated cluster,
as explained earlier. Considering the generation of realizations {bℓd, ℓ = 1, . . . ,N} defined by Eq. (9.3), along with
the construction of the smoothed random variable B, which will be represented by Bchaos, we propose the following
method for identifying the σ-index. Let Bσ be the subset of R defined by B1 =] − ∞, 2 − K], BK =]K − 2,+∞[, and
if K ≥ 3, Bσ =]2σ − K − 2, 2σ − K] for 2 ≤ σ < K. Let b0 = b(w0,u0) be the corresponding realization of B, that
will be approximated by bchaos

0 = bchaos(w0,u0). We identify the value of the σ-index in {1, . . . ,K} as the index σ of
interval Bσ to which b0 belongs.

Truncated PCE of B and of {X(σ), σ = 1, . . . ,K}, computation of the PCE-based statistical surrogate model, realiza-
tions, and validation. The truncated PCE of B and X(σ) for all σ = 1, . . . ,K are constructed using the methodology
outlined in Sections 3 to 8. Following the approach described in Section 8, we consider any realization ξ0 of Ξ
from PΞ(dξ) and any realization u0 of U from PU(du). By utilizing the surrogate model based on cluster separation,
we compute the conditional realization q0 of Qchaos given Ξ = ξ0. The validation process follows the methodology
presented in Section 8.

10. Application to atomic collisions of Helium on graphite substrate

10.1. Description of the physical system and its Molecular Dynamics simulations for generating the training dataset

The details of the dynamical system and its analysis can be found in [136]. Here we provide a brief overview. The
wall model consists of three layers of graphene with dimensions 17.04× 17.22 Å2 in the xOy plane and is periodically
replicated in the x and y directions. The z coordinates are orthogonal to the xOy plane. The wall contains 336 carbon
atoms and has a width of 6.8, AA. All molecular dynamics simulations involving graphite, which is composed of
carbon atoms (C), and helium (He) gas atoms, were performed using the LAMMPS (Large-scale Atomic Molecular
Massively Parallel Simulator) package. The adaptive intermolecular reactive bond order potential was used to model
the interactions between the carbon atoms in graphite. The 12-6 Lennard Jones potential was employed to describe the
interactions between carbon and helium atoms. A cutoff distance rcut of 12 Å has been chosen for these interactions.
A graphitic wall served as the lower boundary, and a reflective plane was located at a distance of 18.8 Å from the
surface, serving as the upper boundary. A control plane was placed at a distance of z = rcut from the carbon surface,
where information about the crossing atoms was recorded, including their incoming/outgoing times, velocities, and
displacements during their residence time. During the simulation, the bottom sheet was fixed, while the other two
layers were kept at a constant temperature of 50◦K using the Nosé-Hoover thermostat in the NVT ensemble, with
a relaxation temperature parameter set to 40 time steps. The layers were free to interact with the helium atoms.
Approximately 1 × 106 time steps of 1 f s were spent equilibrating the system at the desired temperature before
proceeding with subsequent statistical analysis. The velocity-Verlet algorithm was used for time integration.

In the following, the three components of the control parameter W correspond to the components (Vx,in,Vy,in,Vz,in)
of the velocity Vin of the incident particle on the layer. The random output vector Q = (Vout, log(∆t),Dx,Dy) con-
sists of the random output velocity vector Vout = (Vx,out,Vy,out,Vz,out) (reflected velocity) of the particle, the random
logarithm duration of absorption log(∆t) (residence time), and the two displacement components Dx and Dy in the
xOy plane within the layer. In this application, all distances are measured in Angstroms (Å), and time is measured in
picoseconds (ps).

10.2. Polynomial-chaos-based surrogate model

Generation of the large learned dataset and probability density functions of W and Q. For the application under
consideration, all the presented results correspond to a temperature of 50◦K. The large learned dataset is generated
as explained in Section 2, with N = 200 000 learned realizations on the basis of the training dataset consisting of
nd = 2 000 points. The training dataset was generated as explained in Section 10.1. The probability density functions
of the 3 components of W, estimated using the Gaussian KDE with the N learned realizations, are shown in Figures 1a
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to 1c. The corresponding probability density functions of the 6 components of Q are shown in Figures 2a to 2f. These
figures define the reference and will be used for comparing with the PDFs given by the PCE. Figure 2d, which dis-
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Figure 1: For N = 200 000 learned realizations, PDF of the components W1, W2, and W3 of the random control parameter W, which represents the
incident velocity vector Vin = (Vx,in,Vy,in,Vz,in).
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Figure 2: For N = 200 000 learned realizations, PDF of the components Q1 to Q6 of the random output vector Q, which represents
(Vx,out,Vy,out,Vz,out, log(∆t),Dx,Dy).

plays the PDF of the logarithm of the residence time (duration of absorption) Q4 = log(∆t), reveals the existence of
two distinct physical regimes. The first regime corresponds to a short residence time, with a PDF peak at approxima-
tively exp(1.38) ≃ 4 ps. Conversely, the peak of the long residence-time regime is around exp(4.5) ≃ 90 ps. It should
be noted that these two residence-time regimes are not entirely separated, as the PDF exhibits a local minimum at
approximately exp(3) ≃ 20 ps, where the PDF has a significant value of 0.11. The presence of these two physical
regimes is also evident in the PDF of Q5 = Dx (Figure 2e) and Q6 = Dy (Figure 2f). These PDFs exhibit strong
non-Gaussian behavior and display two distinct patterns: one for the distance in the range of [−120, 120],Å, and the
other for distances in the intervals ] − ∞,−120[∪]120,+∞[ Å. For a more comprehensive analysis of the underlying
physics, we refer the reader to [136].

PCE constructed through projection and quantification of the induced error. As explained in Section 7, the projection-
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based truncated PCE of Y is constructed in estimating the coefficients-matrix [z] in Eq. (6.7) by using the projection
method yielding [z] = [z] defined by Eq. (7.6). Figure 3 displays the graph of function Ng 7→ J(Ng) defined by
Eq. (7.11). Since, with a such projection, the random latent variable U is not taken into account (corresponding to
(nu, ng) = (0, 0)), the projection method induces a significant error of 1 − 0.7425 for Ng = 12, which is approximately
a 25% error. We intentionally limited the degree Ng to 12, yielding κ = 455 polynomial chaos. In fact, increasing the
degree leads to a higher computational cost with little improvement in convergence. Introducing the latent variable U
is necessary to reduce the error. Figures 4a to 4f show the PDFs of the 6 components of Q. These PDFs correspond to
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Figure 3: Graph of the function Ng 7→ J(Ng) allowing the error induced by the projection method to be quantified.

the reference values (estimated using the learned dataset) and the values estimated using the truncated PCE with the
projection method and Ng = 12. All computation are performed using N = 200 000 learned realizations. As expected,
there is a significant error between the reference values and the PCE constructed through projection. This comparison
is interesting because it demonstrates that the presence of the two physical regimes can only be reproduced with the
PCE by introducing the latent variable U. The control variable W, which represents the incident velocity vector alone,
is insufficient to explain the phenomena.
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Figure 4: For N = 200 000 learned realizations, PDF of the components Q1 to Q6 of the random output vector Q, corresponding to the reference
(blue thick line) and estimated with the truncated PCE by the projection method with Ng = 12 (black thin line).

Optimization problem for estimating the coefficients of the truncated PCE and convergence analysis with respect to nu
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and ng. For a total of 200,000 learned realizations, the convergence with respect to Ng, nu, and ng, has been analyzed
by studying the function (Ng, nu, ng) 7→ Jopt(Ng, nu, ng) defined by Eq. (7.9). As previously explained, Nd = 12 is a
suitable value for Nopt

g , which will be confirmed below. We have studied the function (nu, ng) 7→ Jopt(12, nu, ng) for
Ng = 12. The calculation gives Jopt(12, 0, 0) = 0.7425, and for the points (1, 1), (1, 2), and (2, 2), we have got 0.996.
This indicates that convergence is reached when nu = 1 and ng = 1. However, looking at the PDFs of the components
of Qchaos, we see a slightly better match to the PDF of Q when nu = 2 and ng = 2, corresponding to µ = 6 polynomial
chaos. Figure 5a displays the graph of the function Ng 7→ J

opt(Ng, 2, 2). This figure shows that Nopt
g = 12 is an optimal

choice, and gives excellent convergence. As previously mentioned, the optimization problem defined by Eq. (7.8) is
solved using the quasi-Newton algorithm. For Ng = 12, nu = 2, and ng = 2, yielding J = κ × µ = 455 × 6 = 2 730
coefficients with values in R6 for the truncated PCE, Figure 5b displays the graph of the function ι 7→ J([zι]), where
ι represents the iteration number in the quasi-Newton algorithm. This graph illustrates the rapid convergence rate.
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Figure 5: Convergence analysis of the truncated PCE with respect to Ng for nu = ng = 2 (a) and convergence of the quasi-Newton algorithm as a
function of the iteration number ι (b).

Validation of the polynomial-chaos based conditional statistics. Once the optimal coefficients of the truncated PCE
have been estimated as described above, the validation process is carried out following the explanation in Section 8.To
do so, Nv = 200 000 new realizations of random control variable W are generated according to the probability measure
PW(dw). Then, Nv corresponding realizations of Qchaos are generated using Eq. (8.1). Figures 6a to 6f display the PDFs
of the 6 components of Q. These PDFs correspond to the reference values (estimated with the learned dataset) and
the values estimated using the optimal truncated PCE with Ng = 12, nu = 2, and ng = 2. The predictions obtained
with this statistical substitution model based on the truncated PCE are very good.

10.3. Polynomial-chaos-based surrogate model using a cluster separation

As we have explained in Section 10.2 (also see Figure 2d, the heterogeneous data is generated by two distinct
physical regimes that cannot be perfectly separated. To identify a good cluster-separation algorithm adapted to the
considered heterogeneous data, we tested three algorithms: K-means, Divisive Clusturing, and Hierachical Agglom-
erative Clusturing, with K = 2 and K = 3 clusters. The best separation was achieved with K-means for K = 2
clusters. All computations were performed using the N = 200 000 points of Dlearn(Q). Using the notation introduced
in Eqs. (9.1) to (9.3), we obtained a first cluster σ = 1 with I1 consisting of N1 = 21 059 points, and the second cluster
σ = 2 with I2 comprising N2 = 178 941 points. Cluster D1(X(1)) corresponds to a physical regime with a long res-
idence time, while cluster D2(X(2)) corresponds to a mixture of the two physical regimes, primarily containing short
residence time but also medium and long residence time. Certainly, a better separation could be obtained ”manually”,
based on physics expertise without using a clustering algorithm and based on the analysis of the single component Q4
(see [136] in the context of this application). However, we wish to present here a cluster separation using a separation
algorithm which acts ”simultaneously” on all the components of the random vector Q (because these components are
statistically dependent). The goal is to illustrate the algorithm we propose to construct realizations using a statistical
surrogate model constructed from the PCE of each cluster and the PCE of the random variable B. In all the figures of
Section 10.3 displaying PDFs, the thin blue lines correspond to the reference estimated by the Gaussian KDE using
N1 = 21 059 realizations for Q(1), N2 = 178 941 realizations for Q(2), N = 200 000 realizations for both B and Q.
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Figure 6: PDF of the components Q1 to Q6 of the random output vector Q, corresponding to the reference (blue thin line) and estimated with the
optimal truncated PCE with Ng = 12, nu = 2, and ng = 2 (red thick line). In figures (a), (b), and (c), the curves are almost identical.

These realizations are obtained from the learned dataset.

Optimal PCE of Q(1) corresponding to cluster σ = 1. Convergence is reached for Nopt
g = 4, nopt

u = 2, and nopt
g = 2.

The corresponding value of Jopt(Nopt
g , nopt

u , nopt
g ) is 0.990, indicating a very good convergence. Figures 7a to 7f display

the PDFs of the 6 components of Q(1) (the reference) compared to the estimated PDFs of Q(1),chaos using the optimal
truncated PCE with N1 points. The predictions obtained through this approach for the first cluster are accurate.
Figure 7d shows that this cluster, D1(X(1)), corresponds to a long residence time, as the peak of the PDF of Q(1)

4
occurs at ∆t = exp(4.8) ≃ 120 ps. The peak of the PDF of Q5 = Dx is reached at Dx = −123 Å, and the peak of the
PDF of Q6 = Dy is reached at Dy = 190 Å.

Optimal PCE of Q(2) corresponding to cluster σ = 2. Convergence is reached for Nopt
g = 8, nopt

u = 2, and nopt
g = 2. The

corresponding value of Jopt(Nopt
g , nopt

u , nopt
g ) is 0.987, indicating a good convergence. Figures 8a to 8f display the PDFs

of the 6 components of Q(2) (the reference) compared to the estimated PDFs of Q(2),chaos using the optimal truncated
PCE with N2 points. The predictions obtained through this approach for the second cluster are accurate. Figure 8d
shows a mixture of the two physical regimes in this cluster, D2(X(2)), with the dominant regime of short residence
time, as the first peak of the PDF of Q(2)

4 occurs at ∆t = exp(1.33) ≃ 3.8 ps.

Optimal PCE of random variable B for identifying the cluster number σ. Convergence is reached for Nopt
g = 14,

nopt
u = 2, and nopt

g = 2. The corresponding value of Jopt(Nopt
g , nopt

u , nopt
g ) is 0.900. It should be noted that the rate of

convergence is not critical as we are dealing with two clusters (K = 2), where B1 =] − ∞, 0] and B2 =]0,+∞[. Thus,
we only need to determine if, for each realization bchaos

0 = bchaos(w0,u0) of Bchaos, we have bchaos
0 ≤ 0 or bchaos

0 > 0.
Figure 9 displays the PDF of B (the reference) compared to the estimated PDF of Bchaos using the optimal truncated
PCE with N points. The prediction obtained through this approach for the second cluster is sufficiently accurate.

Validation of the PCE-based statistical surrogate model using the cluster separation. Once the optimal coefficients
of the truncated PCEs for Q(1),chaos, Q(2),chaos, and Bchaos have been estimated as described above, the validation process
is carried out following the explanation in Section 9. To do so, Nv = 200 000 new realizations of random control
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Figure 7: PDF of the components Q(1)
1 to Q(1)

6 of the random output vector Q(1), corresponding to the reference (blue thin line) and Q(1,chaos)
1 to

Q(1,chaos)
6 of the random output vector Q(1,chaos), estimated with the optimal truncated PCE with Ng = 4, nu = 2, and ng = 2 (red thick line).
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Figure 8: PDF of the components Q(2)
1 to Q(2)

6 of the random output vector Q(2), corresponding to the reference (blue thin line) and Q(2,chaos)
1 to
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figures (b) and (c), the curves are almost identical.
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Figure 9: Graph of the function Ng 7→ J(Ng) representing the relationship between the degree Ng of the PCE constructed using the projection
method, enabling quantification of the induced error.

variable W are generated according to the probability measure PW(dw). Then, Nv corresponding realizations of Qchaos

are generated. Figures 10a to 10f display the PDFs of the 6 components of Q. These PDFs correspond to the reference
values (estimated with the learned dataset) and the values estimated using the algorithm based on the three PCEs. The
predictions obtained through this PCE approach are highly accurate.
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Figure 10: PDF of the components Q1 to Q6 of the random output vector Q, corresponding to the reference (blue thin line) and estimated on the
base of the optimal truncated PCEs of the clusters (red thick line).

11. Conclusion

We have presented a formulation and an algorithm developed for a polynomial chaos representation of a vector-
valued random quantity of interest (the output) as a function of an input composed of a part of a vector-valued
random control parameter with known probability measure and another part of a vector-valued random latent variable
with unknown probability measure. The training dataset consists of heterogeneous data, which poses challenges for
accurately estimating the chaos coefficients. The proposed approach enables the construction of a global, accurate,
and highly efficient statistical surrogate model for evaluating an output realization given an input realization. As an
alternative, we have also proposed a construction based on the clustering of the learned dataset, which can facilitate
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offline construction in the case of heterogeneous data. The application presented, which concerns the collisions
of helium atoms on a graphite substrate, demonstrates the accuracy and efficiency of the proposed approach. This
approach, which allows the construction of a rapid online surrogate model, is general and should allow the analysis of
large complex systems beyond the computational capabilities currently available.
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