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Abstract 
The stretch blowing process for PET bottle induces the anisotropic mechanical properties due to the 
different elongation of macromolecular chains. For example, the Young's modulus can be multiplied 
by almost two in the longitudinal direction and more than 3 times in the hoop direction of the plastic 
bottle. However, the process is complex and the elastic properties present dispersions which depend 
on the process condition. Therefore, it is necessary that the 5 parameters from the orthotropic elastic 
properties can be all obtained during a single realization. The symmetry of the elasticity tensor reduces 
to 4 characteristics to be determined. To achieve this identification process, firstly, the displacement 
field is measured using image correlation and biaxial tests which are carried out on a machine 
developed in our laboratory. Then, the virtual field method on a specific cruciform specimen with a 
hole is managed to identify the orthotropic elastic properties. The optimal position of the hole is also 
studied. The identified orthotropic constitutive parameters from this method is compared to the 
results obtained by classical methods. 
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Introduction: towards stochastic modelling of PET induced properties 

Injection stretch blow moulding (ISBM) process [1-3] is a complex process that involves several stages 

from PET granular to the final bottle. Injected preforms are heated by infrared radiation so that 

temperature becomes higher than the glass transition of the material. The bottle is then obtained by 

biaxial elongation: longitudinally with a rod, in hoop direction by air under pressure. It is well known 

that mechanical properties of the PET [4-7], in particular the Young modulus of the material, increases 

during the process. This increase depends on many parameters as the initial morphology of the 

preform, the initial temperature profile before stretching, the elongation rate and the final elongation 
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[8-10]. Consequently, and even in industrial and steady conditions, the induced mechanical properties 

of the produced bottles are anisotropic. 

Currently, manufacturers managed real tests on blown bottles: maximum pressure or critical loads can 

be measured and when values are strong enough, the design is validated. Being able to simulate 

accurately without forming the bottle would be a great help for ISBM industry. This subject has been 

addressed since a long time [1-3, 11-15] but always concluded to the necessity of the accurate 

knowledge of the induced mechanical properties as well as the thickness distribution that are needed 

to manage an accurate simulation. In case of bottles with a large cylindrical part, the assumption of an 

orthotropic behavior can be done and five parameters must be identified Ez, E, z, z and Gz. with a 

symmetry relation between the four first. A classical way to manage identification is to cut three 

specimens from the bottle at 0°, 45° and 90° (see fig.1). Consequently, six information can be obtained 

and a least square method can achieve the identification.  

 

Figure 1: Bottle shape and classical approach for identification from three uniaxial tensile specimen 

cut from directions 0, 90 and 45° (left) cross specimen for biaxial tensile test (right). 

In previous paper [16], authors have already presented methods for identification of the mechanical 

properties based on digital image correlation and virtual field (VFM) method [17]. Using a global 

blowing test, the 3D displacement field allows the determination of both Young modulus in orthotropic 



directions but the homogeneity of the strain field does not allow the determination of Poisson’s ratio 

or shear modulus. Using a heterogeneous uniaxial tensile tests managed on specimen cut in 

longitudinal or hoop direction, 2 Poisson’s ratio are obtained directly and modulus can be evaluated, 

the heterogeneous tensile test can give at last, the shear modulus of the orthotropic behavior law. This 

identification process necessitates two steps and it can be shown that uniaxial tensile test cannot give 

all five parameters with only one test.   

In this paper, a heterogeneous biaxial tensile test managed on cruciform specimen with hole is carried 

out. This experimental result combining with virtual field method allows us to obtain the orthotropic 

characteristics from a single biaxial test. The virtual field (VFM) method is applied on the 

heterogeneous tensile test. This method is wildly used for the identification of mechanical behavior of 

linear elastic materials [17-22]. In the recent past, the VFM method is applied for the identification of 

hyperelastic constitutive parameters [19] or viscoelastic properties of rubber under dynamic tests [20]. 

Pierron et al. identified the orthotropic elastic law under a macroscopic shear test named unnotched 

Iosipescu [21]. Marek et al. considered the virtual displacement fields which were proportional to the 

sensitivity of stress field to perform the identification of an anisotropic plasticity behavior [22].  

In section 2, four virtual displacement fields are necessary for identification all parameters in 

orthotropic behavior law. Furthermore, in order to well consider the shear strain field, one of the 

virtual displacement fields is chosen on focus near the hole of our specimen. The position of hole on 

the specimen is studied in order to obtain the maximum accuracy for the five parameters. In section 3 

we present the portable testing machine developed at our laboratory to carry out biaxial tensile test 

in different environment. Usually, the apparatuses in the literature are often complex and especially 

applying the load that lead to a homogeneous strain field [23-26]. A vertical biaxial testing machine 

has been built up at our Laboratory. The simple design of the machine consists of four independent 

actuators and load sensor is provided along each arm for the force measurement. The biaxial tensile 

test managed on cruciform specimen with a hole is performed. Digital image correlation [27-29] is used 



to determine the heterogeneous strain field. Finally, the virtual field method is used for identification 

for all elastic orthotropic characteristics is discussed in section 4.  

II. Theory: virtual field method applied on heterogeneous tensile biaxial 

test 

Our purpose is to manage biaxial tensile test on “square” specimen. Using digital image correlation 

(DIC for short) we follow the displacement field on the entire surface of the specimen. Used together 

with the virtual filed method (VFM for short) one can identify the elastic properties.  

II.1. Choice of virtual displacement field 

Let us recall basics of the virtual field method (VFM for short). The virtual field principle writes: 

. * : *      for all *sF u dS dV u 
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                                          (1) 

is the studied domain of the specimen and  is the boundary of the domain.  is the real stress 

tensor and * is the virtual strain tensor obtained from the virtual displacement *u  In case of an 

orthotropic material, the behavior law writes: 
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One must notice that Kxy= yxKxx or Kxy= yxKyy and consequently, if we manage an uniaxial tensile test 

in X direction on a rectangular specimen (length L × width b × thickness e) and if we use two simple 

virtual displacement fields as: 
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Then the VFM leads to two relations: 
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where  is the operator of mean value: xx  and yy are the mean values of strain xx and yy 

respectively, over the entire domain studied. V is the volume of the specimen (i.e. V=L×b×e). 

Considering the previous remark on Kij coefficient, these second equation can explicitly give the 

Poisson’s ratio xy whatever the real strain field is or is not homogeneous by the following: 
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                                                            (5)

However, this approach fails to give the two Kxx and Kyy parameters in case of orthotropic materials. A 

third virtual displacement field should be considered to provide a third equation which is independent 

from the two previous one. This is not possible from a homogeneous tensile test and remains quite 

difficult for heterogeneous strain field provided using a central hole in the specimen. Getting a fourth 

equation in order to identify all parameters on a single tensile test seems impossible. 

In case of biaxial tensile test, one can take benefit of two load measures Fx and Fy and can provide an 

optimal shape for a given third virtual displacement field in order to identify all 5 parameters with a 

single test. We propose a square geometry for the specimen (side a x thickness e) with circular holes 

(radius R) at random positions. First, the best position of a unique hole is studied (Fig. 2). Using the 

same two virtual fields already presented in equation (3) leads to the two relations: 
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None of these two relations gives the Poisson’s ratio anymore but it is easy to add a third virtual 

displacement field to complete the system of three equations for three parameters: 
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In that case the displacement is naught on the edges of the specimen, so external loads do not appear 

any more. The mean values of the virtual strains *
xx and *

yy are naught on the specimen. 

Consequently, measured strains must be heterogeneous, but more, they must not be symmetric with 

respect of the square axis otherwise the products of (2x-a) or (2y-a) with xx or yy will be naught also. 

This can be obtained by fixing a hole in the specimen. In that case, the VFM gives this third relation: 
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This last is independent of the two first relations and the trio Kxx, Kyy and Kxy can be determined. 

The strain fields will make it possible to identify all modulus Ex, Ey and Poisson’s ratio but the 

determination of Gxy may be difficult because of the small region where shear occurs near the hole. 

Considering the heterogenous shear strain field, in order to equilibrate the contribution of the two 

components xx and yy in regard of the component xy we choose a fourth displacement field which 

will focus near the hole and that is define as: 

   

   

2 2

*

2

2 2

*

2

1    if 1 0

0  if 1 <0

o o

xy

o o

xy

x x y y

d

x x y y

d





  
  

  
 

                           (9) 

xo and yo are the coordinates of the center of the circular domain where we apply the VFM and d is the 

typical dimension of this region. In order to determine the xx* and yy* we must integrate this field, 

which leads to: 
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It must be noted that the displacement field is discontinuous on the border of the selected area and 

high positive or negative values will appear on the circle that limit the area. Nevertheless, this 

displacement field can be used to obtain the fourth equation needed. 



II.2. Optimization of the hole position 

In the following, we present the numerical method followed to optimize the hole position defined by 

the coordinates of the center xc and yc.  

II.2.1 Choice of the noise amplitude 

First, one manages an orthotropic finite element simulation of the biaxial test with a hole randomly 

located in the specimen: we obtain a finite solution UFE. Figure 2a shows the mesh and the imposed 

displacement on the edges.  Using the VFM from this displacement field, one can perfectly identify the 

parameters used to manage the simulation: E1=3000MPa, E2=6000MPa, 12=0.2, 21=0.4. Second, we 

perturb this finite element solution by adding a random perturbation to simulate the experimental 

uncertainties: 
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where Umax is the maximal value of the displacement components, rand is a uniform random field 

varying from 0 to 1 and noise% is the percentage of Umax used to generate the experimental 

uncertainties. Because the perturbation is random, the identification necessitates 30 realizations for 

each noise percentage. The mean value of the parameter and the standard deviation are calculated 

and the graphs of Fig. 2b show the evolution of the mean parameter versus noise percentage in thick 

dark line and the mean value plus or minus standard deviation in grey line to characterize the 

dispersion of the identification. 



(a) 

(b) 

Figure 2: Biaxial heterogeneous specimen: (a) initial and deformed mesh and (b) influence of noise 

percentage on identification accuracy. 

One can see from Fig.2 that the mean value remains acceptable even when noise reaches 10% but the 

dispersion on the 30 identifications increases quickly and is no more acceptable after 2% of random 

noise. In the following, we will use 2% noise to explore the best specimen geometry.  

II.2.2 Optimization of hole position from Monte Carlo method 

The best position xc and yc for the center of the hole is necessary to carry out. To manage this 

investigation we reproduced the same procedure than previously but instead of varying the noise 



percentage, we fixed 2% and varied the xc and yc coordinates. We already said that the strain field xx 

and yy should not present symmetry and surely, placing the hole at the square center is definitely a 

bad idea with the third virtual displacement we choose. 

On Fig. 3 we plot the mean value of the parameter (black spot) and the mean value plus or minus the 

standard deviation of the parameter (grey spot). Each spot is located at the xc, yc location of the hole. 

1000 realizations of the hole location have been managed and looking at the clouds of spots, a specific 

point of view highlights a “valley” where dispersion is very high and parameter values badly estimated. 

This “forbidden valley” can be characterized by the equation yc=-1.23 xc+44.60. One can see that the 

center of the square specimen, xc= yc= 20mm, is on this line but it is not the only forbidden location. 

 

Figure 3: Biaxial heterogeneous specimen with one hole: uncertainties versus the hole location xc and 

yc. 



These forbidden positions for the hole lead to a hill posed problem. The location is almost on a diagonal 

of the square specimen because of the anisotropy of the material. For the chosen virtual field, equation 

(8) gives: 

   2 2 0xx yyx a y a    
          (12) 

Equi-biaxial displacements are imposed on the edge of the square, consequently, the strains xx and yy 

have identical distribution around the hole but stresses yy are certainly higher than xx because E1 is 

lower than E2. In the upper left corner as well as in the lower right corner of the square, the two 

expressions (2x-a) and (2y-a) have opposite signs and the two terms of the Eq.12 can be opposite. This 

leads to 0=0 and cannot provide the determination of the three parameters.  

 

Figure 4: Dispersion on the 30 realizations of the identification for a given hole versus the distance 

between the hole’s center and the “forbidden line”. 

Considering the decreasing shape of the dispersion when the center of the hole is far from the 

“forbidden valley”, one can suggest that a good criteria for an accurate identification is the distance 

between the center of the hole and the line characterized above. Plotting the dispersion versus this 

distance dC shows a nice decreasing evolution (see Fig.4).  



III. Biaxial tensile tests on heterogeneous specimen 

In this section, we present the development and design of the biaxial testing machine and biaxial 

heterogeneous tests managed for the identification problem. The design of the machine is presented 

and also the test procedure and typical results and specifications of the test campaign. 

III.1. Biaxial test apparatus developed at MSME lab 

The tests are carried out from a home made biaxial tensile machine (Fig. 6). This tensile device has 

been developed under several criteria: (i) it must allow the polymers to be stretched in two directions 

with large strain, with high strain rate and regulated temperature; (ii) the size must remain small 

enough to be easily transportable in order to manage in situ biaxial test under X-ray synchrotron 

facilities. As complementary equipment, a High-Speed camera to capture images during stretching is 

needed for DIC, a heating system must be adapted and a "free" zone allowing the passage of the X-ray 

beams to reach the material needs to be managed. The system is modular and consists of four drives 

(CMMP-AS-C5-11A-P3-M0) which control four motors (EMMS-AS-100-M-HS-RMB) each connected to 

an electrical actuators (ESBF-BS-63- 100 -10P) from FESTO. The actuators have a maximum speed of 

530 mm/s and a stroke length of 100 mm. At the end of each actuators, force sensors are installed. 

These sensors are connected to clamps which allow the studied sample to be held. They have a nominal 

force of 10kN.The four actuators are piloted independently with the programming software LABVIEW 

via the Modbus TCP/IP protocol. This software is used to control the actuators but also to provide data 

acquisition on the force measured by the sensors. The four independent actuators are controlled to 

ensure that the specimen center remains motionless or stationary. 



 

Figure 5: Biaxial testing machine and specimen (for the experimental section, 1 is the longitudinal 

direction and 2 the circumferential direction of the bottle). 

A camera located in front of the sample allows image capture during material deformation. We use 

the VIC2D software which enables image correlation to determine the displacement and deformation 

fields. In the present study, an equibiaxial test was performed on a cross specimen (Fig. 5) cut from 

PET bottles. Direction 1 is the circumferential direction of the bottle and direction 2 is the longitudinal 

direction. 

The precise shape is obtained with a water jet cutting machine. The displacement of the four actuators 

are equal and were set at 0.02mm steps with a 0.001mm/sec speed. Images of the surface of the 

specimen at increasing stretches were stored at each displacement of 0.02mm per direction.  

III.2. Tensile specimen and biaxial tests 

The displacement field at the surface of the sample was determined using the DIC technique. It consists 

in making the grey levels correspond between two different images of a given area, each image 

corresponding to different levels of deformation. In order to improve the contrast of the image, we 

must first paint the sample white and cover it with a black spot. This leads to a random grey field. 

Uniform illumination of the sample surface is provided by LED lamp. The camera is fixed on an 



adjustable support. The VIC-2D software is then used for the correlation process. The software 

processes the images and allows us to obtain the displacement distribution.  

As shown in Fig.5, to avoid the stress singularities at the corner of a square specimen, the real geometry 

is cut with quarter of circles at each corner. This specific shape generates heterogeneities that could 

be enough to identify all the parameters. This difference with the square geometry used in the previous 

section slightly modifies the slope of the forbidden line (Fig.6).  

 

Figure 6: Best specimen with one hole. The forbidden line has a higher slope than the square 

specimen for the same anisotropy. 

 

(a) (b) 

Figure 7:  (a) Biaxial specimen with hole and speckle cut from bottle with water jet machine; (b) 

placed on biaxial machine with speckle. 



As explained previously, the symmetry makes it difficult to choose four different virtual displacement 

fields that lead to independent equations. Consequently, we provide a hole to break this symmetry 

and the hole is managed in the top right region of the specimen as shown on Fig. 7. We neglect the 

effect of the curvature of the bottle and make the 2D plane stress assumption for this test. The material 

is supposed to be homogeneous within the thickness and the axis of anisotropy are aligned with X and 

Y directions.   

Because of the orientation of the specimen chosen for the experimental study, the forbidden line goes 

from the left bottom to the top right. That is a consequence of the higher value of the circumferential 

modulus compared to the longitudinal one.  

  

Figure 8: Biaxial displacement field from VIC-2D (a) horizontal displacement U and (b) vertical 

displacement V. 

Figure 8 shows typical displacement field components, the center of the specimen has U and V 

components equal to 0 and one can see that U is negative at the left and positive on the right side in 

the two horizontal arms while it is in the bottom arm that V is negative and the top arm is positive. 

Considering the irregularities in the U and V fields, one can estimate the noise is less than 1%. This is 

less than the noise level considered in the theory section. 

This displacement field is typical of a biaxial stretching but one can see that contours of both 

components become irregular near the hole that generates shear and breaks the symmetry. So, it is 
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also possible to propose a fourth virtual displacement field in order to identify the shear modulus Gxy 

and complete the in-plane characteristics of the material. 

   

Figure 9: Biaxial strain field from VIC-2D. 

IV. Results and discussion 

IV.1.  Results 
Forty biaxial tests were carried out in order to identify accurately the material parameters. Young’s 

modulus, Poisson ratios and shear modulus are summarized in Fig.10. Mean values of the parameters 

are given in Table 1 and one can see that the longitudinal modulus Ez = 3250MPa, is almost half of the 

circumferential one EInverse proportion are measured for the corresponding Poisson ratios.  

 

(a)                                               (b) 

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50


xx

 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50


yy

 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50


xy

 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3



 (c) 

Figure 10:  (a) Young Modulus; (b) Poisson ratios; (c) Shear modulus 

The dispersions from one sample to another for parameters Ez, E, z, z and Gz are respectively: 8%, 

12%, 24%, 18% and 55%. This last is very important and will be discussed in a following subsection. 

IV.2. Discussion on modulus and Poisson ratios 
The dispersion on Ez is lower than the one on E: this has already been notice in [16]. The reason is that 

the strain rate in the longitudinal direction, during the ISBM industrial process, is given by the 

elongation rod. Its speed is more regular than the effect of the air pressure on the hoop strain rate. 

Consequently, the induced longitudinal modulus variation from bottle to another are smaller. 

Table 1 also gives the mean values of these two modulus measured from different methods. In method 

1, we conduct the classical approach cutting three specimen at 0°, 45° and 90° from the bottle to 

provide uniaxial tensile tests. Method 2 is presented in [16]. In this method, firstly, one of the Poisson’s 

ratios is identified from an uniaxial tensile test on a plane specimen with a hole. Then, the modulus are 

measured using a 3D digital image correlation from bottles blown with internal pressure. These two 

steps give Ez, E, z and z. Finally, back on the tensile test with the hole, one can evaluate the shear 

modulus from the heterogeneity around the hole. Comparing the mean values of the modulus Ez and 

E one can see that our method provides results that are between method 1 and 2. This is also the case 

for Poisson’s ratio. The parameters of our method are identical to the values identified by classical 

methods: differences between methods are lower than the dispersion of each method. For example, 

the max difference on Ez is 4.7% when dispersion between samples in our method is 8%. 



Table 1 Comparison of orthotropic properties from different method 

 Ez (MPa) E (MPa) z z Gz (MPa) 

Method 1 3150 5900 0.41 0.22 1250 

Method 2 3480 6340 0.42 0.23 1500 

Our method 3250 6200 0.42 0.22 1660 

 

IV.3.  Discussion on the shear modulus 
Considering the particular case of the shear modulus, one can notice that its value varies from one 

method to another (32% difference between Method 1 and our method). The shear modulus also 

highlights a very large dispersion (up to 55%) in our method. This is certainly due to the combination 

of two reasons.  

First, a material reason: the shear stiffness is strongly related to the way that the macromolecular 

chains of PET stretch in longitudinal and hoop directions to generate a kind of rectangular network. 

The microstructure could be modelled as a long fiber braided orthotropic material where the shear 

modulus depends on the friction between fibers and the properties of the bulk. More, the elongation 

is not so well reproduced in the hoop direction and finally, it leads to large dispersion on the shear 

behavior.  

Second, the method impact: the area where shear occurs is small (around the hole and in corner) and 

the DIC measure does not provide enough data to reduce the experimental uncertainties. One must 

work to improve this specific problem.  

Nevertheless, this method enables the determination of the complete set of elastic parameters of and 

supposed orthotropic material and numerous tests can lead to validation of recent stochastic 

modelling of elastic tensor [30-31].   



V. Conclusions 

In this work, we present a method to identify the entire in-plane properties of an orthotropic elastic 

model from a unique test conducted on a biaxial tensile testing machine. This is necessary, in case of 

dispersion of the material properties, if one wants to build a stochastic elastic tensor taking into 

account the correlated parameter. 

To achieve this approach, heterogeneous biaxial tensile tests were managed on cruciform specimen 

with a hole. The cruciform specimens are cut from the cylindrical part of PET bottles in a region that is 

assume to be orthotropic. To reinforce the heterogeneity and break the symmetry, a hole is done on 

the specimen.  

The location of the hole has been chosen from a numerical analysis of the sensibility of the 

identification versus the position of the hole. The virtual field method was applied to proceed the 

identification of the orthotropic mechanical properties, the conditioning of the system was discussed 

and the hole position optimized by the Monte Carlo method. 

Forty biaxial tests were carried out to quantify the dispersion on the material parameters. The choice 

of the three first virtual displacement fields lead to a well-conditioned system that allows identification 

of the elastic properties of bottles similar as previous author’s work [16]. By comparing the identified 

values with more classical approaches, this method with a single test provides the same values for 

each parameter: difference between the approaches is lower than the dispersion of each approach. 

This validates the method. 

The choice of the fourth virtual displacement field needed to identify the shear modulus is specific 

because of the small area where shear occurs for such test. On original form located in the region 

around was chosen and validated by comparison with shear modulus values identified from tension 

tests with a sample cut at 45° of the orthotropic directions. Considering the important dispersion on 

this modulus, there is a good agreement between both methods. 



In the future work, since all the induced mechanical properties exhibit some dispersion, a probabilistic 

description of the orthotropic behavior law will be studied. Because all parameters are identified from 

the same sample, it is possible to study if they are or not correlated as some theoretical works show.  
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