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A B S T R A C T
Solving nonlinear multiscale methods with history-dependent behaviors and fine macroscopic
meshes is a well-know challenge. In this work, an unsupervised machine learning-based clus-
tering approach is developed to reduce nonlinear Multilevel Finite Element-FE2 calculations. In
contrast with most available techniques which aim at developing Reduced Order Models (ROM)
or AI-based surrogate models for the microscale nonlinear problems, the present technique
reduces the problem from the macro scale by creating clusters of macro Gauss points which
are assumed to be in close mechanical states. Then, a single micro nonlinear Representative
Volume Element (RVE) calculation is performed for each cluster. A linear approximation of the
macro stress is used in each cluster. Handling internal variables is carried out by using anelastic
macro strains in the clustering vectors in addition to the macro strains components. Finally, some
convergence issues related to the use of clusters at the macro scale are addressed through a
cluster freezing algorithm. The technique is applied to nonlinear hyperelastic, viscoelastic and
elastoplastic composites. In contrast to available ROM or machine-learning -based acceleration
techniques, the present method does not require neither preliminary off-line calculations, nor
training, nor data base, nor reduced basis at the macro scale, while maintaining typical speed-up
factors about 20 as compared to classical FE2.

1. Introduction
Multiscale modeling of nonlinear heterogeneous materials, with time-dependent behaviors is a highly challenging

topic in material engineering. In contrast with the linear properties, predicting the homogenized behavior of com-
posites/heterogeneous materials with elasto-plastic, viscoelastic or damageable phases requires advanced numerical
multiscale techniques. The most common approach which is nowadays used is the so-called FE2 method, initiated in
[1, 2, 3, 4, 5, 6] (see also more recent review papers and the references therein in [7, 8]). In this technique, a macro
(structure) problem is discretized with finite elements. At the micro scale, a Representative Volume Element (RVE) is
defined and also usually discretized by finite elements, even though other solvers can be used (Fast Fourier Transform,
discrete elements, etc.). At the macro scale, the constitutive law in each element is assumed to be unknown, and obtained
numerically by solving a nonlinear RVE problem at each macro Gauss point. The main advantage of this approach is its
generality, as no restrictive assumption is required on the type of nonlinearity within the RVE. The obvious drawback
is the computational cost. As a nonlinear Finite Element Method (FEM) problem must be solved at each Gauss point
of the macro mesh and for all macro Newton iterations, the original version of FE2 is limited and cannot be applied
to large macro (2D or 3D) meshes and thus industrial applications. The interested reader can refer to [8] to have an
overview of the impressive number of applications and extensions of this method.

To tackle the computational time and data storage issues in FE2, computational acceleration techniques have
been proposed, mainly based on Reduced Order Models (ROMs) associated with the nonlinear micro RVE problem:
(i) Interpolation-based ROMs; (ii) Proper Orthogonal Decomposition (POD)-based ROMs; (iii) Transformation
Field Analysis/Non-uniform Transformation Field Analysis (TFA/NTFA)-based ROMs; (iv) AI-based ROMs. Other
techniques using reduction of degrees of freedom in cells can also be mentioned, see e.g. [9]. These different families
are briefly reviewed here. A first idea to construct ROMs in FE2 is to project the nonlinear equations associated with
the RVE on a reduced basis. For this purpose, POD approaches have been proposed in [10], in the framework of
hyperelastic materials, and extended e.g. in [11, 12, 13, 14]. The displacement modes within the RVE are projected
on a reduced basis and the related nonlinear RVE problem is reduced. A second idea is to fully replace the RVE
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<Macro clustering model reduction in FE2 simulations>

nonlinear problem by a "black box" surrogate model, where the input-outputs (e.g. corresponding to macro strain-
macro stress relationships) can be efficiently evaluated from preliminary off-line calculations. Early versions of such
"Data-driven" surrogate models in FE2 can be found in [10, 15] using higher-order interpolation schemes. In this
approach, the effective strain density energy of a hyperelastic RVE was replaced by a higher-interpolation scheme
from discrete values of the effective energy computed via off-line calculations on the RVE. More recent developments
of this technique using High-Order Singular Value Decomposition (HOSVD) or radial basis functions can be found
e.g. in [16, 17]. Note that such methods have been mainly applied for hyperelastic materials or nonlinearities without
loading history-effects. TFA/NTFA approaches [18] were used to reduce the nonlinear viscoplastic multiscale problems
in [19], and a POD-based ROM was used to express the local anelastic (elastoplastic) fields with a reduced number of
parameters and define macro internal variables. A related approach has been developed recently, named Self-Clustering
Analysis (SCA) [20, 21, 22, 23], were the local nonlinear problem is reduced by means of a Fast-Fourier Transform
(FFT)-type problem using clustering to parametrize the anelastic strain fields with a reduced number of macro internal
variables. Artificial Intelligence (AI)-surrogate models for the nonlinear RVE have been proposed for the first time in
FE2 methods in [24]. The main advantage on other higher-order-interpolation-based surrogate model is that it avoids
the use of high-dimensional grids or meshes, and allows the use of widely developed available tools and libraries from
the AI community. Initially developed for hyperelastic materials [24], this idea has been extended to other nonlinear
behaviors and applications, as well as stochastic problems e.g. in [25, 26]. Incorporation of local morphological features
of the microstructure was performed using graph-based auto-encoders for hyperelastic polycrystalline RVEs in [27].
Predicting homogenized stress or apparent permeability using Convolutional Neural Networks (CNN) from images of
the microstructures was accomplished in [28, 29]. Comparisons between different surrogate models in FE2, including
polynomial interpolations, different types of ANN, or hyper-reduction [30, 31, 32] at the micro-level, can be found in
[33, 34]. It is worth mentioning that the above AI-based surrogate models are restricted to loading path-independent
problems. To handle history-dependent problems, Recurrent Neural networks (RNN) based on Long Short-Term
Memory (LSTM) units were used in [35, 36, 37] and showed their capability for cyclic loading of elasto-visco-plastic
or elastoplastic heterogeneous materials. Gated Recurrent Unit neural networks (GRU) were used in [38, 39, 40] to
model 2D elasto-plastic problem with an ability to generalize non-proportional loading conditions for elasto-plastic
problems or large deformation response of anisotropic elasto-plastic 2D solids. In [41], geometric encoders on graphs
were used to construct a ROM for the local plastic internal variables within the RVE.

Another recent trend in AI-based surrogate ROMs is the development of hybrid physic-AI based models. In [42],
auto-encoders were used to identify a reduced set of latent internal state variables of complex inelastic materials in a
Thermodynamics-based Artificial Neural Networks (TANN) frame, and combining that with FEM (FEM×TANN) for
multiscale analyses. Recurrent Neural Networks with thermodynamic consistency, i.e. avoiding negative dissipation,
was proposed in [43].

In this paper, an extension of our previous work developed in [44] is proposed, where a new paradigm is introduced:
a ROM is proposed for the macro scale FEM problem instead of the micro (RVE) problem. For this purpose, an AI-
based unsupervised machine learning technique based on k-means clustering is introduced to avoid redundant calls to
nonlinear RVEs at the macro scale within FE2. As opposed to Hyper-Reduction techniques mentioned above and to
AI-based micro-scale surrogate models, the method does not require neither reduced basis construction nor training,
which considerably simplifies the methodology. It should be noted that the present method also fundamentally differs
from SCA (see references above) or FEM-Cluster based Analysis (FCA) [45]. Then, the present work contributes to
the field of Reduced Order Models in the context of multiscale analysis, but the method we propose operates at the
macro scale and not at the micro scale, which makes it complementary with existing micro-scale ROM techniques.

In the present work, several crucial improvements are introduced to the so-called k-means clustering FE2 (KMFE2)
developed in [44]. First, the definition of the macro stress within each cluster is extended by using linear interpolation in
the strain-stress space. Then, the number of clusters, and then the total number of nonlinear RVE problems to be solved
at the macro scale is drastically reduced as compared to the so-called sub-clustering technique developed in [44], by
using appropriate clustering vectors containing macro anelastic strain components. Finally, convergence issues related
to the use of clusters are addressed.

The paper is organized as follows. Section 2 summarizes the classical FE2 method. In section 3, the k-means
clustering FE2 method (KMFE2) as presented in our first work [44] is first reviewed, then the key novelties introduced
in the new version of KMFE2 are developed. Validation examples and efficiency assessment tests are provided in
section 4.
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2. Review of the FE2 method
We first review the basics of the so-called FE2 method [3, 4]. In this approach, two scales are considered. The

macro scale is associated with the structure, while the micro scale is defined by a Representative Volume Element
(RVE) characterizing the microstructure of the material. A mesh of finite elements is defined for the structure (see Fig.
1 (a)), and referred to as the macro mesh, while each Gauss point is attached to an RVE which is itself discretized by
a FEM mesh (see Fig. 1 (b)).

(b)(a) (c)

Figure 1: Schematic illustration of FE2 method and k-means clustering FE2 (KMFE2); (a)-(b): classical FE2 method; (a):
macro mesh; (b) micro Representative Volume Elements (RVE) meshes; each Gauss point in the macro mesh is attached
to a nonlinear RVE problem; (c) KMFE2: only one RVE problem is solved for each cluster of Gauss points, depicted in
di�erent colors.

In FE2 method, a well-identified nonlinear constitutive law is assumed at the micro scale for each phase, while it is
unknown for the macro scale. At each Gauss point of the macro mesh, given a macroscopic strain, boundary conditions
are then applied to an RVE attached to the Gauss point. After solving the micro nonlinear problem, the macro stress
is obtained by numerical averaging of micro stress. The macro equilibrium is usually obtained by an iterative Newton
method. In the following, the main equations will be presented for small stains, while an example including finite strains
is also presented in the numerical example section 4. The main equations for this case are presented in Appendix A.
2.1. Macro scale problem

The macro scale problem is defined in an open domain Ω ∈ ℝ𝐷, whose boundary is denoted by 𝜕Ω, and where 𝐷
is the domain dimension. In the absence of body forces, the macro scale problem equations are given by:

∇ ⋅ 𝝈(𝐱) = 0 in Ω, (1)
where 𝐱 is a material point coordinate in the structure and 𝝈 is the macro Cauchy stress tensor, and ∇ ⋅ (∙) denotes the
divergence operator. The boundary conditions read:

𝐮(𝐱) = 𝐮∗(𝐱) on 𝜕Ω𝑢, and 𝝈 ⋅ 𝐧 = 𝐅
∗ on 𝜕Ω𝐹 , (2)

where 𝐮 denotes displacements at the macro scale, 𝐮∗ and 𝐅
∗ denote prescribed displacements and forces over the

macro Dirichlet, 𝜕Ω𝑢 and Neumann 𝜕Ω𝐹 boundaries, respectively, and 𝐧 is the unit normal vector to the external
boundary 𝜕Ω.
2.2. Micro scale problem

We consider an RVE defined in an open domain Ω, whose boundary is denoted by 𝜕Ω. Still assuming absence of
body forces, the equilibrium equations read:

∇ ⋅ 𝝈(𝐱) = 0 in Ω, (3)
First Author et al.: Preprint submitted to Elsevier Page 3 of 25
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where 𝝈 is the micro Cauchy stress and 𝐱 is a material point coordinate in the RVE. At the micro scale, the constitutive
law is an arbitrary nonlinear function in the form

𝝈(𝐱, 𝑡) =  (𝜺(𝐱, 𝑡),𝜶(𝐱, 𝑡)) , (4)
where 𝜺 = 1

2

(

∇(𝐮) + ∇𝑇 (𝐮)
) is the strain tensor, with ∇(∙) is the gradient operator, and  is a nonlinear operator. In

(4), 𝜶 denotes a vector of internal variables associated with history-dependent phenomena like e.g. plasticity, damage,
etc. The problem is completed with boundary conditions expressed by:

𝐮(𝐱) = 𝜺 ⋅ 𝐱 + �̃�(𝐱) on 𝜕Ω, (5)
where �̃�(𝐱) is a periodic fluctuation. Equation (5) satisfies

𝜺 = ⟨𝜺⟩ (6)
where ⟨∙⟩ = 1

|Ω| ∫Ω(∙)𝑑Ω denotes spatial averaging over the RVE. Eq. (6) indicates that the RVE is subjected to a
uniform macro strain 𝜺 (see justification e.g. in [46]). In addition, the macro stress is related to the micro stress by
spatial averaging as:

𝝈 = ⟨𝝈 (𝑥)⟩. (7)
Note that (6) and (7) are only valid in the assumption of perfect interfaces [46], which is the assumption adopted in

this work. In the following, for the sake of simplicity, we will only consider linear boundary conditions, i.e. �̃�(𝐱) = 0
in (5).
2.3. Numerical solving procedure

At the macro scale, the weak form associated with (1)-(2) is given by:

𝑅(𝐮, 𝛿𝐮) = ∫Ω
𝝈(𝜺(𝐮)) ∶ 𝜺(𝛿𝐮)𝑑Ω − ∫𝜕Ω𝐹

𝐹
∗
⋅ 𝛿𝐮𝑑Γ = 0 ∀𝛿𝐮 ∈ 0,∀𝐮 ∈  , (8)

with  =
{

𝐯|𝐯 = 𝐮∗ on 𝜕Ω𝑢, 𝐯 sufficiently regular on Ω
}

, 0 =
{

𝐯|𝐯 = 0 on 𝜕Ω𝑢, 𝐯 sufficiently regular on Ω
}

. Eq.
(8) can be solved using an iterative Newton method. The linearization of (8) around a known solution at iteration (𝑛)
gives:

∫Ω
ℂ𝑡𝑎𝑛

(

𝜺
(

𝐮𝑛
))

∶ 𝜀(Δ𝐮) ∶ 𝜀(𝛿𝐮)𝑑Ω = −∫Ω
𝝈(𝜺

(

𝐮𝑛
)

) ∶ 𝜀(𝛿𝐮)𝑑Ω+∫𝜕Ω𝐹
𝐹

∗
⋅ 𝛿𝐮𝑑Γ. (9)

By introducing a FEM discretization into equation (9), we obtain the linear system of equations:
𝐊𝑡𝑎𝑛Δ𝐔 = −𝐑, (10)

where 𝐑 and 𝐊𝑡𝑎𝑛 are assembled from the elementary residual vectors 𝐑𝑒 and matrices 𝐊𝑒
𝑡𝑎𝑛 in a macro element Ω𝑒,

respectively, expressed by:

𝐑
𝑒
= ∫Ω𝑒

𝐁𝑇𝝈(𝐮𝑛)𝑑Ω−∫𝜕Ω𝑒𝐹
𝐍𝑇𝐹

∗
𝑑Γ, (11)

and
𝐊
𝑒
𝑡𝑎𝑛 = ∫Ω𝑒

𝐁𝑇𝐂𝑡𝑎𝑛(𝐮
𝑛)𝐁𝑑Ω. (12)

The shape function matrices 𝐁 and 𝐍 are defined such that 𝜺(𝛿𝐮) = 𝐁(𝐱)𝛿𝐮𝑒, 𝜺(Δ𝐮) = 𝐁(𝐱)Δ𝐮𝑒 and 𝛿𝐮 = 𝐍(𝐱)𝛿𝐮𝑒.
Finally, we obtain the correction Δ𝐔 to update the displacement 𝐔𝑛+1 = 𝐔

𝑛
+ Δ𝐔, where 𝐔 denoes the global vector

of displacements.
First Author et al.: Preprint submitted to Elsevier Page 4 of 25
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Thus, 𝝈 and ℂ𝑡𝑎𝑛 in Eq. (9) are obtained by solving the nonlinear RVE problem (3)-(5) at each Gauss point of the
macro mesh. The macro stress 𝝈 is obtained by (7) and ℂ𝑡𝑎𝑛 is only evaluated by perturbation using several aditional
RVE calculations for each perturbed configuration:

(

ℂ
𝑗
𝑡𝑎𝑛

)

𝑎𝑏𝑐𝑑
≃

𝝈𝑎𝑏(𝜺
𝑗 + 𝜹𝑐𝑑) − 𝝈𝑎𝑏(𝜺

𝑗)
𝜖

, (13)
where

𝜹𝑐𝑑 = 𝜖 1
2
(

𝐞𝑐 ⊗ 𝐞𝑑 + 𝐞𝑑 ⊗ 𝐞𝑐
)

, (14)

𝜖 being a small numerical parameter, and 𝐞𝑖 denoting orthogonal vectors. Note that in FE2, there is no practical way to
evaluate the tangent tensor ℂ𝑡𝑎𝑛 analytically. Then, the large number of nonlinear problems to be solved at each macro
Newton iteration induces dramatic computational costs, especially for large 2D or 3D meshes. In the next section, we
present an approach to reduce these computational costs.

3. An enhanced k-means clustering FE2 method
In this section, we present a method called k-means clustering FE2 (KMFE2), which is based on our previous work

[44] and where several new contributions are developed in this paper. The basics ideas are first presented, then the
improved version is developed to address some limitations of the initial method.
3.1. Basics of k-means clustering FE2

In this section, we briefly recall the basics of KMFE2 as proposed in [44]. The key idea is to reduce the amount
of nonlinear RVE problems by using an unsupervised machine learning technique based on clustering to select the
Gauss points in the macro structure mesh that have close mechanical states. Then, instead of solving one nonlinear
RVE problem for each Gauss point, a single nonlinear problem is solved in each cluster (see Fig. 1 (c)). This process
dramatically reduces the number of nonlinear problems, without the need for a training stage, as no surrogate model
is required. This is in contrast with approaches based on supervised machine learning (see e.g. [23, 24, 21, 39, 41],
among many others), where an off-line stage is required for the learning step. Such learning step has two drawbacks:
(i) the accuracy of the surrogate model critically depends on the size and completeness of the data base: for history-
dependent problems, the number of loading trajectories might be high and difficult to define; (ii) the cost of the off-line
calculations is usually enormous and the database must be re-constructed for each new microstructure (topology and
local behavior).

In KMFE2 as proposed in [44], at each iteration of the Newton procedure, the Gauss points are classified into
clusters using the k-means clustering algorithm (see e.g. [47]). Taking the components of the macro strain tensors
into vectors 𝐯𝑖, 𝑖 = 1, 2, ..., 𝑁𝐺, with 𝑁𝐺 the number of Gauss points, a number of 𝐾 clusters is defined by the user.
Afterwards, the vectors 𝐯𝑖 are grouped into clusters 𝑘, 𝑘 = 1, 2, ..., 𝐾 using the algorithm described in Table 1.

Finally, a single micro problem (3)-(5) is solved in each cluster 𝑘 with boundary conditions (5), where 𝜺 = 𝜺𝑘, 𝜺𝑘
being defined as the weighted averaging of the macro strains within the cluster 𝑘. As a result, 𝝈(𝜺𝑘), and ℂ𝑡𝑎𝑛(𝜺

𝑘) can
be evaluated. The average strain is defined for each cluster using:

𝜺𝑘 = 1
𝑉 𝑘 ∫Ω𝑘

𝜺(𝐱)𝑑Ω, (15)

where 𝑉 𝑘 = ∫Ω𝑘 𝑑Ω, and Ω𝑘 is the domain defined as the union of all macro elements belonging to the cluster 𝑘.
In [44], a constant value of 𝝈(𝜺𝑘) and ℂ𝑡𝑎𝑛(𝜺

𝑘) was assigned to all integrations points belonging to the same cluster 𝑘
(see Fig. 1 (c)). Moreover, to take into account the effects of the internal variables in the RVEs, a heuristic procedure
based on the intersection between old and new clusters was adopted (see [44] for more details). This procedure has the
drawback of creating many new clusters, called sub-clusters, whose number cannot be controlled by the user and which
can be high as compared to the target number of clusters 𝐾 based solely on the macro strains. The method can then be
summarized into the following steps at each iteration of the macro Newton procedure: (i) perform clustering of macro
First Author et al.: Preprint submitted to Elsevier Page 5 of 25
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Table 1

Algorithm 𝟏: k-means clustering

Input: A set of 𝑁 vectors  = {𝐯𝑖, 𝑖 = 1, 2, ..., 𝑁}, and a user de�ned number of clusters 𝐾 << 𝑁 .

1. Initialize the centroids 𝐯𝑘 = 𝐯𝑘𝑚, where 𝐯𝑘𝑚 are randomly chosen vectors in .
2. Initialise the optimisation function 𝐽 (0) = 0.
3. While Δ𝐽 ≠ 0

(a) Assign each vector 𝐯𝐢 to the cluster 𝑘 that has the closest mean vector 𝐯𝑘 𝑘,(𝑟) =
{

𝐯𝑖 ∣ ‖𝐯𝑖 − 𝐯𝑘‖ ≤ ‖𝐯𝑖 − 𝐯𝑚‖, ∀𝑚, 𝑚 ≠ 𝑘
}

.

(b) Compute the means 𝐯𝑘 of 𝑘,(𝑛), 𝑘 = 1...𝐾 by 𝐯𝑘 =
∑

𝑖∈𝑘 𝐯𝑖
𝑁𝑘

, 𝑁𝑘 is the number of vectors belonging to 𝑘.

(c) Compute the objective function 𝐽 (𝑟) through 𝐽 (𝑟) =
∑𝑁

𝑘=1
∑

𝑖∈𝑘,(𝑟) ‖𝐯𝑖 − 𝐯𝑘‖
2

(d) If |Δ𝐽 | ∶= |𝐽 (𝑟) − 𝐽 (𝑟−1)
| = 0, then 𝑘 = 𝑘,(𝑟), 𝑘 = 1...𝐾 go to (4)

(e) Else: 𝑟 = 𝑟 + 1 and go to (a)

4. End

Output: Clusters 𝑘, 𝑘 = 1...𝐾 and their representative centroids 𝐯𝑘, 𝑘 = 1, 2, ..., 𝐾

Gauss points based on macro stains; (ii) handle internal variable dependence: subdivide clusters into sub-clusters as
intersection between old and new clusters (see [44] for more details); (iii) perform one RVE simulation per cluster 𝑘
to obtain the macro stress and the macro tangent operator; (iv) assign the same stress and macro tangent operator to all
integration points of the cluster.
3.2. An improved version of KMFE2

In this work, we propose several improvements of the initial version of the method [44], and more specifically
related to the above points (ii) and (iv).
3.2.1. Avoiding sub-clusters

To avoid the creation of sub-clusters mentioned above and to reduce the computational times, we propose in this
work to add new information into the clustering classification vectors 𝐯𝑖. It is important to note that including the whole
set of internal variables 𝜶(𝐱) of each RVE in the vectors 𝐯𝑖 may induce a difficulty: the k-means clustering algorithm
may not be efficient and accurate if the input vectors are of too high dimension.

In this paper, we restrict our analysis to anelastic materials without damage. These behaviors include e.g. plasticity,
visco-plasticity and viscoelasticity. In this situation, the microscopic strain field within the RVE can be expressed as:

𝜺(𝐱) = 𝜺𝑒(𝐱) + 𝜺𝑎𝑛(𝐱), (16)
where 𝜺𝑎𝑛(𝐱) is an anelastic strains tensor depending on the local internal variables vector 𝜶(𝐱). We assume here that
in absence of damage, the local behavior can be expressed as:

𝝈(𝐱) = ℂ(𝐱) ∶ 𝜺𝑒(𝐱) = ℂ(𝐱) ∶ (𝜺(𝐱) − 𝜺𝑎𝑛(𝜶(𝐱))) = ℂ(𝐱) ∶ 𝜺(𝐱) + 𝝈𝑎𝑛(𝜶(𝐱)). (17)
Then, by analogy with the relation shown in [19], the macroscopic behavior can be re-expressed into the form :
𝝈 = ℂ ∶ 𝜺𝑒 = ℂ ∶

(

𝜺 − 𝜺𝑎𝑛(𝜶(𝐱))
)

= ℂ ∶ 𝜺 + 𝝈𝑎𝑛(𝜶(𝐱)), (18)

where 𝜺𝑎𝑛(𝜶(𝐱)) = ⟨𝜺𝑎𝑛(𝐱)⟩ and 𝝈𝑎𝑛(𝜶(𝐱)) = ⟨𝝈𝑎𝑛(𝐱)⟩. We note that Eq. (18) is only true in the case of small strains,
due to the superposition principle. However, it is not true in the finite strains context. However, this equation only
provides a guideline to construct the clustering vector, but is not eventually used to define the constitutive relationship.
From (18), it can be noted that the only pertinent information to recover the macro stress 𝝈 is 𝜺 and 𝜺𝑎𝑛, or 𝜺 and
𝝈𝑎𝑛. Thus, we propose to extend the classification of Gauss points using either one of the following vectors for a 2D
problem:

𝐯𝑖 =
{

𝜀𝑖11, 𝜀
𝑖
22, 2𝜀

𝑖
12, 𝜀𝑎𝑛

𝑖
11, 𝜀𝑎𝑛

𝑖
22, 2𝜀𝑎𝑛

𝑖
12

}

, ∀𝑖 ∈ 𝑘, (19)
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or
𝐯𝑖 =

{

𝜀𝑖11, 𝜀
𝑖
22, 2𝜀

𝑖
12, 𝜎𝑎𝑛

𝑖
11, 𝜎𝑎𝑛

𝑖
22, 𝜎𝑎𝑛

𝑖
12

}

, ∀𝑖 ∈ 𝑘. (20)
This last case might be useful in situations where the local anelastic strain 𝜺𝑎𝑛(𝐱) is not available directly in the

numerical calculations (see e.g. section 4.2). Then, as the vector 𝐯𝑖 contains values with different units, a normalization
is required, like e.g.:

𝐯𝑖 =
{

𝜀𝑖11
𝑚𝑎𝑥(|𝜀|)

,
𝜀𝑖22

𝑚𝑎𝑥(|𝜀|)
,

𝜀𝑖12
𝑚𝑎𝑥(|𝜀|)

,
𝜎𝑎𝑛

𝑖
11

𝑚𝑎𝑥(|𝜎𝑎𝑛|)
,

𝜎𝑎𝑛
𝑖
22

𝑚𝑎𝑥(|𝜎𝑎𝑛|)
,

𝜎𝑎𝑛
𝑖
12

𝑚𝑎𝑥(|𝜎𝑎𝑛|)

}

, ∀𝑖 ∈ 𝑘, (21)

where 𝑚𝑎𝑥(|𝜀|) and 𝑚𝑎𝑥(|𝜎𝑎𝑛|) denote the maximum values of the macro strains and anelastic stresses for all Gauss
points in the macro mesh. Thus, this new procedure does not induce the creation of additional clusters (sub-clusters)
as in [44], and yet takes into account the influence of internal variables at the micro scale.

Furthermore, it is important to note that after a new clustering step at iteration 𝑗 + 1, one cluster associated with a
domain {Ω𝑘}𝑗+1 may contain several Gauss points associated with previous clusters at iteration 𝑗, and then different
sets of internal variables. A schematic illustration can be found in Fig.2b. A new domain associated with a cluster can
be decomposed as:

{Ω𝑘}𝑗+1 =
𝐾
⋃

𝑝=1
Ω𝑝𝑘, (22)

where Ω𝑝𝑘 = {Ω𝑘}𝑗+1 ∩ {Ω𝑝}𝑗 . If we consider a new domain associtaed with a cluster 𝑘, each of its sub-domain
Ω𝑝𝑘 ⊂ {Ω𝑘}𝑗+1 is attached to a different internal variable vector 𝜶𝑝. Defining the new set of internal variables 𝜶𝑘
as a weighted average of previous internal variable vectors would lead to inconsistent mechanical states. Instead, we
choose 𝜶𝑘 for the new cluster with respect to previous internal variables vectors as follows:

i) Compute the weighted average of the macroscopic anelastic strains:

𝜺𝑎𝑛,𝑚𝑘 =

∑𝐾
𝑝=1 𝑉𝑝𝑘𝜺𝑎𝑛𝑝
∑𝐾
𝑝=1 𝑉𝑝𝑘

, ∀𝑝 ∈ 𝑘, (23)

where 𝑘 is the set of indices associated to sub-domain composing the previous domain {

Ω𝑝
}

𝑗 and 𝑉𝑝𝑘 is the
volume related to the sub-domain Ω𝑝𝑘.

ii) Compute the distance to each of the macroscopic anelastic strain 𝜺𝑎𝑛𝑝 associated with the subdomain Ω𝑝𝑘 ⊂
{Ω𝑘}𝑗+1:

𝑑𝑝 =∥ 𝜺𝑎𝑛,𝑚𝑘 − 𝜺𝑎𝑛𝑝 ∥, 𝑝 ∈ 𝑘. (24)
iii) Define 𝜶𝑘 for the new cluster 𝑘 such that:

𝑘 = argmin
𝑝∈𝑘

(𝑑𝑝). (25)

As an illustrative example, we consider the domain {Ω2}𝑗 of the cluster number 2 in Fig. 2a (The green domain).
After defining new clusters, the domain becomes {Ω2}𝑗+1 = Ω12 ∪Ω22 ∪Ω32 as shown in Fig. 2b. Thus, This domain
is associated with three previous internal variables vectors 𝜶1, 𝜶2 and 𝜶3. Then here, 𝜺𝑎𝑛,𝑚2 =

𝑉12𝜺𝑎𝑛1 +𝑉22𝜺𝑎𝑛2 +𝑉32𝜺𝑎𝑛3
𝑉12+𝑉22+𝑉32

, and
𝛼𝑘 that satisfies the minimum distance among the three distances 𝑚𝑖𝑛(𝑑1, 𝑑2, 𝑑3) is chosen to represent the kluster 2.
This procedure is summarized in Algorithm 2.

As a result, the total number of clusters defined by the user matches the actual number of RVE problems to be
solved during the two-scale calculation. This drastically reduces the number of RVE problems in FE2 method from
𝑁𝑡𝑜𝑡𝑎𝑙 = (1 + 𝛽) ×𝑁𝐺 ×𝑁𝑒 ×𝑁𝑖𝑡𝑒𝑟 ×𝑁𝑠𝑡𝑒𝑝 to 𝑁𝑡𝑜𝑡𝑎𝑙 = (1 + 𝛽) ×𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ×𝑁𝑖𝑡𝑒𝑟 ×𝑁𝑠𝑡𝑒𝑝, where 𝛽 = 3 for 2D and
𝛽 = 6 for 3D, 𝑁𝐺 is the number of Gauss points per element, 𝑁𝑒 is the number of elements, 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 is the number of
clusters, and𝑁𝑠𝑡𝑒𝑝 is the number of loading steps. Then a speed-up factor proportional to𝑁𝑒∕𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 can be expected.
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Table 2

Algorithm 𝟐: Algorithm for assigning internal variables to each cluster after a new clustering step.

1) Loop over clusters (For 𝑘 = 1…𝐾).

a) Compute the weighted average of macroscopic anelastic strain 𝜺𝑎𝑛,𝑚𝑘 using Eq. (23).

b) Compute the distance to each of the macroscopic anelastic strains vectors 𝜺𝑎𝑛𝑝 associated with sub-domains Ω𝑝𝑘
using equation (24).

c) De�ne 𝜶𝑘 using Eq. (25).

2) End

(a) (b)
Figure 2: Evolution of clusters during iterations: sub-domains used to transfer the internal variables vectors to new clusters:
(a) step 𝑗, (b) new clustering at step 𝑗 + 1.

3.2.2. linear approximation of the stress in clusters
The constant approximation of stress used in [44] is coarse and might lead to non-convergence of the macro Newton

scheme. To improve the approximation of the macro stress in each cluster, a linear approximation is proposed in this
work for all Gauss points with index 𝑖 belonging to a cluster 𝑘:

𝝈
(

𝜺𝑖
)

= 𝝈
(

𝜺𝑘
)

+ ℂ
𝑘
𝑡𝑎𝑛

(

𝜺𝑘
)

∶
(

𝜺𝑖 − 𝜺𝑘
)

, (26)

where 𝜺𝑘 is the spatial average of the macro strains within the cluster 𝑘. As a result, different stress values are assigned to
each macroscopic Gauss point within the cluster 𝑘without any additional costs (no additional nonlinear RVE problems
to be solved). It is worth noting that the linear approximation is performed in the strain-stress space, and not in the
coordinate space. Then, clusters do not need to be continuous within the macro mesh.

As an illustration, the evolution of the residual for a macro Newton iterations is plotted in Fig. 3, for constant
macro stress and linear approximation in each cluster. This convergence curve is taken from the example in section
4.1 (hyperelastic composite structure). While the constant stress approximation (red curve) clearly leads to non-
convergence and large residual errors, the linear approximation (blue curve) leads to a fast decrease of the residual
and allows convergence in a few iterations.
3.2.3. Adressing non-convergence issues due to cluster changes: a cluster freezing algorithm

In some cases, even when using the linear approximation of stress, the macro residual might not converge because
of perpetual changes of the clusters distributions during the macro Newton iterations. As a result, the macro residual
evolution exhibits a plateau with fluctuations and large errors. This phenomenon is illustrated in Fig. 4.

To circumvent this issue, we introduce a cluster freezing algorithm. The idea is that when the macro Newton
convergence is not achieved within a loading increment due to changes of clusters after a given number if iterations,
the distribution of clusters is maintained fixed (freezed) until the next loading increment.
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Figure 3: Evolution of the residual for one macro Newton-Raphson step: in red, non-convergence using constant stress
approximation within the clusters; in blue, convergence when using linear approximation of the stress within the clusters.
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Figure 4: Non-convergence of the residual due to the constant changes in the clusters distribution.

This treatment effectively removes this convergence issue, as shown in Fig. 5. Again, the evolution of the macro
residual during one Newton iteration is plotted. The green curve corresponds to the macro residual obtained using
the linear stress approximation in each cluster, without treatment. The blue curve corresponds to the macro residual
obtained using the freezing cluster algorithm. We can observe that maintaining the clustering fixed during the Newton
iterations effectively allows convergences in this case.

However, we have reported that in some situations, the convergence was not achieved even when maintaining the
clusters fixed. The proposed algorithm is then further elaborated by recording the displacement solution corresponding
to the last cluster freezing. Then, in case of non-convergence, the Newton iterations are continued using a new cluster
distribution and this previously saved displacement solution. This operation, called here a cycle, is repeated until
convergence. An illustration is provided in Fig. 6. Here, the blue, red and black curves correspond to 3 cycles. At the
beginning of each of these cycles, the displacement solution saved at iteration (A) is re-used at iterations (B) and (C),
for which new cluster distributions are used. We can note that in this case, iteration was reached after 3 cycles (black
curve). The algorithm is described in Table 3.
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Figure 5: Evolution of the macro residual during one macro loading increment; in green: non-convergence using linear stress
approximation within clusters, but perpetual changes in the clusters induce oscillations; in blue, convergence achieved using
the freezing clustering algorithm.
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Figure 6: Evolution of the macro residual during one macro loading increment; in green: convergence is not achieved due
to perpetual clustering changes; (A) freezing the cluster distribution and non convergence (Cycle 1); (B) starting from
the last con�guration with another cluster distribution, the convergence is still non achieved (Cycle 2); (C) repeating the
procedure with another cluster distribution, the convergence is �nally achieved (Cycle 3).

3.2.4. Summary of the improved KMFE2

A summary of the improved KMFE2 developed in this work is described in table 4 (Algorithm 4).
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Table 3

Algorithm 𝟑: Cluster freezing algorithm.

Input: The last two Newton iterations residuals norms of the current step ‖𝑅‖𝑗−1 and ‖𝑅‖𝑗 ; the counter (𝑐𝑡); 𝑓𝑜𝑙𝑑 ; 𝐔𝑠𝑎𝑣𝑒

and 𝐔
𝑛

𝑗 .

1) If
(

(𝑐𝑡 = 0) and
(

‖𝑅‖𝑗 < ‖𝑅‖𝑗−1
))

, then: 𝑓𝑛𝑒𝑤 = 𝑓𝑜𝑙𝑑 .

2) Else
(

(𝑐𝑡 ≠ 0) or
(

‖𝑅‖𝑗 > ‖𝑅‖𝑗−1
))

:

a) If
(

𝑐𝑡 = 𝑁𝑚𝑎𝑥
)

, then:

i. (𝑐𝑡← 0)
ii. 𝑓𝑛𝑒𝑤 = 𝑓𝑜𝑙𝑑 + 1

b) else: 𝑓𝑛𝑒𝑤 = 𝑓𝑜𝑙𝑑 and update 𝑐𝑡← 𝑐𝑡 + 1.
3) End

4) • If (𝑓𝑛𝑒𝑤 > 𝑓𝑜𝑙𝑑 & 𝑓𝑜𝑙𝑑 = 0): Save 𝐔𝑠𝑎𝑣𝑒 = 𝐔
𝑛

𝑗 , and freeze clustering,

• else if (𝑓𝑛𝑒𝑤 > 𝑓𝑜𝑙𝑑 & 𝑓𝑜𝑙𝑑 > 0): 𝐔
𝑛

𝑗 = 𝐔𝑠𝑎𝑣𝑒 and Evaluate a new clustering

• else if (𝑓𝑛𝑒𝑤 = 𝑓𝑜𝑙𝑑 & 𝑓𝑜𝑙𝑑 > 0): Freeze clustering.

• else (𝑓𝑛𝑒𝑤 = 𝑓𝑜𝑙𝑑 = 0): Evaluate a new clustering.

Output: Block cluster distribution or not; the counter (𝑐𝑡); 𝑓𝑛𝑒𝑤; 𝐔𝑠𝑎𝑣𝑒 and 𝐔
𝑛

𝑗 .

Remark: 𝑐𝑡, 𝑓𝑜𝑙𝑑 = 0 and 𝑓𝑛𝑒𝑤 = 0 are variables that were introduced to ensure the algorithm.

4. Numerical examples
4.1. Hyperelastic composite structure

In this first example, a composite hyperelastic structure is considered. Even though this problem does not involve
any internal variable, we present it to analyze the accuracy of the KMFE2 solution using the linear approximation of
the stress in each cluster as developed in section 3.2.2. The geometry and boundary conditions of the macrostructure
are described in Fig. 7a, with 𝐿 = 40 cm, 𝐻 = 10 cm . A displacement 𝑢 = 25 cm is incrementally prescribed on the
corner (𝑥 = 𝐻 , 𝑦 = 𝐿) and 10 increments are used to reach this value in the simulation. The RVE is periodic, and its
geometry is described in Fig. 8a. It consists into a circular fiber centered in a square domain, with 𝑑 = 0.4× 𝑙 and 𝑙 = 1
mm. A Neo-Hookean compressible model is considered for the matrix, and a Saint-Venant-Kirchhoff compressible
model is considered for the fiber. The numerical parameters are chosen as 𝐸𝑚 = 2 GPa , 𝜈𝑚 = 0.25, 𝐸𝑓 = 210 GPa,
𝜈𝑓 = 0.3, where 𝐸𝑚, 𝐸𝑓 , 𝜈𝑚 and 𝜈𝑓 denote Young’s moduli of matrix and fiber, respectively, and Poisson’s moduli of
matrix and fiber, respectively. The numerical formulation for the hyperelastic model is reviewed in Appendix A. The
macro mesh is composed of 871 elements, and the micro (RVE) mesh is composed of 1084 elements. In all examples
treated in this paper 2D linear triangular elements will be employed for both macro and micro meshes.

To validate the results, the FE2 solution, i.e. solving the RVE problems in all macro elements, is taken as the
reference. In Fig. 9, the KMFE2 solution is compared with the reference solution for different number of clusters. The
component of the stress 𝜎11 is evaluated in two elements of the mesh, denoted by elements A and B (see Fig. 7b).
We can observe the convergence of the KMFE2 solution with respect to the number of clusters. The convergence is
approximatively reached for 7 clusters, while 14 clusters provides a very accurate solution as compared to the reference.

An illustration of the cluster distribution at the final load for 𝐾 = 2, 4 and 𝐾 = 14 is provided in Fig. 10.
In Fig. 11 the local von Mises stress fields obtained by the KMFE2 and the reference solution are compared. It is

worth noting that a relatively small number of clusters (around 14) is sufficient to accurately reproduce the reference
solution. We notice that surprisingly, even 2 clusters are sufficient to capture the main features of the local field
distribution, even details like the stress concentration at the top-right corner. This is due to the linear approximation of
stress adopted in the clusters.

The simulations were conducted on a Matlab code on 4 processors with 2.3 GHz and 252 GB of RAM. The full FE2

computations took 4h55min. Using 𝐾 = 14 clusters, the computations are reduced to 19.6 min leading to a speed-up
ratio of 15. Using 𝐾 = 7 clusters, the calculations drop to 13,2 min, corresponding to a speed-up ratio of 22.
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Table 4

Algorithm 𝟒: Summary of the improved KMFE2 method

1. Initialize 𝐔
0
= 𝐔(𝐱0), 𝜶0(𝐱) ∶=

{

𝜶𝑘(𝐱𝟎) ∣ 𝑘 = 1...𝐾
}

.

2. Loop over all time steps: for 𝑛 = 1...𝑁𝑠𝑡𝑒𝑝

(a) Initialize iteration 𝑗 = 0, a counter 𝑐𝑡 = 0, 𝐔𝑠𝑎𝑣𝑒 = 𝟎, 𝑓𝑜𝑙𝑑 = 0 and 𝑓𝑛𝑒𝑤 = 0.
(b) 𝐔

𝑛

𝑗 = 𝐔
𝑛−1

(c) While 𝐸𝑟𝑟 > 𝜖𝑇 𝑜𝑙
c.1 Update iteration: 𝑗 = 𝑗 + 1
c.2 If j>1, Given 𝑐𝑡, 𝐔𝑠𝑎𝑣𝑒, 𝑓𝑜𝑙𝑑 , ‖𝐑‖𝑗 and ‖𝐑‖𝑗−1, apply Algorithm 𝟑.
c.3 Compute strain vectors for all macro integration points

{

𝜺𝑖(𝐔
𝑛

𝑗 ), 𝑖 = 1...𝑁𝐺

}

.

• If the clustering is blocked: Compute
{

𝜺𝑘 ∣ 𝑘 = 1...𝐾
}

using equation (15), then Go to (c.6).

• Else: Continue to (c.4).

c.4 Evaluate a new clustering through Algorithm 𝟏. Output:
{

𝜺𝑘 ∣ 𝑘 = 1...𝐾
}

, and 𝑘.

c.5 Given 𝜶𝑛−1(𝐱), de�ne the representative states of �elds
{

𝜶𝑘(𝐱) ∣ 𝑘 = 1...𝐾
}

using Algorithm 𝟐.
c.6 Loop over all clusters (For 𝑘 = 1...𝐾)

∙ Solve microscopic problem (3)-(5). Output: 𝝈𝑘, ℂ𝑘

𝑡𝑎𝑛 and 𝜶𝑘(𝐱)
∙ Compute stress 𝝈𝑖, ∀𝑖 ∈ 𝑘 using equation (26).
∙ Assign the computed stress 𝝈𝑖 and the tangent tensor ℂ

𝑖

𝑡𝑎𝑛 = ℂ
𝑘

𝑡𝑎𝑛, ∀𝑖 ∈ 𝑘 using (26).
c.7 Compute 𝐑

𝑒
and 𝐊

𝑒

𝑡𝑎𝑛.

c.8 Assemble 𝐑 and 𝐊𝑡𝑎𝑛.

c.9 Compute Δ𝑈 by solving equation (10).
c.10 Update 𝐔

𝑛

𝑗+1 = 𝐔
𝑛

𝑗 + Δ𝑈 .

c.11 if (𝑓𝑛𝑒𝑤 > 𝑓𝑜𝑙𝑑 & 𝑓𝑛𝑒𝑤 ≠ 1): 𝐔𝑠𝑎𝑣𝑒 = 𝐔
𝑛

𝑗+1. Continue to (c.12)

c.12 𝐸𝑟𝑟 = ‖𝐑‖, and store ‖𝐑‖𝑗 = ‖𝐑|
c.13 𝑓𝑜𝑙𝑑 = 𝑓𝑛𝑒𝑤.

(d) End

3. Update 𝐔
𝑛
= 𝐔

𝑛

𝑗+1 and 𝜶𝑛(𝐱) =
{

𝜶𝑘(𝐱) ∣ 𝑘 = 1...𝐾
}

4. Update step: 𝑛 = 𝑛 + 1.
5. End

4.2. Viscoelastic composite structure
4.2.1. Convergence and accuracy analysis

The objective of this new example is to apply the proposed KMFE2 method for a material involving micro internal
variables and history-dependent behavior, and investigate the procedure described in section 3.2.1. A plate with a
centered hole is considered, as depicted in Fig. 13. Due to the problem symmetry, only a quarter of the plate is
modeled. The RVE of the material composing the plate is made of a viscoelastic matrix and linear stiff inclusions.
The dimensions of the plate are 𝐿 = 𝐻 = 80 cm and the radius of the central hole is 𝑅 = 15 cm (see Fig. 8b). A
displacement 𝑢(𝑡) is applied according to Fig. 12 on the upper end of the plate, with maximum value 0.5 mm. Two
macro meshes were used: one with 1027 elements (medium mesh, Fig. 13b), and one with 3217 elements (fine mesh,
Fig. 13c). The matrix in the RVE is made of a viscoelastic material following the generalized Maxwell model using
two Maxwell branches. The assumption of small strains is adopted. A linear stiff elastic model is considered within the
fiber with a diameter 𝑑 = 0.48 × 𝑙 and 𝑙 = 1 mm. The model and its integration algorithm are described in appendices
C and D. The numerical parameters of the RVE materials are given in Table 5.

To test the accuracy of the KMFE2 solution, several simulations are performed for different numbers of clusters.
The results are then compared as in the previous example with the FE2 reference solution. Fig. 14a and Fig. 14b show
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(a)

A

B

(b)
Figure 7: Hyperelastic composite structure:(a) geometry of the macro scale structure and boundary conditions; (b) macro
mesh; (c) RVE.
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(b)
Figure 8: RVEs for: (a) hyperelastic and viscoelastic problems, (b) for the elastoplastic problem.

Number of clusters K
(a) Stress in macro element A.

Number of clusters K
(b) Stress in macro element B.

Figure 9: Evolution of 𝜎11 stress in macro elements A and B (see Fig. 7 (b)).

a comparison of the maximum von Mises stress in the macro structure for different numbers of clusters for the medium
mesh and the fine mesh, respectively. We can note that only 25 and 50 clusters are sufficient to accurately match the
full FE2 for the medium and fine meshes, respectively. We can also appreciate the convergence of the response with
respect to the number of clusters to the reference solution.

Figs. 15 - (a),(c),(e),(g),(i),(k) show distributions of clusters at loading peak (see Fig. 14a) and at the end
of relaxation, for different numbers of clusters 𝐾 . Figs. 15 - (b),(d),(f),(h),(j),(l) show the local von Mises stress
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(a) 𝐾 =2 clusters (b) 𝐾 =4 clusters

(c) 𝐾 =14 clusters (d) 𝐹𝐸2

Figure 10: Distribution of clusters in the hyperelastic structure at �nal load for di�erent number of clusters.

(a) KMFE2, 𝐾 =2 clusters (b) KMFE2, 𝐾 =4 clusters

(c) KMFE2, 𝐾 =14 clusters (d) Reference (FE2)
Figure 11: Comparison of von Mises stress �eld for di�erent number of clusters with the reference (FE2) solution and
deformed con�guration (not magni�ed).
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Figure 12: Evolution of the prescribed displacement 𝑢 for the viscoelastic problem.

(a)

(b) (c)

Figure 13: Viscoelastic composite structure: (a) geometry and boundary conditions; (b) coarse mesh; (c) �ne mesh; (d)
RVE.

Table 5

Material parameters of the phases in the viscoelastic RVE [48].

Matrix Inclusion

𝐸(𝑚)
(𝑖=1,2)(𝑀𝑃𝑎) 4.25, 6.33 𝐸(𝑖)(𝑀𝑃𝑎) 2398.4

𝜏 (𝑚)(𝑖=1,2)(𝑑𝑎𝑦𝑠) 4.7341, 4.0363
Δ𝑇 (𝑑𝑎𝑦𝑠) 0.833
𝐸∞(𝑀𝑃𝑎) 10.909
𝜈(𝑚) 0.256 𝜈(𝑓 ) 0.28
𝜎(𝑚)
0 (𝑀𝑃𝑎) 1 𝜎(𝑓 )

0 (𝑀𝑃𝑎) 1000
𝜀(𝑚)0 1 𝜀(𝑓 )0 1
𝑚(𝑚) 0.5 𝑚(𝑓 ) 1

distribution obtained with KMFE2, which can be compared with the reference solution in Figs. 15 (m) - (n). We
note the presence of some discontinuities in the local von Mises stress as compared with the reference (see e.g. Fig. 15
(l)). We note that in some situations, oscillations in the stress field obtained with KMFE2 remain (see e.g. Fig. 15 (l).
This is due to the linear approximation of the stress in each cluster. Then, there is still room for improvement, which
can be investigated in future works.
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(a) Convergence of KMFE2 w.r. to the number of clusters 𝐾 ,
medium mesh.
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(b) Convergence of KMFE2 w.r. to the number of clusters𝐾 , fine
mesh.

Figure 14: Maximum von Mises for di�erent numbers of clusters 𝐾 in the viscoelastic composite structure.

Remark: The k-means algorithm is well-known to be sensitive to the initialization of the clusters centroids [49].
To alleviate this point, we use the initialization algorithm proposed in [50] at the beginning of the simulation. Then, for
each new clustering (at each iteration and at each load increment), we use the same initial centroids. Other strategies
for initialization and their impact on the efficiency may be investigated in future works.
4.2.2. Comparison with sub-clustering

In our previous work [44], a sub-clustering technique was proposed to ensure that within one cluster, all RVEs were
associated with close macro strain and internal variables (see section 3.1). Here, we show the gains induced by the new
version of the method developed in this paper as compared to the previous one in [44], referred to as "sub-clustering".
The same example than in the previous section is considered (same geometry, same material parameters). Fig. 16 shows
the evolution of the number of sub-clusters with the previous version of the method throughout the simulation when
choosing 𝐾 = 2, 5, 10, 20, 30, 40, 50 clusters.

Table 6 provides the computational times of the simulations for the fine mesh with 3217 elements (see Fig. 13c).
These simulations were done for 𝐾 = 10, 30, 40, 50 clusters using the enhanced approach, and for 𝐾 = 30 clusters
using the previous approach (sub-clustering). In the latter case, the total number of generated sub-clusters reached 290.

The simulations were all run on a Matlab code using 8 workers on an Intel® Xeon® Platinum 8268 CPU @2.90
GHz with 1.5TB of RAM. From Table 6, we can note that with the new version of KMFE2, a speed-up factor of 30 can
be obtained for 𝐾 = 40 and 26.6 for 𝐾 = 50, which corresponds to a better converged solution (see Fig. 14b). For this
last case, it corresponds to a reduction from about 18h to 40 min. We can also note that the speed-up factor as compared
to the previous version of KMFE2 using sub-clustering if 26.7∕3.2 = 8.34, which drastically reduces the computational
times. Note also that this speed-up is obtained without loosing accuracy and without additional computational times
associated with training or data-base construction.
4.3. Elastoplastic composite structures
4.3.1. Rectangular sample

In this next example, a composite elastoplastic structure is considered. The geometry of the macro structure, of
the RVE, and the loading are described in Fig. 17. The assumption of small strains is adopted. The macro structure is
a rectangular bar whose dimensions are 𝐿 = 20 cm and 𝐻 = 40 cm . A cyclic load is prescribed on its upper end,
whose evolution is provided in Fig. 17a. The macro mesh is composed of 575 linear triangular elements. The RVE is
composed of a square with a centered hole as shown in fig 8b, with diameter is 𝑑 = 0.4× 𝑙, 𝑙 = 1 mm. The behaviour of
the considered material within the RVE follows an elasto-plastic model with linear kinematic hardening. Its material
parameters are given by:𝐸 = 2 GPa, 𝜈 = 0.3, hardening modulus𝐻𝑝 = 80 MPa, 𝜎𝑦 = 24 MPa. The model is described
in Appendix E.
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Table 6

Comparison of computational times between the new clustering approach, previous version [44] and classical FE2,
viscoelastic problem, �ne mesh.

Number of clusters 𝐾 Total number of RVE Computational time Speed-up factor
problems (8 workers)

10 8924 18 min 60
30 25924 27 min 40
40 35044 35 min 25 s 30
50 43524 40 min 26.7
30 Sub-clustering method [44] 301160 5 h 35 min 3.2
FE2 (3217) 1248196 17 h 48 min

Fig. 20 shows stress-strain relationship in the elements A of the macro mesh (see Fig. 17c) throughout the simulation
using𝐾 = 5, 8, 12, 16, 22 clusters, which are compared with the reference (FE2) solution. We can note the convergence
to the reference solution with respect to the number of clusters.

The local von Mises stress fields within the bar are plotted in Fig. 19 and compared with the reference solution for
load steps 30 and 50 which correspond to the peak of maximum compression and second peak of traction, respectively.

Fig. 18 shows the distribution of clusters for different number of clusters at the end of the simulation.
4.3.2. Elasto-plastic bracket

Finally, an application involving a more complex macro structural geometry is considered. The material and the
associated RVE are similar as in the previous example. The geometry of the bracket structure is described in Fig. 21
(a). The dimensions are 𝐿 = 80 cm, 𝑊 = 60 cm, 𝑒 = 8 cm, 𝑅1 = 𝑅2 = 7 cm, 𝑅3 = 12 cm, 𝑑11 = 20 cm, 𝑑12 = 40
cm, 𝑑21 = 15 cm and 𝑑22 = 30 cm . The macro mesh contains 8482 elements. A cyclic load is prescribed on the
boundary of the right-end hole according to Fig. 22. The displacements along the boundary of the left-end holes are
fixed. The macro mesh has 8482 elements.

We plot the maximum von Mises stress according to the number of clusters for KMFE2 in Fig. 23 in two elements
of the mesh, denoted by elements A and B in Fig. 21b. These elements have been chosen as reaching the maximum
absolute values for the components 𝜎12 and 𝜎22, respectively. In this example, the reference solution is not computed
due to an unreasonable estimated computational time. However, we can appreciate the convergence of the KMFE2

method in both cases with respect to the number of clusters in Fig. 23. The convergence is reached for about 110
clusters here.

In Figs. 24-25, we compare the local von Mises stress for different numbers of clusters at two loading steps, which
correspond to the loading maximum and minimum. We can appreciate the convergence in both cases with respect to
the number of clusters, and that with 110 clusters, a good accuracy is obtained with respect to the converged solution
(120 clusters).

Table 7 highlights the speed-up factors obtained for this example, where the computational time of the reference
(FE2) solution is estimated. The estimation is made by taking a typical time related to solving one RVE problem and
estimating the total number of RVE problems to be solved, based on the total number of elements in the macro mesh.
The times were estimated using 8 workers for 𝐾 = 80, 110, 120 clusters as well as for FE2. We can note that in this
case, using 𝐾 = 110 clusters, which corresponds to a fairly converged solution (see Fig. 20), the computational times
are reduced from about one month to 1 day and 15 hours, corresponding to a speed-up factor of 19.

5. Conclusions
In this work, a method was proposed to reduce computational times in history-dependent, nonlinear multiscale

problems. In contrast to most existing Reduced Order Models (ROM)-based methods in the context of multiscale
analysis, where ROMs usually operate at the micro scale, like e.g. Proper Orthogonal Decomposition or machine-
learning ROMs, the present technique reduces the macro scale model directly by selecting macro Gauss points in
close mechanical states using an unsupervised clustering machine learning technique. The method has been initially
developed in [44]. In the present paper, several important improvements were proposed, including: (i) a linear stress
approximation in each cluster to avoid macro convergence issues; (ii) a new definition of the clustering vectors based
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Table 7

Comparison of computation times between KMFE2, and FE2 solutions for the bracket elastoplastic problem, using 8 workers.

Number of clusters 𝐾 Total number of RVE Computational times Speed-up factor
problems

80 418880 1 d8 h 22.87
110 504000 1 d 14 h 19.26
120 559680 1 d 16 h 33 min 18
FE2 (Estimated, 8482) ≈ 10178400 30 d 12 h

on macro anelastic strains, allowing to drastically reduce the computational times and (iii) an algorithm to circumvent
spurious cluster effects-convergence issues. As a result, no learning stage, data base construction, or preliminary off-
line calculations are required, while maintaining typical speed-up factors around 20 as compared to classical FE2. The
technique has been applied successfully to hyperelastic, viscoelastic and elastoplastic composites. Future developments
will include micro-scale damage, and coupling the technique with micro ROM-based approaches to further reduce the
computational times in nonlinear multiscale simulations. Then, the present work contributes to the field of ROMs in
the context of multiscale analysis, but the method we propose here operates at the macro scale and not at the micro
scale, which makes it complementary with existing micro-scale ROM techniques.
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A. Appendix: FE2 method at finite strains
A.1. Macro scale problem

The macro scale problem is defined in an open domain Ω ∈ ℝ𝐷, whose boundary is denoted by 𝜕Ω in its reference
configuration, and where𝐷 is the domain dimension. In the absence of body forces, the macro scale problem equations
are given by:

∇ ⋅ 𝐏(𝐗) = 0 in Ω, (27)
where 𝐗 is a material point coordinate in the structure, 𝐏 is the macro first Piola-Kirchhoff stress tensor. The boundary
conditions read:

𝐮(𝐗) = 𝐮∗(𝐗) on 𝜕Ω𝑢, and 𝐏 ⋅ 𝐍 = 𝐅
∗ on 𝜕Ω𝐹 , (28)

where 𝐮 denotes displacements at the macro scale, 𝐮∗ and 𝐅
∗ denote prescribed displacements and forces over the

macro Dirichlet, 𝜕Ω𝑢 and Neumann 𝜕Ω𝐹 boundaries, respectively, and 𝐍 is the unit normal vector to the external
boundary 𝜕Ω in the reference configuration.
A.2. Micro scale problem

We consider an RVE defined in an open domain Ω, whose boundary is denoted by 𝜕Ω. Assuming absence of body
forces, the equilibrium equations read:

∇ ⋅ 𝐏(𝐗) = 0 in Ω, (29)
where 𝐏 is the micro first Piola-Kirchhoff tensor and 𝐗 is a material point coordinate in the reference configuration.
At the micro scale, the constitutive law is an arbitrary nonlinear function in the form

𝐏(𝐗, 𝑡) =  (𝐅(𝐗, 𝑡),𝜶(𝐗, 𝑡)) , (30)
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where 𝐅 = 𝟏+∇(𝐮) is the deformation gradient tensor and 𝑡 denotes a pseudo-time (quasi-static evolution parameter).
In (30), 𝜶 denotes a vector of internal variables associated with history-dependent phenomena like e.g. plasticity,
damage, etc. The problem is completed with boundary conditions expressed by:

𝐮 =
(

𝐅 − 𝟏
)

𝐗 + �̃�(𝐗) on 𝜕Ω, (31)

where �̃�(𝐗) is a periodic fluctuation. Equation (31) satisfies

𝐅 = ⟨𝐅(𝐗)⟩ . (32)
In addition, the macro stress is related to the micro stress by spatial averaging as:

𝐏 = ⟨𝐏(𝐗)⟩ . (33)
A.3. Linear approximation in clusters for finite strains

The linear approximation of the first Piola Kirchhoff stress for finite strains for all Gauss points with index 𝑖
belonging to a cluster 𝑘 is expressed as follows:

𝐏
(

𝐅
𝑖)

= 𝐏
(

𝐅
𝑘)

+ 𝕃
𝑘
𝑡𝑎𝑛

(

𝐅
𝑘)

∶
(

𝐅
𝑖
− 𝐅

𝑘)
, (34)

where 𝐅𝑘 is the spatial average of the macro deformation gradients within the cluster 𝑘, and 𝕃
𝑘
𝑡𝑎𝑛

(

𝐅
𝑘) is evaluated by

perturbation et element 𝑖:
(

𝕃
𝑘
𝑡𝑎𝑛

)

𝑎𝑏𝑐𝑑
≃

𝐏𝑎𝑏(𝐅
𝑘
+ 𝜹𝑐𝑑) − 𝐏𝑎𝑏(𝐅

𝑘
)

𝜖
, (35)

where
𝜹𝑐𝑑 = 𝜖

(

𝐞𝑐 ⊗ 𝐞𝑑
)

, (36)
𝜖 being a small numerical parameter, and 𝐞𝑖 denoting orthogonal vectors.
Remark: In the present work, we do not consider elastoplasticity for the finite strains example, this case will be reported
to future studies. Then, the clustering vector for the 2D hyperelastic problem is defined as:

𝐯𝑖 =
{

𝐹
𝑖
11, 𝐹

𝑖
12, 𝐹

𝑖
21, 𝐹

𝑖
22,

}

, ∀𝑖 ∈ 𝑘. (37)

B. Appendix: Hyperelastic model: Neo-Hookean
The compressible Neo-Hookean model that is considered in this article is described by the following potential

function:
𝜓(𝐂) = 1

2
𝜆{𝑙𝑜𝑔(𝐽 )}2 − 𝜇𝑙𝑜𝑔(𝐽 ) + 1

2
𝜇[𝑇 𝑟(𝐂) − 3], (38)

where 𝐂 = 𝐅𝑇𝐅 is the right Cauchy-Green strain tensor, 𝐽 = det(𝐅) is the jacobien, 𝜆 = 𝐸𝜈
[(1+𝜈)(1−2𝜈)] and 𝜇 = 𝐸

[2(1+𝜈)]are Lamé’s coefficients. The constitutive law is given in the Lagrangien description by:

𝐒(𝐂) ∶= 2
𝜓(𝐂)
𝐂

= 𝜆 log(𝐽 )𝐂−1 + 𝜇(𝐈 − 𝐂−1), (39)

where 𝐒 is the second Piola-Kirchhoff stress tensor related to Cauchy stress by 𝐒 = 𝐽𝐅−1𝝈𝐅−𝑇 , and to the first Piola-
kirchhoff stress 𝐏 by 𝐒 = 𝐹−1𝐏.
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C. Appendix: Viscoelastic model: Generalized relaxation model
The viscoelastic model that is used in this paper is the generalized Maxwell relaxation model (Fig. 26). We give

here a description of the model restricted to the small strains assumption. For more details, see [51]. The model problem
is formulated by the following equations:

𝝈 = 𝜕
𝜕𝜺
𝑊 0(𝜺) −

𝑁
∑

𝑖=1
𝐪𝑖, �̇�𝑖 +

1
𝜏𝑖
𝐪𝑖 =

𝛾𝑖
𝜏𝑖
𝜕
𝜕𝜺
𝑊 0, lim

𝑡→−∞
𝐪𝑖(𝑡) = 0, (40)

where𝑊 0(𝜀) is the (initial) stored-energy function, 𝐪𝑖 is the stress-like set of internal variables that replaces the visous
strains 𝜶𝑖

𝐪𝑖 ∶= 𝐸𝑖𝜶𝑖, 𝑖 = 1, 2, ..., 𝑁, (41)
and, 0 ≤ 𝛾𝑖 ≤ 1 are the non-dimensional (relative) moduli defined by:

{

𝛾𝑖 ∶= 𝐸𝑖∕𝐸0, 𝑖 = 1, 2, ..., 𝑁,
𝛾∞ ∶= 𝐸∞∕𝐸0,

(42)

where 𝐸𝑖 and 𝐸∞ are stiffness constants, 𝐸0 is the initial modulus and 𝜏𝑖 are the relaxation times defined as:
{

𝐸0 ∶= 𝐸∞ +
∑𝑁
𝑖=1 𝐸𝑖,

𝜏𝑖 ∶= 𝜂𝑖∕𝐸𝑖, 𝑖 = 1, 2, ..., 𝑁.
(43)

Next, we present an extension of the model (40) in 3D. Since any arbitrary convex function 𝑊 0 of 𝜺 can be
considered, we choose herein the following isotropic nonlinear elastic potential:

𝑊 0(𝜺) = 9
2
𝜅𝜀2𝑚 +

𝜀0𝜎0
1 + 𝑚

(𝜀𝑒𝑞
𝜀0

)1+𝑚
(44)

where 𝜀𝑚 ∶= 𝑇 𝑟(𝜺)∕3 is the hydrostatic strain, 𝜀𝑒𝑞 =
√

2
3𝐞 ∶ 𝐞 is the equivalent strain and 𝐞 = 𝜺−𝜀𝑚𝟏 is the deviatoric

strain. We use the notation 𝝈0 ∶= 𝜕𝑊 0(𝜺)
𝜕𝜺 . From Eq. (40), the stress response for 3D model is given by:

𝝈(𝑡) = 𝝈0(𝑡) −
𝑁
∑

𝑖=1
𝐪𝑖(𝑡), (45)

where {𝐪1, ...,𝐪𝑁} is a set of internal variables such as :

𝐪𝑖 =
𝛾𝑖
𝜏𝑖 ∫

𝑡

−∞
exp

[

− (𝑡 − 𝑠) ∕𝜏𝑖
]

{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠. (46)

Substituting 𝐪𝑖 in equation (45) yields:

𝝈(𝑡) = 𝜕
𝜕𝜺
𝑊 0 −

𝑁
∑

𝑖=1

𝛾𝑖
𝜏𝑖 ∫

𝑡

−∞
exp

[

− (𝑡 − 𝑠) ∕𝜏𝑖
]

{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠

which can be re-written as

𝝈(𝑡) = 𝜕
𝜕𝜺
𝑊 0 −

𝑁
∑

𝑖=1
𝛾𝑖 ∫

𝑡

−∞

𝑑(exp
[

− (𝑡 − 𝑠) ∕𝜏𝑖
]

)
𝑑𝑠

{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠

Then, by applying an integration by parts, and by using the initial condition in eq. (40), we obtain :
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𝝈(𝑡) = 𝜕
𝜕𝜺
𝑊 0 −

𝑁
∑

𝑖=1
𝛾𝑖
𝜕
𝜕𝜺
𝑊 0 +

𝑁
∑

𝑖=1
𝛾𝑖 ∫

𝑡

−∞
exp

[

− (𝑡 − 𝑠) ∕𝜏𝑖
] 𝑑
𝑑𝑠

{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠. (47)

Combining Eq. (42) and Eq.(43) leads to the expression for the relative moduli ∑𝑁
𝑖=1 𝛾𝑖 + 𝛾∞ = 1. Thus, the

constitutive equation can be written as the following convolution integral:

𝝈(𝑡) = ∫

𝑡

−∞
𝑔 (𝑡 − 𝑠) 𝑑

𝑑𝑠
{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠,

where : 𝑔 (𝑡) ∶= 𝛾∞ +
∑𝑁
𝑖=1 𝛾𝑖 exp

[

−𝑡∕𝜏𝑖
], which finally gives

𝝈(𝑡) = 𝛾∞
𝜕
𝜕𝜺
𝑊 0 +

𝑁
∑

𝑖=1
𝛾𝑖𝐡(𝑖)(𝑡), (48)

where

𝐡(𝑖)(𝑡) = ∫

𝑡

−∞
exp

[

− (𝑡 − 𝑠) ∕𝜏𝑖
] 𝑑
𝑑𝑠

{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠. (49)

Note that the initial stored energy𝑊 0(𝜺) can be written as a split between an elastic volumetric response𝑈0(𝑇 𝑟(𝜺))
and a deviatoric response 𝑊 0

(𝐞) as in [51]. In this work we did not consider this separation into account.

D. Appendix: Integration algorithm for the viscoelastic problem
Let [𝑇0, 𝑇

]

⊂ ℝ, with 𝑇 > 0 and 𝑇 > 𝑇0, be the time of interest. Further, we consider the following partition of
time interval:

[

𝑇0, 𝑇
]

=
⋃

𝑛∈𝕀

[

𝑡𝑛, 𝑡𝑛+1
]

, 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑛.

The stress-strain relationship at the Gauss points 𝑥𝑙 with 𝑙 = 1, 2,… , 𝑛𝐺𝑎𝑢𝑠𝑠 is defined through the convolution
equation:

𝝈𝑙(𝑡) = ∫

𝑡

𝑇0
𝑔 (𝑡 − 𝑠) 𝑑

𝑑𝑠
{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠. (50)

We define the set of 𝑁 internal variables as:

h(𝑖)(𝑡) = ∫

𝑡

𝑇0
exp

[

− (𝑡 − 𝑠) ∕𝜏𝑖
] 𝑑
𝑑𝑠

{𝜕𝜺𝑊 0 [𝜺(𝑠)]}𝑑𝑠, 𝑖 = 1...𝑁. (51)

We consider algorithmic internal variables stored at Gauss points in a finite-element mesh, and we consider a
strain-driven algorithm:
i. Given the "initial stress" 𝐒0𝑛 and the algorithmic internal variables 𝐡(𝑖)𝑛 be given at time 𝑡𝑛 ∈ [𝑇0, 𝑇 ]:

{𝐒0𝑛,𝐡
(𝑖)
𝑛 , 𝑖 = 1, 2,… , 𝑁}

while:

𝐒0𝑛 ∶= 𝜕𝜺𝑊
0 [𝜺(𝑡𝑛)

]

= 𝜅𝑇 𝑟(𝜺)𝐈 + 2
3
𝜀0
𝜎0

(𝜀𝑒𝑞
𝜀0

)𝑚−1
𝜺𝒅 (52)

ii. Let 𝜺𝑛+1 = 𝜺𝑛 + Δ𝜺𝑛, where Δ𝜺𝑛 is strain increment at one Gauss point.
iii.The objectif is to compute the stress 𝝈𝑛+1 at time 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑛.
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The key in this integration algorithm is semigroup property. The standard semigroup property holds for the
exponential function 𝑒𝑥𝑝[(𝑡 + Δ𝑡)∕𝑎] = 𝑒𝑥𝑝(Δ𝑡∕𝑎)𝑒𝑥𝑝(𝑡∕𝑎), for any constants Δ𝑡, and 𝑎 in ℝ. Thus, h(𝑖)(𝑡𝑛+1) is
determined by the integration of (51) in terms of h(𝑖)(𝑡𝑛) and an integral over the time step [𝑡𝑛, 𝑡𝑛+1]:

𝐡(𝑖)𝑛+1 = ∫

𝑡𝑛+1

𝑇0
exp

[

−
(

𝑡𝑛 + Δ𝑡𝑛 − 𝑠
)

∕𝜏𝑖
] 𝑑
𝑑𝑠

𝐒0𝑠𝑑𝑠 = ∫

𝑡𝑛+1

𝑇0
exp

[

−
(

Δ𝑡𝑛
)

∕𝜏𝑖
]

exp
[

−
(

𝑡𝑛 − 𝑠
)

∕𝜏𝑖
] 𝑑
𝑑𝑠

𝐒0𝑠𝑑𝑠 (53)

𝐡(𝑖)𝑛+1 = ∫

𝑡𝑛

𝑇0
exp

[

−
(

Δ𝑡𝑛
)

∕𝜏𝑖
]

exp
[

−
(

𝑡𝑛 − 𝑠
)

∕𝜏𝑖
] 𝑑
𝑑𝑠

𝐒0𝑠𝑑𝑠 + ∫

𝑡𝑛+1

𝑡𝑛
exp

[

−
(

𝑡𝑛 + Δ𝑡𝑛 − 𝑠
)

∕𝜏𝑖
] 𝑑
𝑑𝑠

𝐒0𝑠𝑑𝑠 (54)

𝐡(𝑖)𝑛+1 = exp
(

−Δ𝑡𝑛∕𝜏𝑖
)

𝐡(𝑖)𝑛 + ∫

𝑡𝑛+1

𝑡𝑛
exp

[

−
(

𝑡𝑛 + Δ𝑡𝑛 − 𝑠
)

∕𝜏𝑖
] 𝑑
𝑑𝑠

𝐒0𝑠𝑑𝑠, (55)

then using the midpoint rule for the integral part in (55), we obtain the approximation of 𝐡(𝑖)𝑛+1 as follows:

𝐡(𝑖)𝑛+1 = exp(−Δ𝑡𝑛∕𝜏𝑖)𝐡(𝑖)𝑛 + exp(−Δ𝑡𝑛∕2𝜏𝑖)(𝐒0𝑛+1 − 𝐒0𝑛). (56)
Thus, the expression of the stress tensor becomes:

𝝈𝑛+1 = 𝛾∞𝐒0𝑛+1 +
𝑁
∑

𝑖=1
𝛾𝑖𝐡

(𝑖)
𝑛+1. (57)

The tangent modulus tensor is given by:
𝐂𝑛+1 ∶= 𝜕𝜺𝑛+1𝝈𝑛+1, (58)

where the elastic modulus tensor is given by:
𝐂0
𝑛+1 ∶= 𝜕𝜺𝑛+1𝐒

0
𝑛+1. (59)

Finally, (58) can be written as follows:

𝐂𝑛+1 ∶= (𝛾∞ +
𝑁
∑

𝑖=1
𝛾𝑖 exp

[

−𝛿𝑡𝑛∕2𝜏𝑖
]

)𝐂0
𝑛+1. (60)

E. Appendix: Elastoplastic model
In this work, an elastoplastic von Mises model with linear kinematic hardening is considered: The free Gibbs energy

is given by:

2𝜌𝜓 = (𝜺 − 𝜺𝑝) ∶ ℂ ∶ (𝜺 − 𝜺𝑝) + 2
3
𝐻𝜺𝑝 ∶ 𝜺𝑝, (61)

with ℂ = 3𝐾ℙ𝐻 + 2𝜇ℙ𝐷, 𝐾 and 𝜇 are the Lamé’s coefficients, ℙ𝐻 = 1
3𝟙 ⊗ 𝟙, ℙ𝐷 = 𝟙 − ℙ𝐻 , 𝜺𝑝 is the plastic

deformation and 𝐻 is the hardening coefficient. The stress and the thermodynamic force associated to the plastic
deformation is obtained as:

𝝈 = 𝜌
𝜕𝜓
𝜕𝜺

=
(

3𝐾ℙ𝐻 + 2𝜇ℙ𝐷
)

∶ (𝜺 − 𝜺𝑝), (62)

𝝈𝐷 − 𝐗 = −𝜌
𝜕𝜓
𝜕𝜺𝒑

, 𝐗 = 2
3
𝐻𝜺𝒑. (63)
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The second-order tensor 𝐗 describes the translation of the elastic domain. The yield condition is written as:

𝑓 =
√

2
3
‖𝝈𝐷 − 𝐗‖ − 𝜎0 ≤ 0, (64)

where 𝜎𝐷 is the deviatoric part of 𝜎 and 𝜎𝑦 is the yield stress. The plastic evolution is given by

𝑓 = 0,
𝜕𝑓
𝜕𝝈

∶ 𝜕𝝈 > 0. (65)

Then,

𝑑𝜺𝑝 = 𝜕𝑓
𝜕(𝝈𝐷 − 𝐗)

𝑑𝜆 =
√

3
2

𝝈𝐷 − 𝐗
‖𝝈𝐷 − 𝐗‖

𝑑𝜆, 𝑑𝜆 > 0, (66)

where 𝑑𝜆 is a consistency parameter. The cumulative plasticity is defined by 𝑑𝑝 ∶=
√

2
3‖𝑑𝜺

𝑝
‖, thus 𝑑𝜆 = 𝑑𝑝. Then,

𝑑𝑝 is defined by using the consistency equation 𝑑𝑓 = 𝜕𝑓
𝜕(𝝈𝐷−𝐗) = 0:

(

𝝈𝐷 − 𝐗
)

‖

(

𝝈𝐷 − 𝐗
)

‖

∶ 𝑑𝐗 =

(

𝝈𝐷 − 𝐗
)

‖𝝈𝐷 − 𝐗‖
∶ 𝑑𝝈, (67)

and by using (62), (63) and (66):
√

2
3
𝐻𝑑𝑝 =

(

𝝈𝐷 − 𝐗
)

‖

(

𝝈𝐷 − 𝐗
)

‖

∶ ℂ ∶ (𝑑𝜺 − 𝑑𝜺𝑝), (68)

which becomes:

𝑑𝑝 =

(𝝈𝐷−𝐗)
‖(𝝈𝐷−𝐗)‖ ∶ ℂ ∶ 𝑑𝜺

(
√

2
3𝐻 + (𝝈𝐷−𝐗)

‖(𝝈𝐷−𝐗)‖ ∶ ℂ ∶ (𝝈𝐷−𝐗)
‖(𝝈𝐷−𝐗)‖ )

, (69)

𝑑𝑝 =
2𝜇

(
√

2
3𝐻 + 2𝜇)

(

𝝈𝐷 − 𝐗
)

‖

(

𝝈𝐷 − 𝐗
)

‖

∶ 𝑑𝜺. (70)
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Figure 15: Evolution of the distribution of the clusters and their corresponding von Mises stress.
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Figure 16: Evolution of the number of sub clusters with the previous approach developed in [44]. The number K0 indicate
the initial number of clusters at the beginning of the simulation.
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Figure 17: Elastoplastic composite structure: (a) evolution of the load; (b) geometry of the macro structure and boundary
conditions; (c) macro mesh; (d) RVE.
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(a) 𝐾 =5 clusters (b) 𝐾 =8 clusters (c) 𝐾 =12 clusters (d) 𝐾 =16 clusters (e) 𝐾 =22 clusters
Figure 18: Evolution of the cluster distribution at the end of the loading (increment 50).
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Figure 19: von Mises stress using KMFE2 for di�erent clusters, compared with FE2: (i): At the peak of compression, (ii)
at the second peak of traction.
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Figure 20: Stress-strain relationship along the 𝑦− direction for element A (see Fig. 17c.)
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Figure 21: Bracket structure: (a) macroscopic structure, (b) Mesh, (c) RVE.
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Figure 22: Loading for the elasto-plastic bracket.
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Figure 23: Stress-strain relationships in elements A and B (see Figure 21b).
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<Macro clustering model reduction in FE2 simulations>

(a) (b)

(c) (d)

Figure 24: von Mises stress for (a) 𝐾 =20 clusters, (b) 𝐾 =80 clusters (c) 𝐾 =100 clusters (d) 𝐾 =120 clusters.
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(c) (d)

Figure 25: von Mises stress for (a) 𝐾 =20 clusters, (b) 𝐾 =80 clusters (c) 𝐾 =100 clusters (d) 𝐾 =120 clusters.
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<Macro clustering model reduction in FE2 simulations>

Figure 26: Generalized relaxation model

First Author et al.: Preprint submitted to Elsevier Page 32 of 25


