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We revisit the problem of translation-invariant pressurized
membranes that are squeezed without friction between sev-
eral planes, all parallel to the axis of translation-invariance
(such problem involves material and geometric nonlineari-
ties, including contact). Quite remarkably, it was shown by
De Simone and Luongo (2013) that such problems simplify
considerably under the plane strain assumption. Indeed, the
complex initial boundary-value problem reduces to a simple
set of non-linear, algebraic equations. We argue that in many
practical cases, the plane strain assumption does not hold. In-
stead, we introduce the generalized plane strain assumption,
that is necessary to account for the longitudinal equilibrium
of the membrane. We show how the equations of De Simone
and Luongo (2013) are modified, while remaining extremely
simple. We thus define an extended class of problems that
become (nearly) tractable analytically.

Keywords membranes contact translation-invariance
hyperelasticity

1. Introduction

Pressurized membranes are in use in various technological
domains such as aerospace (Chandra et al., 2020) or civil
engineering (Chilton, 2013). Their mechanical behavior is
well understood (Khaniki et al., 2023; Firouzi, 2022), allowing
for complex numerical simulations (Fu et al., 2019).

Soft robotics has emerged in the last decade (Ahmed et al.,
2022; Chen and Wang, 2020; Boyraz et al., 2018) as an al-
ternative to hard robots that achieve high accuracy but poor
adaptivity to their environment (Walker et al., 2020). Accord-
ing to Xavier et al. (2022), “pneumatic actuation remains the
dominant technology in soft robotics due to its low cost and
mass, fast response time, and easy implementation.” Such
popularity has triggered the need for reliable models of pres-
surized membranes to control these soft actuators. The models

*This is the accepted version of the following article: “On the generalized
plane strain assumption for pressurized membranes”, which has been
published in final form at https://doi.org/10.1016/j.ijsolstr.
2023.112506. ©2023. This manuscript version is made available under
the CC-BY-NC-ND 4.0 license. See Elsevier Sharing Policy.

must account for finite strain hyperelasticity as well as contact,
while remaining simple enough to allow for real-time control.

In many instances, the pneumatic actuator can be consid-
ered as translation-invariant. More precisely, the following
assumptions are made (see Fig. 2): (1) the initial and current
geometries are invariant by translation along the longitudinal
axis, (2) the longitudinal dimension of the membrane is large
compared to its transverse dimensions, (3) the membrane is
subjected to inner pressure. Additionally, the membrane may
be in contact with one (or several) longitudinal plane(s) in the
absence of friction or adhesion (essential assumption).

Translation-invariance leads to considerable mathematical
simplifications, since the mechanical state of the membrane is
expected to be independent of the longitudinal coordinate (at
least, far from the two ends). De Simone and Luongo (2013)
further proved two important results (see also Srivastava and
Hui, 2013b,a): first, the cross-section of the deformed mem-
brane is a collection of rectilinear segments (contact zones)
and circular arcs (their common radius being imposed by the
internal pressure) and second, the hoop stretch and hoop stress
resultants are constant along the cross-section. The initial set
of non linear partial differential equations therefore reduces
to a set of algebraic equations (with two scalar unknowns,
namely the hoop stretch and the hoop stress resultant).

These results –upon which most subsequent works rely
(Sachin et al., 2022a,b; Gu et al., 2021; Liu et al., 2021b;
Shepherd et al., 2011)– were derived under the classical plane
strain assumption (De Simone and Luongo, 2013; Srivastava
and Hui, 2013b,a), where the longitudinal stretch is assumed
to be unity. The membrane is long, but finite and closed by
caps at both ends: therefore, the pressurizing gas acts on both
ends of the membrane, thus inducing a longitudinal stress and
stretch over the whole membrane. The convenient plane strain
assumption is therefore questionable for membranes.

Existence of longitudinal stresses is well-known in pressure
vessel engineering: in a cylindrical pressure vessel, the lon-
gitudinal stress resultant is equal to half the transverse stress
resultant. Another well-known example is the twisting balloon:
during inflation, its total length increases and the longitudi-
nal stretch is greater than one (closely related is the bulging
instability Kyriakides and Yu-Chung, 1990; Lestringant and
Audoly, 2018).
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The goal of this paper is to question the plane strain as-
sumption for translation-invariant membranes. Observing that
translation-invariant membranes fit the following description
(Zhenye and Shiping, 1990): “the deformation situation of any
two arbitrary cross sections perpendicular to the longitudinal
axis are identical, while the strain and displacement compo-
nents of various points of the same plane may be different”,
we argue in this paper that such systems should really be an-
alyzed under the generalized plane strain assumption. We
therefore allow for a constant (, 1) longitudinal stretch. Quite
remarkably, we then show that most of the theoretical results
obtained by De Simone and Luongo (2013) under the plane
strain assumption remain valid under the generalized plane
strain assumption. This is the principal outcome of this paper,
from which it results that simulation of a translation-invariant,
pressurized membrane can still be performed very efficiently
(there are now four scalar unknowns, rather than two: two
stretches and two stress resultants). We also show on a iconic
example that the plane strain assumption remains acceptable
so long as the hoop stretch remains close to unity. For larger
stretches, this assumption leads to significant errors.

The paper is organized as follows: the nonlinear theory of
membranes is summarized in Sec. 2. The general membrane
equations are then specialized to translation-invariant mem-
branes in Sec. 3, where it is shown that under the generalized
plane strain assumption, the resulting problem simplifies con-
siderably. An example is considered in Sec. 4, where the plane
strain and generalized plane strain assumptions are compared.

2. Background

The present section provides a brief overview of the theory of
hyperelastic membranes (see also Gurtin and Murdoch, 1975;
Haughton and Ogden, 1978a,b; Erbay, 1997; Steigmann, 2009,
for more details). No assumptions are made at this point on
the geometry: the theory will be specialized to translation-
invariant membranes in Sec. 3.

Note that as much as possible, we stick in this paper to the
convention that capital letters refer to the initial configuration,
while small letters refer to the current (deformed) configura-
tion. Besides, Greek indices (α, β, γ, . . .) span the {1, 2} index
set, while latin indices (i, j, k, . . .) span the {1, 2, 3} index set.

2.1. Geometry

The initial configuration is defined through the mapping
(Ξ1,Ξ2) 7→ X(Ξ1,Ξ2) ∈ R3, where Ξ1 and Ξ2 are the curvi-
linear coordinates and X is the current point on the reference
surface of the membrane. Similarly, the deformed configura-
tion is defined through the mapping (ξ1, ξ2) 7→ x(ξ1, ξ2) ∈ R3

(see Fig. 1). The corresponding covariant and contravariant
bases are defined as follows

Aα =
∂X
∂Ξα
, aα =

∂x
∂ξα

and Aβ · Aα = aβ · aα = δβα. (1)

We further introduce the unit normal A3 (resp. a3) and curva-
ture tensor B (resp. b) of the initial (resp. current) configura-

tion

A3 =
A1 × A2

∥A1 × A2∥
, a3 =

a1 × a2

∥a1 × a2∥
, (2)

B = −
∂A3

∂Ξα
⊗ Aα, b = −

∂a3

∂ξα
⊗ aα. (3)

2.2. Transformation
The transformation is defined by the mapping (Ξ1,Ξ2) 7→
(ξ1, ξ2) = Φ(Ξ1,Ξ2) that maps the initial position X(Ξ1,Ξ2)
(material coordinates) onto the current position x(ξ1, ξ2) (spa-
tial coordinates). The gradient of the transformation, F, maps
the small material vector dX onto its spatial representation dx:
dx = F · dX. We have, from Eq. (1):

Aα · dX = Aα ·
∂X
∂Ξβ

dΞβ = Aα · Aβ dΞβ = δαβ dΞβ = dΞα (4)

therefore, using the chain rule

dx =
∂x
∂ξα
∂ξα

∂Ξβ
dΞβ =

∂ξα

∂Ξβ
(
aα ⊗ Aβ

)
· dX (5)

and

F =
∂ξα

∂Ξβ
aα ⊗ Aβ. (6)

Note that the tensor introduced above lives in part in the
tangent plane to the initial configuration (A1,A2) and in part
in the tangent plane to the current configuration (a1, a2), since

F · A3 = 0 and a3 · F = 0. (7)

To close this section on the transformation of the membrane,
we introduce the (2d) right Cauchy-Green tensor, C = FT · F.
This tensor is symmetric and lives in the tangent plane to the
initial configuration

CT = C, C · A3 = 0 and A3 · C = 0. (8)

This tensor will be used to express the constitutive law of
the membrane.

2.3. Equilibrium
The internal state of stress of the membrane is fully defined by
the stress resultants N (membrane forces). The second-order,
symmetric tensor N is a spatial tensor that has all components
in the tangent plane to the deformed configuration

NT = N, N · a3 = 0 and a3 · N = 0. (9)

Equilibrium of the membrane is governed by the following
general equation

∂N
∂ξα
· aα + f = 0, (10)

which expresses that the applied resultant forces f (surface
density, spatial description) are equilibrated by the divergence
of N. Note that the above equation is written on the current
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Figure 1: The initial (left) and current (right) configurations Σ and ς of the membrane. The figure represents the mappings
between the parameter spaces(Ξ1,Ξ2), (ξ1, ξ2) and the surfaces Σ, ς, as well as the gradient of the transformation.

(deformed) configuration. Projection along the normal delivers
the classical algebraic equation ( f3 = f · a3, see proof in
Appendix A)

b : N + f3 = 0. (11)

Besides the field equations (10) and (11), the following
continuity condition must hold at any point x of the membrane
and for any tangent vector v to the membrane at x[

N(x + ϵ v) − N(x − ϵ v)
]
· v→ 0 when ϵ → 0. (12)

2.4. Constitutive equations
The constitutive material is isotropic, incompressible and hy-
perelastic. We introduce the principal stretches λI, λII and λIII
associated with the (3d) right Cauchy–Green tensor C. The
(3d) strain energy density is expressed as a function of the
principal stretches

Strain energy density = µW(λI, λII, λIII), (13)

where the dimensionless function W is scaled appropriately
in order to ensure that µ is the shear modulus of the material.
The constitutive equations then read

σK = µ λK
∂W
∂λK
+ η, K ∈ {I, II, III} (14)

(no summation on K). In the above equations, σI, σII and
σIII are the principal Cauchy stresses and η is the Lagrange
multiplier associated with the incompressibility condition.

For thin membranes, following Haughton and Ogden
(1978a), we introduce the two principal stretches λI and λII
associated with the (2d) right Cauchy–Green tensor C intro-
duced in Sec. 2.2 and the reduced potential

W(λI, λII) = W(λI, λII, λIII) with λIII =
(
λI λII

)−1
, (15)

where the third principal stretch is defined so as to enforce the
incompressibility constraint. Then, the constitutive equations
of the membrane read, in principal components

NI = λI µ h
∂W
∂λI

and NII = λII µ h
∂W
∂λII
, (16)

where h denotes the thickness of the deformed membrane,
while NI and NII are the principal values of N. Since the
normal to the membrane coincides with the direction of the
third principal stretch, we have

h = λIII H =
H
λI λII

, (17)

where H is the thickness of the underformed membrane. Com-
bining Eqs. (16) and (17), we find the constitutive relations

NI =
µH
λII

∂W
∂λI

and NII =
µH
λI

∂W
∂λII
. (18)

Note that these constitutive equations are expressed on the
current (deformed) configuration: the stress-resultants NI and
NII are the membrane equivalents of the principal Cauchy
stresses. Observe also that, owing to the fact that λIII = λ

−1
I λ

−1
II

is no longer a free variable, no Lagrange multiplier is necessary
in Eq. (18) to ensure incompressibility.

In the remainder of this paper, we consider the family of
generalized neo-Hookean hyperelastic potentials recently in-
troduced by Anssari-Benam and Bucchi (2021). These poten-
tials are derived from the statistical analysis of a network of
freely jointed molecular chains. They are defined by only two
material constants (the shear modulus µ and the number N of
Kuhn segments of a chain)

W(λI, λII, λIII) = N
3 − 3N
1 − 3N

( I1 − 3
6N

− ln
I1 − 3N
3 − 3N

)
, (19)

with

λI λII λIII = 1 and I1 = λ
2
I + λ

2
II + λ

2
III. (20)

These generalized neo-Hookean materials where found to
account accurately for the inflation of spherical and cylindrical
membranes (Anssari-Benam et al., 2022), including limit-
point and inflation-jump instabilities. Note that in the papers
by Anssari-Benam and Bucchi (2021) and Anssari-Benam
et al. (2022), the symbol µ denotes a convenient constant;
it differs from the shear modulus that is denoted µ0. In the
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present paper, we do not introduce the convenient constant and
use the shear modulus exclusively. Plugging λIII = λ

−1
I λ

−1
II

delivers the following reduced potential

W(λI, λII) = N
3 − 3N
1 − 3N

(λ2
I + λ

2
II + λ

−2
I λ

−2
II − 3

6N

− ln
λ2

I + λ
2
II + λ

−2
I λ

−2
II − 3N

3 − 3N

)
.

(21)

Upon substitution into Eqs. (18), the following constitutive
equations are found

NI

µH
= n
(
λ4

I λ
2
II − 1

)
and

NII

µH
= n
(
λ2

I λ
4
II − 1

)
, (22)

with

n =
(
1 − N

) [
1 + λ2

I λ
2
II
(
λ2

I + λ
2
II − 9N

)]
λ3

I λ
3
II
(
1 − 3N

) [
1 + λ2

I λ
2
II
(
λ2

I + λ
2
II − 3N

)] . (23)

In the applications discussed in Sec. 4, we selected N =
30 which is typical of rubber (Anssari-Benam et al., 2022).
The constitutive equations of membranes are also derived in
Appendix B for Mooney–Rivlin materials.

3. Translation-invariant membranes
The present section is the central part of this paper. It spe-
cializes to translation-invariant membranes the general theory
exposed in Sec. 2. It is recalled that a membrane is translation
invariant if, far from its two ends, its geometry, deformations
and state of stress are all independent of the longitudinal coor-
dinate. The geometry of the membrane is then fully defined by
its cross-section, which reduces to a closed curve (see Fig. 2).

Sec. 3 is organized as follows. We first define the geometry
of the membrane in Sec. 3.1. We then discuss local equilibrium
in Sec. 3.2. As this local analysis delivers no information on
the longitudinal membrane stress resultant, it is complemented
in Sec. 3.3 by a global analysis of one half of the membrane,
cut along the z = 0 plane. In order to account for deformations
of the membrane, the generalized plane strain assumption is
introduced in Sec. 3.4, where the transformation is defined.
The constitutive relations of the membrane are then introduced
in Sec. 3.5. The resulting closed system of algebraic equations
is summarized in Sec. 3.6.

3.1. Geometry of translation-invariant
membranes

The cross-section of the membrane in the initial (resp. de-
formed) configuration is the plane curve Γ (resp. γ). Note
that both Γ and γ are simple, closed curves; LΓ and Lγ denote
their respective length. Σ and ς denote the regions bounded by
Γ and γ, respectively;AΣ andAς denote their surface area.

These curves are parametrized by the arc-length S (resp. s).
The current points on Γ and γ are denoted X(S ) = X(S ) ex +

Y(S ) ey and x(s) = x(s) ex + y(s) ey, which are both radius-
vectors in the (x, y) plane.

Introducing the unit tangents T and t, the inner normals
N = ez × T and n = ez × t, and the radii of curvature R and r,
we have

T =
dX
dS
, t =

dx
ds
,

dT
dS
=

N
R

and
dt
ds
=

n
r

(24)

and it is further shown in Appendix C that∮
γ

t ds = 0 and
∮
γ

x × t ds = 2Aς ez, (25)

where the “
∮

” symbol emphasizes the fact that γ is a closed
contour.

Any point X (resp. x) of the membrane on the initial (resp.
current) configuration is then parametrized by the curvilinear
coordinates S and Z (resp. s and z), such that

X(S ,Z) = X(S ) + Z ez and x(s, z) = x(s) + z ez. (26)

The covariant basis is orthonormal and coincides with the
contravariant basis

AS = AS =
∂X
∂S
=

dX
dS
= T, AZ = AZ =

∂X
∂Z
= ez, (27)

as = as =
∂x
∂s
=

dx
ds
= t, az = az =

∂x
∂z
= ez, (28)

while the normals are such that

A3 =
Az × AS

∥Az × AS ∥
=

ez × T
∥ez × T∥

= N, (29)

a3 =
az × as

∥az × as∥
=

ez × t
∥ez × t∥

= n. (30)

Note that with the adopted orientation of the normal, r > 0
in the cases considered here, and the curvature tensor reads:
b = t ⊗ t/r (see Fig. 2).

3.2. Local equilibrium of translation-invariant
membranes

De Simone and Luongo (2013) observed that equilibrium
of translation-invariant membranes severely constraints their
shape. However, their proof was based on the restrictive as-
sumption that the state of stress of the membrane was fully de-
fined by only one so-called tension. Then, in their own words,
their “problem formally coincides with that which governs pla-
nar cables”. Through elementary equilibrium considerations,
they show that the tension is constant in the membrane. As
a consequence, for a wide class of materials, the correspond-
ing stretch is also constant. In other words, the state of the
membrane is fully defined by only two scalars: the tension
and the stretch. Besides, the initial boundary-value problem
that governs the equilibrium of the membrane now reduces to
a set of algebraic equations.

As discussed in Sec. 2, the state of stress of the most gen-
eral membrane is in fact defined by three (rather than one)
membrane stress resultants, and the proof of De Simone and
Luongo (2013) must be revisited. In what follows, we prove
that their main conclusion remains essentially unchanged:
“when no outside forces act on the membrane, the original
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Figure 2: The geometry of a translation-invariant membrane is fully defined by its cross-section (a closed, simple curve).
The initial cross-section (left) is defined by the contour Γ; its interior is the domain Σ. Likewise, the deformed
cross-section is defined by the contour γ; its interior is the domain ς. As shown in Sec 3.2, γ is a collection of
rectilinear segments and circular arcs of constant radius. Note that the initial cross-section Γ is somewhat fictitious,
as the membrane cannot be deployed under null overpressure; what really matters is the initial length LΓ of the
cross-section. The radius-vector of the current point on the initial and deformed configurations are X(S ) and x(s),
respectively.

infinite-dimensional problem can be formulated as a much
simpler finite-dimensional problem [. . . ] If the material is
visco-elastic, the problem is mixed algebraic-differential in
time; if it is elastic, it further degenerates into algebraic.” The
proof is however now more involved, and the number of alge-
braic unknowns increases.

We first decompose the tensor of membrane stress resultants
N in the (t, ez) orthonormal basis

N = Ns t ⊗ t + Nz ez ⊗ ez + Nsz
(
t ⊗ ez + ez ⊗ t

)
. (31)

Using the general equilibrium equation (10) with ∂zN = 0,
∂st = r−1 a3 and N · a3 = 0, we find that

0 = ∂sN · t + p = ∂s
(
N · t
)
− N · ∂st + f

= ∂s
(
Ns t + Nsz ez

)
−

N · a3

r
+ f

= ∂sNs t + ∂sNsz ez +
Ns

r
a3 + f. (32)

It is assumed that the applied resultant forces have no out-
of-plane component (f · ez = 0). Therefore Nsz is constant
along γ and

∂sNs + f · t = 0 and
Ns

r
+ f · a3 = 0. (33)

Two particular cases of pressurized membranes are dis-
cussed in the remainder of this section.

Free section of a pressurized membrane We consider a
section of the pressurized membrane that is free to expand.
The loading is such that f = −p a3, where p is the uniform
pressure of the enclosed gas (note that a3 is the inner normal),
Eq. (33) delivers

∂sNs = 0 and Ns = p r. (34)

In a free section of a pressurized membrane, both the mem-
brane stresses Ns and Nsz are therefore constant. From the last
equation, we further deduce that the radius of curvature r is
also constant. In other words, the membrane is a segment of
circular cylinder with radius r = Ns/p.

Section of a pressurized membrane in frictionless contact
with a plane We consider a section of the membrane that
is constrained by contact with a plane. Frictionless contact is
frequently assumed in the literature (Tamadapu and Dasgupta,
2014; Kumar et al., 2021; Liu et al., 2021a; Yang et al., 2021;
Khaniki et al., 2023) and we will also adopt this assumption
in the remainder of this paper.

In the constrained section of the membrane, r → +∞ and it
results from Eq. (33) that f · a3 = 0. In other words, the out-of-
plane component of the surface forces vanish, as the internal
pressure is fully balanced by the reaction forces exerted by the
plane support. Besides, under the no friction assumption, the
in-plane components of f must also vanish. Therefore, f = 0
and it is again found that Ns and Nsz are constant along the
section of γ under consideration.

It results from the above discussion that the shape of a trans-
lation-invariant, pressurized membrane is fully defined. In
unconstrained segments, the membrane takes a cylindrical
shape and Ns and Nsz are constant throughout the segment;
besides, the radius of curvature r is given by Ns = p r. In the
segments that are constrained by frictionless, plane contact
conditions, the shape of the membrane is prescribed (rectilin-
ear) and Ns and Nsz are also constant throughout the segment.
In turn, the continuity conditions (12) require (for v = t) that
Ns and Nsz be continuous at the interface between two seg-
ments; in other words, Ns and Nsz are constant in the whole
cross-section. The membrane stresses Ns and Nsz are therefore
scalar unknowns. These conclusions are similar to those of
De Simone and Luongo (2013), but for the fact that these
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p
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p

Figure 3: The subsystem under consideration in Sec. 3.3. The
cap (left part) is subjected to pressure forces that
are equivalent to pressure forces applied to the plane
surface that closes the cap. The lateral surface is sub-
jected to pressure forces and, contact forces along
the rectilinear segments of the cross-section.

authors disregarded Nsz and Nz.

Remark 3.1. Note that for adhesive contact or contact with
friction, neither Ns, nor Nsz are constant in the rectilinear
segments of the membrane. Indeed, the surface forces now
have a tangential component f · t , 0 and/or f · ez , 0. As
a consequence, Ns and Nsz may vary according to the equi-
librium equation (32) in the contact areas: ∂sNs + f · t = 0
and ∂sNsz + f · ez = 0. However, the continuity condition (12)
prescribes the value of Ns and Nsz at both ends of the recti-
linear segment. In particular, Ns = p r in all unconstrained
segments of the membrane ; therefore Ns = p r at both ends
of any rectilinear segment and the transverse resultant of the
friction/adhesion forces is null.

In the longitudinal direction, the situation is less clear : it
is doubtful that useful, generic, properties of Nsz can emerge
from equilibrium considerations only: both the constitutive
law of the membrane and –more importantly– the nature of
the contact itself must be specified.

3.3. Global equilibrium of pressurized
membranes

At this point, the local equilibrium equations have delivered
no condition on the longitudinal stress resultant Nz. Recalling
that the membrane is closed at both ends, we consider the
equilibrium of the subsystem z ≥ z0, where z0 is arbitrary.
Expressing that the total resultant force and moment exerted
on this subsystem must vanish in order to ensure equilibrium
delivers some additional conditions on Nsz and Nz.

We first consider the resultant of external forces: Rext =

Rcap + Rlat, where Rcap applies to the membrane’s cap, while
Rlat apply to its lateral surface (see Fig. 3). The membrane’s
cap is subjected to pressure forces only, the resultant of which
is readily evaluated in Appendix D: Rcap = pAς ez.

The lateral surface is subjected to both pressure and contact
forces; quite remarkably, their resultant vanishes. Indeed,
it has been shown in Sec. 3.2 that where contact occur, the
resultant forces vanish: f = 0. In other words, contact forces
balance pressure forces exactly along the rectilinear segments
of the cross-section. Where the membrane is unconstrained,
it is subjected to pressure forces only (no contact forces) and

its cross-section takes the shape of a circular arc. It is shown
in Appendix E that all these arcs add up to form a full closed
circle: the resultant of pressure forces therefore vanishes. To
sum up, the resultant of pressure and contact forces vanish both
in the rectilinear and in the circular segments of the membrane.
Therefore, Rlat = 0.

Gathering the above results delivers Rext = pAς ez.
Next, we consider the resultant internal forces Rint. Internal

forces are exerted along the border z = z0 of the subsystem
under consideration and their linear density (per unit length
measured on the current configuration) is, by definition of
the membrane stress resultants, N ·

(
−ez
)
= −Nz ez − Nsz t.

Therefore

Rint = −

∮
γ

(
Nz ez + Nsz t

)
ds. (35)

Recalling that Nsz = const, it results from Eq. (25) that

Rint = −

∮
γ

Nz ds ez. (36)

Equilibrium of the subsystem under consideration requires
that Rint + Rext = 0, from which it results that∮
γ

Nz ds = pAς. (37)

We now consider the balance of moments along the ez axis
to show that Nsz = 0. All moments being evaluated with
respect to the (arbitrary) origin, we have with obvious nota-
tions Mint +Mext = 0. In the present derivation, we are con-
cerned with the longitudinal components of these moments
only, ez ·Mint and ez ·Mext.

External forces apply to the membrane’s cap and its lateral
surface: Mext = Mcap + Mlat. From Appendix D, we have
Mcap = pAς gς × ez, where gς is the radius-vector of the
center of gravity of ς. We therefore have ez ·Mcap = 0. In
Appendix E, it is further shown that

ez ·Mlat = −p L
∫
γ̃

x · t ds, (38)

where L denotes the length (in the z direction) of the lateral
surface of the subsystem, and γ̃ is the union of the circular
arcs that compose γ. Finally,

Mint = −

∮
γ

x ×
(
Nz ez + Nsz t

)
ds

= −

∮
γ

(
z ez + x

)
×
(
Nz ez + Nsz t

)
ds (39)

and (since Nsz = const)

ez ·Mint = −Nsz

∮
γ

ez ·
(
x × t
)

ds = −Nsz ez ·

∮
γ

x × t ds

= −2Aς Nsz,

(40)

where we have used Eq. (25)2. Equilibrium of the subsystem
therefore requires

2Aς Nsz + p L
∫
γ̃

x · t ds = 0. (41)
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The first term is independent of the (arbitrary) length L of
the subsystem. Therefore, we must have

Nsz = 0 and
∫
γ̃

x · t ds = 0. (42)

The last condition provides additional constraints to the
deformed geometry of the membrane. In the situations con-
sidered in this paper, this condition is automatically satisfied
owing to symmetries. It will therefore be discarded below. To
sum up, it has been shown in Secs. 3.2 and 3.3 that

Ns = const, Nsz = 0, and
∮
γ

Nz ds = pAς. (43)

It is remarkable that Eq. (43) results from equilibrium con-
siderations only. Note that the longitudinal membrane stress
Nz is not necessarily constant at this stage (although its mean
value is prescribed). Combining in Sec. 3.4 the generalized
plane strain assumption with the hyperelastic constitutive law
will allow us to show that Nz is indeed constant.

3.4. The generalized plane strain assumption
The geometry and the loading of the membrane is translation-
invariant. It is therefore natural to postulate that its mechanical
state is also translation-invariant. In other words, the mem-
brane stress resultants Ns and Nz do not depend on z. It is
further assumed that each cross-section remains plane and has
the same deformed contour γ. This can only be satisfied by
the following transformation

s = Φs(S ) and z = Φz(Z). (44)

The gradient F of the transformation and the right Cauchy–
Green strain tensor result from the general expression (6)

F =
dΦs

dS
t ⊗ T +

dΦz

dZ
ez ⊗ ez (45)

and

C = FT · F =
(dΦs

dS

)2
T ⊗ T +

(dΦz

dZ

)2
ez ⊗ ez. (46)

Note that C is diagonal; its principal values are also required
to be translation invariant. In particular, dΦz/dZ must not
depend on Z. This can only be achieved ifΦz is linear: Φz(Z) =
λz Z, for some constant λz. Note that under the plane strain
assumption, λz = 1. However, owing to the fact that Nz , 0
in the present case, it would be incorrect not to allow the
membrane to stretch in the longitudinal direction. We therefore
make no further assumptions on λz, and the transformation of
the membrane reads

s = Φs(S ) and z = λz Z, (47)

which is usually referred to as the generalized plane strain
assumption (Zhenye and Shiping, 1990).

Our goal is to express all the membrane equations on the
current configuration. To this end, we introduce the following
stretch λs

λs(s) =
dΦ
dS

[Ψ(s)], where Ψ = Φ−1. (48)

Note that λs thus defined is a function of the arc-length s on
the deformed contour γ so that the gradient of the transforma-
tion, F, and the right Cauchy–Green strain tensor can both be
seen as functions of s only

F = λs t⊗T+λz ez⊗ez and C = λ2
s T⊗T+λ2

z ez⊗ez. (49)

The stretch s 7→ λs(s) measures the elongation of the cross-
section. Indeed, we consider a material arc of initial length dS .
Then the current length of this material arc is by definition
ds = dΦ

dS dS . Inverting, we find

dS =
ds
λs(s)

, therefore LΓ =

∮
γ

ds
λs(s)

. (50)

Eq. (50)2 can be seen as a compatibility condition for the
function s 7→ λs(s); note that finding λs is equivalent to finding
Φ, since

Ψ(s) =
∫ s

0

du
λs(u)

and S = Ψ(s). (51)

3.5. Constitutive equations of
translation-invariant membranes

Using the general constitutive equations of Sec. 2.4, we find
that t and ez are the principal directions of the stress-resultants
and

Ns =
µH
λz

∂W
∂λs

and Nz =
µH
λs

∂W
∂λz
. (52)

It results from the previous discussions that the stretch λz

and the membrane stress Ns are constant along γ. Therefore
λs and Nz are also constant along γ [see Eq. (52)]. In other
words, all mechanical quantities, namely the stretches λs and
λz and the membrane stresses Ns and Nz are constant along
γ. Equilibrium of a translation-invariant membrane therefore
reduces to a set of algebraic equations. In particular, the
compatibility condition (50)2 and equilibrium equations (43)2
and (43)3 deliver

λs =
Lγ

LΓ
and Nz =

pAς
Lγ
. (53)

Note that Eq. (53)2 is an extension of the classical formula
Nz = p (π r2)/(2π r) = p r/2 for cylindrical pressure vessels.

3.6. Summary of the essential formulas

We consider a pressurized membrane which is translation-
invariant in the z direction and constrained to expand inside
the space delimited by a few solid planes. All planes are
parallel to the z axis, and contact between these planes and the
membrane is assumed frictionless. Solving for the equilibrium
of such a system amounts to finding p, r, λs, λz, Ns and Nz

and a series of linear segments (contact zones) and circular
arcs with radius r, such that

p, r,Ns,Nz ≥ 0, λs, λz ≥ 1 (54)
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and

Ns = p r, Nz =
pAς
Lγ
, (55)

Ns

µH
=

1
λz

∂W
∂λs
,

Nz

µH
=

1
λs

∂W
∂λz
, (56)

λs =
Lγ

LΓ
, (57)

where Eqs. (55)1 and (55)2 express equilibrium, Eqs. (56)1
and (56)2 are the constitutive laws and Eq. (57) can be seen
as a condition of “geometric compatibility”. Note that for the
hyperelastic material of Anssari-Benam and Bucchi (2021),
Eqs. (56)2 and (56)3 should be specialized as follows

Ns

µH
= n
(
λ4

s λ
2
z − 1
)

and
Nz

µH
= n
(
λ2

s λ
4
z − 1
)
, (58)

with

n =
(
1 − N

) [
1 + λ2

s λ
2
z
(
λ2

s + λ
2
z − 9N

)]
λ3

s λ
3
z
(
1 − 3N

) [
1 + λ2

s λ
2
z
(
λ2

s + λ
2
z − 3N

)] . (59)

For pressure-controlled membranes, p is the loading-
parameter and the above set of equations [namely: Eqs. (55)
to (59)] is sufficient.

For closed, impermeable membranes, however, the loading-
parameter is the amount of enclosed gas and the above equa-
tions must be complemented with its state equation. The
membrane is thin enough to ensure that, at equilibrium, the
internal temperature is prescribed, equal to the external tem-
perature; in other words, we do not consider the transient
temperature changes that might be induced by the mechanical
loading. In these conditions, assuming the confined gas to be
ideal, Boyle’s law applies : pressure × volume = const.

We therefore consider a section of the translation-invariant
membrane. In the undeformed configuration, the length in
the z direction is 1, while the area of the cross-section isAΣ;
the initial volume of this section is therefore 1 × AΣ. In the
deformed configuration, the length in the z direction is λz × 1,
while the area of the cross-section is now Aς; the current
volume is therefore λz × 1 ×Aς and Boyle’s law delivers

λz pAς = const. (60)

The deformations of a closed, translation-invariant membrane
are therefore governed by Eqs. (55) to (60).

3.7. Equations of the translation-invariant
membrane under the plane strain
assumption

In this section, the equations presented in Sec. 3.6 are con-
trasted with the equations of plane strain equilibrium. In the
plane strain assumption, it is assumed that λz = 1 while Nz is
disregarded. This leads to the following equations, considered
by De Simone and Luongo (2013) and Srivastava and Hui
(2013b), among others

Ns = p r, Lγ = λsLΓ, Ns = H
∂W
∂λs

∣∣∣∣∣
λz=1

(61)

2r
⋆ p⋆

Γ
2r

c

p



p

p

Figure 4: The system under consideration in Sec. 4. At the
end of the free inflation phase (left), the membrane
is cylindrical with radius r⋆ and the inner pressure is
p⋆. During the flattening phase (right), the distance
between the two plates is decreased from 2r⋆ to 2r.
The length of the contact zone is c. The contact
pressure balances the inner pressure along the two
rectilinear segments.

and, for the hyperelastic material of Anssari-Benam and Buc-
chi (2021),

Ns

µH
=

(
1 − N

) (
λ4

s − 1
) [

1 + λ2
s
(
λ2

s + 1 − 9N
)]

λ3
s
(
1 − 3N

) [
1 + λ2

s
(
λ2

s + 1 − 3N
)] . (62)

For a closed, impermeable membrane, we have the addi-
tional equation

pAς = const. (63)

4. Example: a cylindrical membrane
squeezed between two rigid, parallel
planes

As an illustration of the general theory exposed in Sec. 3, we
consider here an initially cylindrical pressurized membrane,
compressed between two rigid, parallel planes (see Fig. 4).
Our goal is to derive the relationship between the total force
applied to the plates and their vertical displacement. This is
critical for e.g. the prediction of the gripping force of soft
pneumatic bending actuators (Doreswamy et al., 2022; Sachin
et al., 2022a): as an object is gripped, a force is exerted at the
tip of the actuator, which tends to squeeze together the various
chambers and decreases the curvature of the actuator. Clearly,
the same mechanisms are at work as in the simplified system
presented here.

This problem was initially analyzed by De Simone and
Luongo (2013) under the plane strain assumption, which is
questionable owing to the existence of out-of-plane membrane
stress resultants. We show that for moderate stretches, the
plane strain assumption delivers satisfactory results. For larger
stretches, the generalized plane strain assumption ought to be
preferred for accurate modelling of pressurized membranes.

The analysis of the membrane is divided in two phases: the
free inflation phase is first discussed in Sec. 4.1. Then the
flattening of the membrane between the two planes is adressed
in Sec. 4.2.
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4.1. The free inflation phase
During the free inflation phase, the loading parameter is the
internal pressure p and Eq. (60) is not meaningful. The mem-
brane is not in contact with rigid planes and is free to expand
as a circular cylinder.

Generalized plane strain analysis Eqs. (55) to (59) read

Ns = p r,
Ns

µH
= n
(
λ4

s λ
2
z − 1
)
, r = λs R, (64)

Nz =
p r
2
,

Nz

µH
= n
(
λ2

s λ
4
z − 1
)
. (65)

Note that Ns denotes the hoop membrane stress resultant,
while λs denotes the hoop stretch. In the above algebraic
equations, R denotes the “initial radius” of the unstretched
membrane. Of course, under vanishing internal pressure, the
membrane cannot sustain a cylindrical shape : R should really
be understood as an effective initial radius, such that the initial
length of the cross-section reads LΓ = 2πR. The above equa-
tions reduce to the following non-linear system with unknowns
λs and λz

ϖλs = n
(
λ4

s λ
2
z − 1
)

and 1
2 ϖλs = n

(
λ2

s λ
4
z − 1
)
, (66)

with

ϖ =
p R
µH

(dimensionless pressure). (67)

The above algebraic equations are readily solved numerically
(using a standard Newton–Raphson solver). Upon elimination
of ϖλs between Eqs. (66)1 and (66)2, it is further observed
that

2λ2
s λ

4
z − λ

4
s λ

2
z − 1 = 0 and λz =

1
2

√
λ2

s +

√
λ4

s + 8λ−2
s .

(68)

For λs ≤ 1.4, it is therefore found that λz ≤ 1.1 and the plane
strain assumption probably remains acceptable (see below).
For larger hoop stretches, the longitudinal stretch becomes
significantly greater than 1, and can no longer be neglected.

Plane strain analysis Eqs. (61) read

Ns = p r and r = λs R. (69)

Upon combination with Eq. (62), we get

ϖ =

(
1 − N

) (
λ4

s − 1
) [

1 + λ2
s
(
λ2

s + 1 − 9N
)]

λ4
s
(
1 − 3N

) [
1 + λ2

s
(
λ2

s + 1 − 3N
)] . (70)

4.2. The flattening phase
The state of the membrane at the end of the inflation phase
is denoted ϖ⋆, λ⋆s , λ

⋆
z . In the subsequent flattening phase, the

amount of gas is constant and Eq. (60) should be considered
together with Eqs. (55) to (59). The loading parameter is now
the distance between the two parallel planes that constrain the
membrane.

The deformed geometry of the membrane, γ, is formed by
two half-circles (radius: r) and two linear segments (length: c)
(see Fig. 4)

Lγ = 2π r + 2c and Aς = π r2 + 2c r. (71)

It will be convenient to introduce the following dimension-
less parameters

ρ =
r
R

and χ =
c
πR
. (72)

Generalized plane strain analysis The (algebraic) equa-
tions of the membrane in the flattening phase read

Ns = p r,
Ns

µH
= n
(
λ4

s λ
2
z − 1
)
, (73)

Nz =
p r
2
π r + 2c
π r + c

,
Nz

µH
= n
(
λ2

s λ
4
z − 1
)
, (74)

λs =
π r + c
πR

λz p r
(
π r + 2c

)
= π λ⋆z p⋆ (r⋆)2, (75)

where n is given by Eq. (59)3. In dimensionless form

ϖρ = n
(
λ4

s λ
2
z − 1
)
,

ϖ ρ

2
ρ + 2 χ
ρ + χ

= n
(
λ2

s λ
4
z − 1
)
, (76)

λs = ρ + χ λzϖρ
(
ρ + 2χ

)
= ϖ⋆ (λ⋆s )2 λ⋆z . (77)

Plane strain analysis The dimension-free equations of the
flattening phase read

ϖρ =

(
1 − N

) (
λ4

s − 1
) [

1 + λ2
s
(
λ2

s + 1 − 9N
)]

λ3
s
(
1 − 3N

) [
1 + λ2

s
(
λ2

s + 1 − 3N
)] , (78)

λs = ρ + χ and ϖρ
(
ρ + 2χ

)
= ϖ⋆ (λ⋆s )2. (79)

4.3. Generalized plane strains vs. plane strains
The equations presented above were implemented numerically
as described below. In the free inflation phase, the simulation
is controlled by the hoop stretch λs. For each new value
λs,i+1, Newton–Raphson iterations are used to compute the
new values of ϖi+1 and λz,i+1; the previous values ϖi and
λz,i are used as initial guesses. In the flattening phase, the
simulation is controlled by the reduced radius ρ. For each new
value ρi+1, Newton–Raphson iterations are used to compute
the new values of ϖi+1, λs,i+1, λz,i+1 and χi+1 ; the previous
values ϖi, λs,i, λz,i and χi are used as initial guesses.

Pressure-stretch curves are represented in Fig. 5 (continu-
ous lines) for both generalized plane strains (GPS) and plane
strains (PS) analyses. For limited stretches λs ≤ 1.3, the agree-
ment is quite good. It is shown in Appendix F that this is
strongly related to the incompressibility of the constitutive ma-
terial of the membrane. For larger stretches, the predictions of
the pressure are widely different. In particular, the plane strain
model fails to predict the limit-point and the inflation-jump
instabilities (Anssari-Benam et al., 2022).

The membrane is then flattened from two initial configu-
rations: λ⋆s = 1.3 and λ⋆s = 6.0. The resulting ϖ vs. λs

curves are also plotted on Fig. 5 (dashed curves). Again, ex-
cellent agreement is observed when the stretch remains small
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λs

1.0 2.0 3.0 4.0 5.0 6.0 7.0

ϖ

0.0

0.5

1.0

1.5

2.0

GPS
PS

Figure 5: Reduced pressureϖ vs. hoop stretch λs for the cylin-
drical membrane discussed in Sec. 4. “GPS”: gen-
eralized plane strain; “PS”: plane strain; continuous
lines: inflation phase; dashed branches: flattening
phase (starting from λ⋆s = 1.3 and λ⋆s = 6.0).

(λ⋆s = 1.3). For λ⋆s = 6.0, the longitudinal stretch λz > 1 can
no longer be neglected.

For engineering applications, prediction of the force–displa-
cement curves is critical. In the present case, the applied force
is p c, while the vertical displacement is 2r⋆−2r. We therefore
introduce the following reduced quantities

Reduced force =
p c
π µH

= ϖχ, (80)

Reduced displacement =
2r⋆ − 2r

2R
= λ⋆s − ρ, (81)

which are plotted in Figs. 6 (λ⋆s = 1.3) and 7 (λ⋆s = 6.0). For
large initial stretches, the plane strain assumption leads to
significant errors: even the apparent stiffness of the squeezed
membrane (the initial slope of the force-displacement curve)
is not correct. As expected, the additional constraint λz = 1
tends to stiffen the mechanical system.

5. Conclusion and perspectives
Pressurized membranes often require to account for geometric
and material nonlinearities, including contact. This usually
leads to highly non-linear boundary-value problems that can
only be solved numerically. For engineering purposes, con-
sidering specific situations where the problem simplifies is
therefore relevant. De Simone and Luongo (2013) observed
that the case of translation-invariant membranes under the
plane-strain assumption is remarkable, as it reduces to a set
of two algebraic equations with two scalar unknowns only.
However, in many practical applications, the plane-strain as-
sumption is too restrictive as the inner-pressure exerted on the
membrane’s caps might induce a large longitudinal stretch. In
this paper, we therefore extended the results of De Simone
and Luongo (2013) to the case of translation-invariant mem-
branes under the generalized plane-strain assumption. The
membrane might be in frictionless contact with several planes,

Reduced displacement
0.0 0.5 1.0

Re
du

ce
d f

or
ce

0.0

0.5

1.0

1.5

2.0

GPS
PS

Figure 6: Flattening of a cylindrical membrane, initially
stretched to λ⋆s = 1.3. The plot displays the (di-
mensionless) force–displacement curves. Both gen-
eralized plane strain and plane strain analyses are in
good agreement.

Reduced displacement
0.0 1.0 2.0 3.0 4.0 5.0

Re
du

ce
d f

or
ce

0.0

5.0

10.0

15.0

20.0

GPS
PS

Figure 7: Flattening of a cylindrical membrane, initially
stretched to λ⋆s = 6.0. The plot displays the (di-
mensionless) force–displacement curves. The plane
strain analysis leeds to significant errors.

10



all parallel to the longitudinal axis. We show in that case that
the boundary-value problem again reduces to a set of algebraic
equations, with now four unknowns: two stress-resultants
and two stretches. Considering an incompressible membrane
squeezed between two parallel planes, we showed that neglect-
ing longitudinal effects is acceptable for limited hoop stretches.
However, for hoop stretches significantly larger than unity, the
generalized plane strain model must be preferred to the plane
strain assumption.

We have identified a few short term perspectives to this
work. First, following De Simone and Luongo (2013), the
generalized plane strain assumption should be extended to
visco-elastic membranes. The resulting model would reduce
to a set of ordinary differential equations involving the longi-
tudinal and hoop stretches and stresses as well as their time
derivatives. The required visco-elastic constitutive law is now
fully 2D and requires careful formulation (Firouzi, 2022). Sec-
ond, contact with friction or adhesion ought to be considered,
as was done by Srivastava and Hui (2013a) in the plane strain
assumption (see also Kumar and DasGupta, 2013; Kolesnikov,
2017; Liu et al., 2018); we expect that the resulting system of
equations will no longer be algebraic in that case. Third, the
general equations that we derived might be used to develop
light-weight models of actuators in soft robotics.

A longer term perspective is the analysis of membranes that
are rotation-invariant, rather than translation-invariant (e.g.
bicycle tires): the membrane is “nearly” translation-invariant
when the center of rotation is “far” away. We are hoping to
derive an asymptotic model for such situations.
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A. Proof of Eq. (11)

Using Eq. (2)2 and observing that: (1) a3 · N = 0 and (2) b
and N are symmetric
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∂ξα
· aα
)
=
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∂

∂ξα
(
a3 · N

)]
· aα −

(
∂a3
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· N
)
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·
(
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=
(
bαβ aβ

)
·
(
Nαγ aγ

)
= bαβ Nαγ δβγ = bαβ Nαβ = b : N. (82)
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B. Constitutive equations of
Mooney–Rivlin membranes

For incompressible, Mooney–Rivlin materials, the hyperelas-
tic potential W reads

W(λI, λII, λIII) = 1
2
[(

I1 − 3
)
+ α
(
I2 − 3

)]
, (83)

with

λI λII λIII = 1, and

I1 = λ
2
I + λ

2
II + λ

2
III

I2 = λ
−2
I + λ

−2
II + λ

−2
III

. (84)

In the above expression, α (“hardening parameter”) is a
material constant that complements the shear modulus µ ;
the neo-Hookean model is recovered with α = 0. Plugging
λIII = λ

−1
I λ

−1
II delivers the following reduced potential

W(λI, λII) = 1
2
[
λ2

I + λ
2
II +
(
λI λII

)−2
− 3
]

+ 1
2 α
[
λ−2

I + λ
−2
II +
(
λI λII

)2
− 3
]
. (85)

Upon substitution into Eqs. (18), the following constitutive
equations are found (see e.g. Patil et al., 2014)

NI

µH
=

(
λI

λII
−

1
λ3

I λ
3
II

)(
1 + αλ2

II
)
, (86)

NII

µH
=

(
λII

λI
−

1
λ3

I λ
3
II

)(
1 + αλ2

I
)
. (87)

C. Proof of Eq. (25)

Eq. (25)1 is a direct consequence of Eq. (24)2, remembering
that x(Lγ) = x(0) since γ is closed∮
γ

t ds =
∮
γ

dx
ds

ds = x(Lγ) − x(0) = 0, (88)

while Eq. (25)2 results from Green’s theorem∮
γ

x × t ds =
∮
γ

(
x ex + y ey

)
×

(dx
ds

ex +
dy
ds

ey

)
ds

=

∮
γ

(
x

dy
ds
− y

dx
ds

)
ez ds =

∮
γ

(
x dy − y dx

)
ez

=

∫
ς

[
∂x
∂x
−
∂(−y)
∂y

]
dx dy ez = 2

∫
ς

dx dy ez

= 2Aς ez.

(89)

D. Pressure forces acting on a surface
supported on a plane contour

In this appendix, we evaluate the resultant and moment of the
pressure forces exerted on a surface (cap) supported on a plane
contour. We consider a surface ω, supported on the plane
contour γ and subjected to a constant inner pressure p. The
outer normal to ω is denoted nω. The plane surface enclosed
by γ is denoted ς; its normal is nς: it points to ω (see Fig. 8).

Figure 8: The surface ω is supported on the closed, plane con-
tour γ. The outer normal to ω is nω. The interior
of the contour γ is the plane surface ς; it normal is
nς. From the perspective of the closed surface ω∪ ς,
nς is the inner normal. For the sake of clarity, the
two surfaces ω and ς have been shifted away in the
above figure.

The resultant and moment of the pressure forces read

Rcap =

∫
x∈ω

p nω(x) da = p
∫

x∈ω
nω(x) da, (90)

Mcap =

∫
x∈ω

x ×
[
p nω(x)

]
da = p

∫
x∈ω

x × nω(x) da, (91)

where da is the elemental area, and x denotes the radius-vector
of the current point on ω. Note that the moment Mcap is
evaluated with respect to the (arbitrary) origin. To evaluate
the above integrals, we observe that ω ∪ ς is a closed surface.
Therefore, the resultant force and moment exerted on ω ∪ ς
by constant pressure forces are both null. In other words
(observing that nς is the inner normal to ω ∪ ς and does not
depend on the observation point)

0 =
∫

x∈ω
nω(x) da +

∫
x∈ς

(
−nς
)

da, (92)

0 =
∫

x∈ω
x × nω(x) da +

∫
x∈ς

x ×
(
−nς
)

da, (93)

from which it results that

Rcap = pAς nς and Mcap = pAς gς × nς, (94)

where Aς denotes the surface area of the plane domain ς
delimited by the contour γ, and gς is the radius-vector (indeed,
the lever arm) of its center of gravity.

E. On the external forces applied to the
lateral surface of the membrane

In the present appendix, it is shown that the resultant of exter-
nal (pressure and contact) forces applied to the lateral surface
of the membrane are null. We further derive a closed form
expression of the longitudinal component of their resultant
moment. It is recalled from Sec. 3.2 that the cross-section
of the membrane is made of rectilinear segments connected
smoothly by circular arcs of radius r (see Fig. 9).

Let n be the number of rectilinear segments. Each circular
arc subtends with its center an angle β1, . . . , βn. The central
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Figure 9: The lateral surface of the membrane (thick line) is a
union of n rectilinear segments connected (smoothly)
by circular arcs of radius r (in the present figure,
n = 4). Trimming these segments results in a n-gon
with interior angles α1, . . . , αn. The circular arcs
that connect the rectilinear segments subtend angles
β1, . . . , βn with βk = π − αk. Along the rectilinear
segments, the inner gas pressure is balanced by the
contact forces.

angle βk is equal to π − αk, where αk is the interior angle of
the trimmed polygon. The union of all circular arcs therefore
subtends the angle: β1 + . . . + βn = n π −

(
α1 + . . . + αn

)
. The

quantity α1+ . . .+αn is the sum of interior angles of a simple n-
gon: its value is (n−2) π and β1+ . . .+βn = n π−

(
n−2
)
π = 2π,

which shows that the translation of these circular arcs form a
whole circle.

It has been shown in Sec. 3.2 that contact forces cancel
pressure forces in the rectilinear parts of the lateral surface
of the membrane. Therefore external (pressure) forces are
exerted on the cylindrical parts only. Since the union of all
these parts form a closed circular cylinder, the resultant of
pressure forces exerted on these cylindrical parts in null. As a
conclusion, the resultant of pressure and contact forces on the
lateral surface is null: Rlat = 0. We now turn to the moment
Mlat of these forces with respect to the (arbitrary) origin

Mlat =

∫ zmax

zmin

∮
γ

x ×
(
fn n
)

ds dz, (95)

where zmin and zmax are the limits of the section of the lateral
surface under consideration, and fn is the surface density of
external forces applid to the lateral surfaces. In the rectilinear
segments, fn = pressure + contact = 0, while fn = −p in the
circular segments. Let γ̃ denote the union of all circular arcs
of γ. From Eq. (26)2

Mlat = −p
∫ zmax

zmin

∫
γ̃

(
z ez + x

)
× n ds dz (96)

and, introducing L = zmax − zmin

ez ·Mlat = −p
∫ zmax

zmin

∫
γ̃

ez ·
(
x × n

)
ds dz

= −p L
∫
γ̃

ez ·
(
x × n

)
ds

= p L
∫
γ̃

x ·
(
ez × n

)
ds = −p L

∫
γ̃

x · t ds. (97)

F. On the role of the Poisson ratio
In this appendix, we show that both pressure-stretch curves
coincide in Fig. 5 in the small stretch range by comparing the
initial slope of the pressure-stretch curves. These slopes can
directly be captured within the framework of the linearized the-
ory of membranes. We consider a general Hooke constitutive
material (ν is not necessarily equal to 1/2).

Under the generalized plane strain assumption Eqs. (64)
and (65) read

Ns = p R,
Ns

E H
=
εs + ν εz

1 − ν2
, r =

(
1 + εs

)
R, (98)

Nz =
p R
2
,

Nz

E H
=
εz + ν εs

1 − ν2
, (99)

where εs and εz are the linearized strains and E, ν are the
Young’s modulus and Poisson’s ratio of the constitutive mate-
rial. The above equations readily deliver the linear pressure-
strain relationship

p R
E H

=
εs

1 − ν/2
. (100)

Under the plane strain assumption Eqs. (69) read

Ns = p R,
Ns

E H
=
εs

1 − ν2
, and r =

(
1 + εs

)
R (101)

and we get the following linear pressure-strain relationship

p R
E H

=
εs

1 − ν2
. (102)

Note that equations (100) and (102) coincide only when
ν = 1/2 or ν = 0, which confirms that for incompressible
membranes, the differences between the PS and GPS models
remain small at small stretch.
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