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Abstract

We consider a high-dimensional nonlinear computational model of a dynamical system, parameterized by a vector-
valued control parameter, in the presence of uncertainties represented by an uncontrolled parameter modeled by a
vector-valued random variable, and possibly with stochastic excitation. The objective is to construct a statistical sur-
rogate model where the input is any deterministic value of the control parameter, and the output is a vector-valued
observation of the computational model, which is a random vector whose probability measure is updated using a target
dataset. To construct this statistical surrogate model, the stochastic response of the computational model must be built,
which is a vector-valued time-discretized stochastic process in high dimension, depending on the control parameter.
It is assumed that the computational cost of a single evaluation of the deterministic model is high. For the proba-
bilistic updating, we consider a subset of the components of the observation of the computational model, defined as
the ”identification observation” of the computational model, for which a small target dataset is available. Therefore,
the target dataset is associated with partial observability, corresponding to an incomplete data case. Given a prior
probability model of the random control and uncontrolled parameters, a training dataset is constructed, consisting of
realizations of the random triplet composed of the stochastic response, the random identification observation, and the
random control parameter. Since the computational cost of a single evaluation of the deterministic model is assumed
to be large, the training dataset is also of small size. The main challenges in this problem are the high dimensionality,
partial observability leading to incomplete data in the target dataset for the identification observation of the computa-
tional model (which is not sufficient to identify the computational stochastic responses), and the availability of a small
training dataset. To address these challenges, we propose a methodology based on statistical methods for construct-
ing necessary reduced representations, direct probabilistic learning under constraints using probabilistic learning on
manifolds (PLoM) constrained by the target dataset, and the use of a weak formulation of the Fourier transform of
probability measures. Statistical conditioning is also employed to explore the learned dataset. The constructed predic-
tive statistical surrogate model can be implemented in the context of online computation. We apply this approach to a
problem of nonlinear stochastic dynamics in high dimensions within the framework of deformable solids mechanics.

Keywords: Probabilistic learning, realizations as targets, statistical inverse problem, Kullback-Leibler divergence,
uncertainty quantification

1. Introduction

1.1. Context of the paper

The development of surrogate models for parameterized large-scale computational models is challenging and an
extremely active research topic, resulting in a huge number of publications. The scientific community has proposed
several classes of methods, including deterministic representations, probabilistic/statistical-based approaches, and
more recently, Machine Learning tools, with or without probabilistic/statistical formulations. It is not possible here,
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nor is it the purpose, to attempt to review this vast field. Instead, we will focus on aspects directly related to the
method proposed in this paper. After referencing some general works on surrogate modeling, we will specifically
discuss methods for handling incomplete data, approaches for model reduction in the presence of uncertainties, and
probabilistic approaches developed for small data. These three components are utilized in the proposed probabilistic-
learning-based stochastic surrogate model from small incomplete datasets.

(i) Concerning the general aspects of the surrogate models, their construction can be carried out using a parametric
and nonparametric approaches in a deterministic or a probabilistic framework (see for instance [1, 2, 3]).

- Typically the parametric approaches can be based on deterministic polynomial regressions [4, 5, 6], kriging
approaches [7, 8, 9, 10, 11], polynomial chaos representations (see for instance [12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23], for general methods, [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] for integrating data using the maximum
likelihood or the Bayesian method, [35, 36, 37, 38]) for sparse modeling, and [23, 39, 34, 40, 41] for polynomial
chaos on manifolds.

- The nonparametric approaches can be based on kernel-based regression (see for instance [42]), and more gen-
erally on spectral approaches, including deterministic projection methods based on the choice or the construction of
a deterministic reduced-order basis (ROB) (such as a Hilbert basis adapted to the operators of the problem under
consideration; see for instance [43, 44]) or ROB constructed in the probabilistic context, such as principal component
analysis (PCA), Proper Orthogonal Decomposition (POD), and Karhunen-Loéve expansion (these three methods be-
longing to the same mathematical class of the spectral methods). A direct construction of a random ROB has also
been proposed (see below).

- We must obviously mention the most emerging approaches, those of Machine Learning (ML), both parametric
and nonparametric, that is to say the deep learning for artificial neural networks, which are effective and validated
only for ”complex mapping” when big data are available. In this ML context, many efforts are performed to develop
probabilistic/statistical surrogate models for the small dataset cases. This last approach is the one followed in the
present work.

(ii) The developments of methods in Machine Learning for the case of incomplete datasets are not recent and have
given rise to a huge number of publications with different fields of application. It is therefore not a question here of
offering a review, even a very partial one, on this vast subject. We only give a few aspects and references to situate the
method that is proposed to take into account incomplete data. Two main classes can be identified, statistical methods
and methods based on reduced-order representation. For the statistical methods, we can refer, for instance, to meth-
ods based on the likelihood and Bayesian approaches [45], to regression analyses [46], to regression neural network
ensembles for multiple imputation [47, 48], to Bayesian-based density-based clustering approaches [49], or to an
adaptive Bayesian SLOPE with missing values [50]. Concerning the reduced-order representation methods, see, for
instance, [51, 52] for PCA-based methods, [53] for decomposition methods, [54] for spectral methods (in fact, these
three methods belong to the large class of the spectral methods). In this paper, the context of incomplete data differs
from that which is generally considered in the very large number of published papers relating to this subject. Indeed,
we consider dynamical systems that are under observed and we do not seek to complete the ”incomplete experimental
data”, but to take these ”experimental data” into account to update the probability measure of all the observations of
the dynamical system using the Kullback-Leibler divergence minimum principle with respect to the prior probability
measure constructed using only the points of the training dataset. To take into account this framework of incomplete
data, the proposed method is based both on a projection derived from a PCA representation and on the use of prob-
abilistic learning based on the Kullback minimum principle. The method is therefore, straddling statistical methods
and reduced-order representation methods.

(iii) The projection-based reduced-order computational model (ROM) that has a very small dimension with respect
to the one of the large-scale computational model is a very attractive and efficient method in nonlinear computational
dynamics (see for instance [55, 56, 57, 58, 59, 60, 61, 62]). It should be noted that a hyperreduction method allows for
achieving computational efficiency in arbitrarily nonlinear parameterized settings [63]. However, in order to obtain
a robust ROM against uncertainties, which is required, for example, to transform such a ROM into a digital twin of
the physical system [64, 65], it is necessary to take into account the model uncertainties induced by modeling errors
so that the computational model becomes predictive. The nonparametric probabilistic method (NPM) developed in

2



[66, 67, 68, 69, 70, 71, 72] is a way for taking into account model-form uncertainties in nonlinear computational
model. The NPM consists in substituting the reduced-order basis by a random basis whose hyperparameters of its
prior probability model can be identified from targets, and therefore, allows the model to be enriched using data. We
have explained above this approach that couples the parameterized reduced-order models with the NPM formulation
of the model-form uncertainty, enriched by target datasets, because the method proposed is an alternative way which
makes it possible to build a surrogate predictive statistical model that can also be used online. The proposed method
will couple the reduced-order representation and the probabilistic learning under the constraints defined by the target
datasets (see below).

(iv) The probabilistic learning is also a very active domain of research for constructing surrogate models (see for
instance, [73, 74, 75, 76, 77, 78, 79, 80]). In this context, the probabilistic learning on manifolds (PLoM) method
has specifically been developed for the small dataset cases [81, 82, 83, 84] for which several extensions have been
proposed to take into account implicit constraints induced by physics, computational models, and measurements
[85, 86, 87], to reduce the stochastic dimension using a statistical partition approach [88], and to update the prior
probability measure by a target dataset whose points are, for instance, experimental realisations of the system obser-
vations [89]. This last capability of PLoM can also be viewed as an alternative method to the Bayesian inference for
the high dimension [90, 91, 92, 93, 94, 95, 96, 97, 98, 99] and is a complementary approach to existing methods in
machine learning for sampling distributions on manifolds under constraints. It allows for solving unsupervised and
supervised problems under uncertainty for which the training sets are small. This situation is encountered in many
problems of physics and engineering sciences with expensive function evaluations. The exploration of the admissible
solution space in these situations is thus hampered by available computational resources. The PLoM was successfully
adapted to tackle these challenges for several related problems including nonconvex optimization under uncertainty
[100, 101, 102, 68, 103, 104, 105], fracture paths in random composites [106], updating digital twins under uncer-
tainties [65], calculation of Sobol’s indices [107], dynamic monitoring [108], surrogate modeling of structural seismic
response [109], for the waterflooding in oil reservoir [110]. As we indicated previously, the third ingredient of the
proposed method to build the predictive surrogate model is a probabilistic learning method based on the Kullback-
Leibler divergence minimum principle that allows the target dataset to be integrated for updating the prior probability
measure that is built with the training set. In this context, the PLoM algorithm is also used to avoid the scattering
of learned realizations associated with the updated probability measure in order to preserve its concentration in the
neighborhood of the random manifold defined by the stochastic computational model.

1.2. Novelty of the paper

The novelty of this paper consists in the development of a methodology for constructing a predictive statistical
surrogate model to represent any parameterized, uncertain, stochastic, nonlinear computational model in cases where
the dimension is high, there is partial observability leading to incomplete data for the small target dataset of iden-
tification observations, the nonlinear mapping that computes the identification observations from the computational
stochastic responses is not injective, and only a small training dataset is available. Additionally, the stochasticity of the
random responses is caused by uncontrolled random parameters and stochastic excitations in the nonlinear computa-
tional model. Machine learning formulations based on artificial neural networks are not well-suited for such cases due
to the high dimension, small training dataset, small target dataset, incomplete data, random uncontrolled parameters,
and stochastic excitations in the nonlinear computational model. The proposed approach and algorithms are based
on statistical methods, adapted reduced representations, direct probabilistic learning under constraints using PLoM
constrained by the target dataset (utilizing a weak formulation of the Fourier transform of probability measures), and
an effective description of a predictive statistical surrogate model using conditional statistics. These statistics explore
the learned dataset and can be carried out online for any given value of the control parameter without invoking the
stochastic computational model.

1.3. Organization of the paper

The framework of the problem under consideration and a summary of the methodology have been presented
in Section 2. Additional developments primarily focused on convergence analyses and algorithms are provided in
Section 3. An application is then carried out in Section 4 and involves the mechanical system described in [70], which
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is used to validate the proposed methodology. This application pertains to a three-dimensional MEMS device in which
the nonlinear stochastic dynamics are studied. It is particularly interesting and challenging for the proposed approach
as the effects of the nonlinearities on the nonlinear stochastic responses are highly sensitive to the values of the control
parameters.

1.4. Terminology and notations

(i) Convention used for the variables, vectors, and matrices.
A lower-case Latin or Greek letter, such as x or η, is a deterministic real variable.
A boldface lower-case Latin or Greek letter, such as x or η, is a deterministic vector.
An upper-case Latin letter, such as X, is a real-valued random variable.
A boldface upper-case Latin letter, such as X, is a vector-valued random variable.
A lower- or upper-case Latin letter between brackets, such as [x] or [X], is a deterministic matrix.
A boldface upper-case letter between brackets, such as [X], is a matrix-valued random variable.

(ii) Probability space, random variable, probability measure, and probability density function.
For any finite integer m ≥ 1, the Euclidean space Rm is equipped with the σ-algebra BRm . If Y is a Rm-valued random
variable defined on the probability space (Θ,T ,P), Y is a mapping θ 7→ Y(θ) fromΘ into Rm, measurable from (Θ,T )
into (Rm,BRm ), and Y(θ) is a realization (sample) of Y for θ ∈ Θ. The probability distribution of Y is the probability
measure PY(dy) on the measurable set (Rm,BRm ) (we will simply say on Rm). The Lebesgue measure on Rm is noted
dy and when PY(dy) is written as pY(y) dy, pY is the probability density function (pdf) on Rm of PY(dy) with respect
to dy. Finally, E denotes the mathematical expectation operator and a.s. means ”almost surely”.

(iii) Algebraic notations.
N, R: set of all the integers {0, 1, 2, . . .}, set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
Mn,m: set of all the (n × m) real matrices.
Mn: set of all the square (n × n) real matrices.
M+n : set of all the positive-definite symmetric (n × n) real matrices.
[In]: identity matrix in Mn.
x = (x1, . . . , xn): point in Rn.
⟨x, y⟩ = x1y1 + . . . + xnyn: inner product in Rn.
∥ x ∥: norm in Rn such that ∥ x ∥ = ⟨x, x⟩.
∥ [x] ∥ = sup ∥ y ∥=1 ∥ [x] y ∥ the operator norm.
[x]T : transpose of matrix [x].
tr{[x]}: trace of the square matrix [x].
∥ [x] ∥F : Frobenius norm of matrix [x].
δkk′ : Kronecker’s symbol.
δx0 : Dirac measure at point x0.

(iv) List of symbols.
C: fourth-order tensor-valued random field.
Cu ⊂ Rnu : support of the probability distribution of U.
Cw ⊂ Rnw : admissible set of the control parameter w, which is the support of the probability distribution of W.
Dlearn(ηud): learned dataset for the updated random vector Hud.
Dlearn(oud,wud): learned dataset for random vector (Oud,Wud).
Dtarg(ηtarg): set of the Nr vectors, ηr

targ.
Dtarg(oid): target dataset constituted of the Nr vectors or

targ, associated with the Oid.
Dlearn(xud): learned dataset for the updated random vector Xud.
Dtrain(η): training dataset for random vector H.
Dtrain(x): training dataset constituted of the nd realizations x j of X.
Dtrain(y, oid,w): training dataset constituted of the nd realizations (y j, o j

id,w j).
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f j: j-th realization of F in the training dataset.
F: time-discretized stochastic process indexed by J representing the excitation of the dynamical system.
η j: j-th realization of Hud.
ηr

targ: projection on the reduced model in H of the target dataset.
ηℓud: ℓ-th learned realization of Hud.
[ηd]: matrix in Mν,nd , whose columns are η1, . . . , ηnd .
H: random vector resulting from the principal component analysis of X.
Hud: random vector corresponding to the updating of H under the constraint.
J : set of the sampling time of [t0 ,T ] in ntime points.
Jsnps: set of the snapshots.
nd: number of independent realizations of (W,U,F).
npMC: number of learned realizations used by the PLoM algorithm.
no: number of components of Oid(w).
nq: number of components of Q(t; w).
nsnps: number of points in Jsnps.
ntime: number of points in J (sampling time).
nx: number of components of X such that nx = ntime × nq + no + nw.
ny: number of components of Y(t; w).
ν: number of components of random vector H and Hud.
Nd: is nd × nsnps.
No: number of components of O(w).
Nr: number of points inWtarg.
Nud: number of learned realizations for the updated random quantities.
N : nonlinear operator defining the stochastic equation of the computational model.
or

targ: r-th target for Oid(w) (”experimental measures”).
o j: j-th realization O(y j) of O(w j).
o j

id: j-th realization Oid(y j) of Oid(w j), used for the identification.
oℓud: ℓ-th learned realization of Oud.
O: operator acting on Y, defining the observations of the computational model.
Oid: operator acting on Y, defining the observations of the computational model, used for the identification.
O(w): random observation O(Y(·; w)) of the computational model.
Oid(w): random identification observation Oid(Y(·; w)).
Oud: updated random observation of the computational model for random control parameter.
Oud(w): updating of O(w) (output of the statistical surrogate model for given w).
q j(t): j-th realization of random vector Q(t; W) for t ∈ J .
q j: vector (q j(t1), . . . ,q j(tntime )) as the j-th realization of random vector Q.
Q(t,w): random vector such that Y(nq)(t; w) = [V] Q(t; w).
Q: random vector (Q(t1; W), . . . ,Q(tntime ; W)).
U: random uncontrolled parameter of the dynamical system.
u j: j-th realization of U.
[V]: matrix in Mny,nq representing the ROB such that Y(nq)(t; w) = [V] Q(t; w).
w: control parameters of the dynamical system.
w j: j-th realization of W.
w j

ref specific value of the control parameter w for the validation of the SSM.
wℓud: ℓ-th learned realization of Wud.
wr

targ: r-th value of w for which the corresponding observation of the dynamical system is ”measured”.
W: random variable modeling w.
Wud: updated random control parameter W.
Wtarg: set of the Nr values wr

targ of w, for which or
targ is given as a target.

Wtrain: set of the nd realizations w j of W.
x j: vector (q j, o j

id,w j) of the j-th realization of X = (Q,Oid,W).
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xℓud: ℓ-th learned realization of Xud.
[xd]: matrix in Mnx,nd , whose columns are x1, . . . , xnd .
X: is the random vector (Q,Oid,W).
Xud: random vector corresponding to the updating of X under the constraint.
y j: j-th realization of {Y(t; W), t ∈ J} with y j = y(. ; w j,u j, f j) the solution of the deterministic computational model.
Y(t; w): vector-valued stochastic response of the computational model.
Y(nq)(t; w): nq-order approximation of Y(t; w).

(v) List of acronyms.
dof: degree of freedom.
ISDE: Itô stochastic differential equation.
KDE: kernel density estimation.
KLDMP: Kullback-Leibler divergence minimum principle.
PCA: principal component analysis.
pdf: probability density function.
POD: proper orthogonal decomposition.
ROB: reduced order basis.
SCM: stochastic computational model.
SSM: statistical surrogate model.

(vi) Terminology related to the dynamical systems and various datasets.

Control parameter: the control parameter, w, of the computational model corresponds to the ”input” of the ”statistical
surrogate model” (SSM). It is a deterministic parameter that belongs to an admissible set Cw ⊂ Rnw . For the construc-
tion of the SSM, the control parameter w is modeled by a random variable W whose realizations are generated with
its given prior probability measure for which its support is the admissible set Cw. These realizations allow the training
dataset to be constructed.
Uncontrolled parameter: there is an internal vector-valued parameter u in the computational model that is not used
as an input or an output of the statistical surrogate model. For the construction of the SSM, the uncontrolled control
parameter u is modeled by a random variable U whose realizations are generated with its given prior probability mea-
sure. These realizations allow the training dataset to be constructed.
Observation: the vector-valued ”observation” of the computational model corresponds to the ”output” of the statisti-
cal surrogate model (the quantity of interest). Concerning the prediction performed with the SSM, for a deterministic
value w of the control parameter given in its admissible set, the SSM estimates the probability measure of the ”updated
random observation” (the conditional random output given w).
Identification observation and target dataset: For the construction of the SSM, a specific vector-valued observation of
the computational model is introduced and is defined as the ”identification observation”. The ”target dataset” is con-
stituted of a set of values of the identification observation, which are either experimental measures or other simulated
data.
Training dataset: given a prior probability model of the random control and uncontrolled parameters, a training dataset
is constructed, consisting of realizations of the random triplet composed of the stochastic response of the computa-
tional model, the random identification observation, and the random control parameter.
Learned datasets: there are several learned datasets, which are related to the different random variables introduced in
the construction of the SSM. Each ”learned dataset” is built from the corresponding ”training dataset” associated with
each random variable. In particular, the learned dataset for updating the random observation of the computational
model, is obtained by constraining the ”identification observation” by the ”target dataset”.
Reference dataset for validation: To validate the SSM, a specific set of values of the control parameter w, denoted
wref, is introduced. This set is defined as the ”reference dataset” and is made up of different points from those in the
training dataset.
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2. Summary of the proposed methodology

In this section, in order to facilitate the reading of this paper, we present a summary of the proposed method,
indicating the framework of the developments and giving the main hypotheses used and the reasons for which they
are introduced.

2.1. Parameterized nonlinear uncertain stochastic computational model and its observation

We consider a high-dimension nonlinear uncertain stochastic computational model of a dynamical system, param-
eterized by a vector-valued control parameter w, in presence of uncertainties represented by an uncontrolled parameter
that is a Rnu -valued random variable U = (U1, . . . ,Unu ) whose support of its probability distribution is Cu ⊂ Rnu , and
possibly with a stochastic excitation. The control parameter w = (w1, . . . ,wnw ) is with values in an admissible subset
Cw of Rnw . The time-discretized nonlinear stochastic computational model, simply called stochastic computational
model (SCM), corresponds to the time-discretized nonlinear differential equation of order mdiff in t, which is written
as,

N
(
Y(t; w),Y(1)(t; w), . . . ,Y(mdiff)(t; w); t,w,U

)
= F(t; w) , ∀ t ∈ J = {t1, . . . , tntime } ⊂ [t0 ,T ] , (2.1)

in which N is a nonlinear operator and where F = {F(t; w), t ∈ J} with values in Rny is a given time-discretized
stochastic process (time series) that depends on w. A deterministic initial condition is given at t = t0, where tn =
t0+n∆t for n = 1, . . . , ntime. The random response is the time-discretized stochastic process Y(· ; w) = {Y(t; w), t ∈ J}
with values in Rny , which depends on the control parameter w but also on U and F, and can be written as Y(t; w) =
y(t; w,U,F) in which y is a deterministic vector-valued function, (t,w,u, f) 7→ y(t,w,u, f). Finally, {Y(m)(t; w) =
dmY(t; w)/dtm, 1 ≤ m ≤ mdiff}. The SCM is assumed to be in high dimension, that is to say, ny is large. For all w ∈ Cw

and for a given prior probability measure of U and F, it is assumed that Y(· ; w) is the unique solution of the nonlinear
SCM, and that Y(· ; w),Y(1)(· ; w), . . . ,Y(mdiff)(· ; w) are second-order stochastic processes indexed by J with values in
Rny . We are interested in the prediction of an observation that is represented by a w-dependent random variable O(w)
with values in RNo , defined by a non-injective nonlinear mapping O of Y(. ; w) such that, O(w) = O(Y(. ; w)). For
example, the random vector O(w) can be related to the logarithm of the modulus of the frequency-sampled Fourier
transform in time of a subset of components {Yk(t; w), t ∈ J} of {Y(t; w), t ∈ J}. The objective of the predictions is not
that of the prediction of Y(· ; w) but is that of the prediction of O(w). This remark is important within the framework
of the proposed methodology.

2.2. Identification observation and small target dataset

For the probabilistic updating using a target dataset, a subset of components of O(w) is considered, which is rep-
resented by the random variable Oid(w) with values in Rno with no ≪ No, and which will be called the ”identification
observation”. The corresponding restriction of mapping O is denoted by Oid. The random identification observation
is then written as Oid(w) = Oid(Y(. ; w)). Relatively to Oid(w), a deterministic target datasetDtarg(oid) = {o1

targ, . . . , o
Nr
targ}

is given. For each r in {1, . . . ,Nr}, the vector or
targ ∈ Rno corresponds to a ”measurement” performed on the dynamical

system for a given value wr
targ ∈ Cw of the control parameter w. LetWtarg = {w1

targ, . . . ,w
Nr
targ} be the set of these control

parameter values. The target dataset is used to update the probability measure of the random surrogate model whose
statistical fluctuations are induced by the modeling errors existing in the SCM and that are simulated thanks to the
presence of random vector U that models uncertainties. It should be noted that the target dataset is associated with a
partial observability, which thus corresponds to an incomplete data case, that is an important difficulty.

2.3. Small training dataset

For constructing the training dataset, a prior probability model is introduced for the random variables W, U, and
for the time series F that are assumed to be statistically independent. Let {(w j,u j, f j), j = 1, . . . , nd} be nd independent
realizations of (W,U,F) and let Wtrain = {w1, . . . ,wnd } be the set of sampled values of W. The training dataset,
Dtrain(y, oid,w), is constituted of nd points constructed using the SCM. For every j in {1, . . . , nd}, let y j = y(. ; w j,u j, f j)
be the solution of the deterministic computational model. Once y j is known, the corresponding realization o j

id = Oid(y j)
of Oid(w j) is computed. The training dataset is thus defined by

Dtrain(y, oid,w) = {(y j, o j
id,w j), j = 1, . . . , nd} with y j = y(. ; w j,u j, f j) and o j

id = Oid(y j) . (2.2)
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It should be noted that y j = {y j(t), t ∈ J} is a function defined onJ with values in Rny while (o j
id,w j) is in Rno ×Rnw . It

is assumed that the numerical cost of a single evaluation of the deterministic computational model is large. Therefore
the number nd is assumed to be small, a few tens or a few hundreds. Under these conditions the number of points in
the training dataset is small and we are in the case of a small training dataset (as opposed to big data). Under these
conditions, machine learning formulations based on the learning of artificial neural networks are not suitable for the
considered framework of the high dimension and of small training and target datasets. For this reason, we propose
a methodology based on statistical methods for constructing reduced representation and also on a direct probabilistic
learning under constraints of the probability measures.

2.4. Predictive statistical surrogate model
The objective of this work is the construction of a predictive statistical surrogate model defined by the family

{Oud(w),w ∈ Cw} of random variables with values in RNo , which is the probabilistic updating of the family {O(w),w ∈
Cw}. This means that we have to estimate the w-dependent probability measure POud(w)(do; w) of the RNo -valued
random variable Oud(w) and to develop a generator of independent realizations. This problem is difficult due to
the high dimension, to the partial observability inducing incomplete data for the target dataset of the identification
observations, to the non-injectivity of nonlinear mapping O, and to small training and target datasets.

2.5. Large learned dataset from the small training dataset, built with a probabilistic learning constrained by the small
target dataset

Below, we summarize the main steps of the proposed methodology that is developed for circumventing the iden-
tified difficulties and we explain the reasons for the choices made.

(i) Reduced representation of Y with a (t,w)-independent ROB in Rny represented by a matrix [V] in Mny,nq . The RNo -
valued random observation O(w) is expressed as a nonlinear mapping of the finite family {Y(t; w), t ∈ J} of Rny -valued
random variables. The probabilistic learning constrained by the target dataset required to perform the learning for a
random vector of length ny × ntime, for which nd realizations are available, and for which nd × nMC learned realizations
should be generated. Therefore, learned data would be represented by a matrix containing (ny × ntime) × (nd × nMC)
64-bit words. For instance, for ny = 105, ntime = 104, nd = 102, and nMC = 104, this matrix requires 1015 64-bit words!
It is then necessary to construct a reduced representation of {Y(t; w), t ∈ J}. However, we want to perform a global
reduced representation that yields a good approximation for all t in J and for all w in Cw. We then use the existing
POD methodology for constructing the reduced representation Y(nq)(· ; w) of Y(· ; w), which is written as,

Y(nq)(t; w) = [V] Q(t; w) , ∀t ∈ J , ∀w ∈ Cw . (2.3)

The matrix [V] ∈ Mny,nq is independent of t and w, whose columns constitute an orthonormal reduced-order basis
(ROB) in Rny (for the usual Euclidean inner product), and where nq ≪ ny is estimated by a convergence analysis.
Let Jsnps = {τ1, . . . , τnsnps } ⊂ J be the subset of snapshots time with nsnps < ntime (possibly with nsnps = ntime) and let
[y j] = [y j(τ1) . . . y j(τnsnps )] be the matrix in Mny,nsnps . Then matrix [V] is constructed by compression of the matrix

[y] = [y1 . . . ynd ] ∈ Mny,Nd , Nd = nd × nsnps , [y j] = [y j(τ1) . . . y j(τnsnps )] ∈ Mny,nsnps , (2.4)

and is such that [V]T [V] = [Inq ]. It should be noted that [y] is the collection of matrices [y1], [y2], . . ., and [ynd ]. For
all w in Cw, {Q(t; w), t ∈ J} is a finite family of Rnq -valued random variables (sometimes called the random vector of
the generalized coordinates). The finite family of functions {y1, . . . , ynd } with y j : J 7→ Rny is replaced by the finite
family {q1, . . . ,qnd } with q j : J 7→ Rnq such that, for all t in J ,

q j(t) = [V]T y j(t) , ∀t ∈ J , ∀ j ∈ {1, . . . , nd} . (2.5)

This means that q j(t) is the projection of y j(t) on the subspace of Rny spanned by the ROB represented by [V].

(ii) Definition of the training datasetDtrain(x). For all j ∈ {1, . . . , nd}, we define x j ∈ Rnx such that

x j = (q j, o j
id,w j) , q j = (q j(t1), . . . ,q j(tntime )) ∈ Rntime×nq , nx = ntime × nq + no + nw . (2.6)
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The training dataset relative to the nd points x j is thus Dtrain(x) = {x1, . . . , xnd } and is represented by the matrix
[xd] ∈ Mnx,nd defined by

[xd] = [x1 . . . xnd ] ∈ Mnx,nd . (2.7)

There are three main difficulties for using a probabilistic learning from the training dataset Dtrain(x) under the con-
straint defined by the target datasetDtarg(oid). The first difficulty, which is the most important, is that we find ourselves
in a case of incomplete data induced by a partial observability. Indeed, the target dataset Dtarg(oid) concerns only the
part o j

id ∈ Rno of the vector x j ∈ Rnx . There is not a target value for the q j ∈ Rntime×nq part. The second difficulty is
due to the fact that there does not exist a mapping o j

id 7→ q j that is the inverse of the non-injective nonlinear mapping
q j 7→ o j

id. Therefore, we cannot complete the data by this way. Finally, the third difficulty is related to the fact that nd

is not equal to Nr, and therefore, the possibility to replace x j = (q j, o j
id,w j) by a vector such as (q j, o j

id,w j, or
targ) cannot

be done. We thus propose the following approach to bypass these three difficulties.

(iii) Reduced representation of X using a PCA. Let X = (Q,Oid,W) be the Rnx -valued random variable for which
x1, . . . , xnd , grouped in matrix [xd], are nd independent realizations. A principal component analysis (PCA) of X is
performed using [xd]. The reduced representation X(ν) of X is thus obtained for which the mean-square convergence
(in the vector space of all second-order Rnx -valued random variables) is controlled with respect to the dimension ν of
the reduction, which is written as

X(ν) = x + [Φ] [λ]1/2 H , ν < nx , (2.8)

in which H is a centered Rν-valued random variable with covariance matrix equal to [Iν]. In general, no is large and
consequently, the reduction will be important yielding ν ≪ no. The vector x is the mean value of X estimated with
x1, . . . , xnd . The matrix [Φ] ∈ Mnx,ν and the positive-definite diagonal matrix [λ] ∈ Mν are the eigenvectors and the
eigenvalues of the covariance matrix of X, which is estimated with x1, . . . , xnd . Matrix [Φ] is such that [Φ]T [Φ] = [Iν].
By construction, we have [xd] = [x] + [Φ] [λ]1/2 [ηd] in which [x] = [x . . . x] ∈ Mnx,nd . The columns of the matrix
[ηd] ∈ Mν,nd are the nd realizations η1, . . . , ηnd of random vector H. At mean-square convergence, matrix [ηd] is
computed by

[ηd] = [λ]−1/2[Φ]T ([xd] − [x]) . (2.9)

The training dataset for the Rν-valued random variable H is then defined asDtrain(η) = {η1, . . . , ηnd }.

(iv) ”Projection” of the target on the model in the context of incomplete data due to the partial observability. Now
we have to associate a vector ηr

targ ∈ Rno to or
targ for r = 1, . . . ,Nr. For that we need to build a mapping that associates

a vector η ∈ Rν to each oid ∈ Rno . We now remove superscript (ν) for simplifying the writing. For any realization η
in Rν of H, the corresponding realization x of X is given by Eq. (2.8), x = x + [Φ] [λ]1/2 η. Since x = (q, oid,w), the
extraction of oid ∈ Rno from x ∈ Rnx yields

oid = oid + [Ao] η , oid ∈ Rno , [Ao] = [Φo] [λ]1/2 ∈ Mno,ν , [Φo] ∈ Mno,ν . (2.10)

The matrix [Ao] ∈ Mno,ν admits a unique left pseudo-inverse [Ainv
o ] ∈ Mν,no The desired mapping is constructed

by solving the equation [Ao] η = oid − oid in the linear least-squares sense, which admits the unique solution η =
[Ainv

o ] (oid − oid). We then have
ηr

targ = [Ainv
o ] (or

targ − oid) , r ∈ {1, . . . ,Nr} . (2.11)

Note that this construction can be viewed as a ”projection” of the target onto the model in the context of incomplete
data due to partial observability. In order to simplify the following explanation, let us consider that F = f is a de-
terministic time function. Therefore, if the trace of the covariance matrix of the random uncontrolled parameter U
tends to zero, then for each given value w of the control parameter, the level of statistical fluctuations of the stochastic
response Y(·, ; w) = y(·, ; w,U, f) will also tend to zero (assuming continuity with respect to U). This means that for
small statistical fluctuations of U, if the ”distance” (between two clusters) from the training dataset Dtrain(η) to the
target dataset Dtarg(ηtarg) is ”significant”, then the projection of the target dataset onto the model we have presented
will only give a weak ”contribution,” and the constraint will have little effect in the probabilistic updating. To remedy
this, the prior probability model of U has to be carefully defined in order to generate enough statistical fluctuations
in the stochastic response y(·, ; w,U,F). Thus, the level of statistical fluctuations of U makes it possible to control
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the ”diameter” of the generated family of computational models. This situation is similar (although very different
methodologically and also in terms of assumptions and objectives) to that of Gaussian Bayesian inference: for a given
level of Gaussian noise, the support of the prior probability measure must be adapted to the domain where the Gaus-
sian likelihood function has significant contributions (which can be a difficult problem in high dimensions).

(v) Probabilistic learning on manifolds (PLoM) constrained by the target dataset. Using the small training dataset
Dtrain(η) = {η j, j = 1, . . . , nd} relative to H and using the associated small target dataset Dtarg(ηtarg) = {ηr

targ, r =
1, . . . ,Nr}, the probabilistic learning on manifolds (PLoM) is carried out under the constraints defined by the target
dataset and based on the use of a weak formulation of Fourier transform of probability measures. This step allows for
generating a large learned dataset Dlearn(ηud) = {ηℓud, ℓ = 1, . . . ,Nud} of the Rν-valued random variable Hud that is the
updating of H under the constraint defined byDtarg(ηtarg). The number of points in the learned dataset is Nud = nd×nMC
in which nMC ≪ 1 is given.

(vi) Construction of the large learned dataset Dlearn(oud,wud). Eq. (2.8) allows for constructing the learned dataset
Dlearn(xud) = {xℓud, ℓ = 1, . . . ,Nud}. From Eqs. (2.3) and (2.6) and for all ℓ ∈ {1, . . . ,Nud}, we deduce the learned
realizations yℓud = (yℓud(t1), . . . , yℓud(tntime )) ∈ Rntime×ny and wℓud ∈ Rnw . The learned realizations oℓud ∈ RNo of the updated
w-independent random observation Oud are computed using nonlinear operator O such that oℓud = O(yℓud). Finally, we
obtain the learned dataset

Dlearn(oud,wud) = {(oℓud,w
ℓ
ud) ∈ RNo × Rnw , ℓ = 1, . . . ,Nud} . (2.12)

2.6. Predictive statistical surrogate model available in an online computational context

The updated statistical surrogate model is defined by the w-dependent RNo -valued random variable Oud(w). Let us
assume that all the considered probability measures involving in the conditional statistical estimations admit densities
with respect to the Lebesgue measures do and dw on RNo and Rnw . For any w given in Cw, the w-dependent probability
density function on RNo of the random variable Oud(w) is given by

pOud(w)(o; w) = pOud |Wud (o|w) , o ∈ RNo , w ∈ Cw ⊂ Rnw , (2.13)

in which the conditional pdf pOud |Wud (o|w) of Oud given Wud = w is written as pOud |Wud (o|w) = pOud ,Wud (o,w)/pWud (w).
The joint pdf pOud ,Wud (o,w) is estimated using the Gaussian KDE method with the learned dataset Dlearn(oud,wud)
defined by Eq. (2.12). The estimation of the pdf pWud (w) is deduced by an explicit integration with respect to o of
the KDE estimate of pOud ,Wud (o,w). Once steps (v-1) to (v-4) have been performed (offline computation), step (v-5)
corresponds to the effective description of the predictive statistical surrogate model for which the output statistics
can rapidly be computed in an online context using only conditional statistics on the learned dataset. For any value
of the control parameter w given in Cw, this predictive statistical surrogate model yields the statistics of the random
observations, such as mean values, variances, probability density functions, confidence domains, etc.

3. Algorithmic complements and convergence analysis

In this section we present additional developments that allow us to specify the convergence criteria and the algo-
rithms to implement the proposed methodology for building the predictive statistical surrogate model. All notations,
assumptions, developments introduced in Section 2 are used without repeating them and without systematically refer-
ring to this section.

3.1. Illustration of a parameterized nonlinear uncertain computational model

As an illustration of the dynamic computational model whose time discretization yields Eq. (2.1), we consider the
w-parametric, nonlinear, uncertain, computational model

[M(w,U)] Ÿ(t; w) + g
(
Y(t,w), Ẏ(t; w); w,U

)
= F(t; w) , t ∈ ]t0,T ] , (3.1)
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arising from a large finite element semi-discretization of a boundary value problem governing the dynamic equilibrium
of a mechanical structure, where Y(t; w) = y(t; w,U,F) represents the ny displacement dofs at time t, Ẏ(t; w) =
dY(t; w)/dt is the velocity vector and Ÿ(t; w) = d2Y(t; w)/dt2 the acceleration vector at time t. The initial conditions
associated with Eq. (3.1) are written as

Y(t0) = y0 , Ẏ(t0) = y1 ,

where y0 and y1 are two given vectors in Rny . For all w ∈ Cw and u ∈ Cu, [M(w,u)] is the mass matrix belonging to
M+ny

, g (y(t; w,u), dy(t; w,u)/dt; w,u) is the Rny vector representing the internal nonlinear forces at time t, and F(· ; w)
is a given Rny -valued stochastic process modeling the external forces.

3.2. Construction of the ROB represented by matrix [V] and convergence criterion

Let εcomp be the given relative tolerance (for instance 10−5) to perform the data compression of [y] ∈ Mny,Nd defined
by Eq. (2.4). Let nmax

q be a given integer whose value is of the order of the rank of matrix [y] ∈ Mny,Nd with Nd = nd×nsnps

and such that nmax
q < ny. The singular value decomposition (SVD) of [y], restricted to the only calculation of the nmax

q
largest singular values σ1 ≥ . . . ,≥ σnmax

q
(ordered by descending values), allows for computing the nmax

q associated left-
singular vectors, represented by the matrix [Vmax] ∈ Mny,nmax

q
such that [Vmax]T [Vmax] = [Inmax

q
]. If (σnmax

q
/σ1)2 > εcomp,

then nmax
q has been chosen too small and the computation has to be restarted with a larger value of nmax

q . The optimal
value of nq ≤ nmax

q is then calculated such that

errcomp(nq; Nd) ≤ εcomp < errcomp(nq + 1; Nd) with errcomp(nq; Nd) = 1 −
∑nq
α=1 σ

2
α∑nmax

q
α=1 σ

2
α

. (3.2)

Finally, matrix [V] ∈ Mny,nq is made up of the first nq columns of [Vmax] and is such that [V]T [V] = [Inq ]. For this fixed
value of nq, matrix [V] ∈ Mny,nq is such that

[V] = arg min
[v]∈Mny ,nq ,[v]T [v]=[Inq ]

∥ [y] − [v] [v]T [y] ∥2F ,

in which ∥ · ∥F is the Frobenius norm.

3.3. Reduced representation of X using PCA and convergence criterion

The reduced representation X(ν) defined by Eq. (2.8) of the Rnx -valued random variable X = (Q,Oid,W) is con-
structed as follows, using the training datasetDtrain(x) = {x1, . . . , xnd }. Beforehand the PCA computation, the training
datasetDtrain(x) is scaled using the formulation presented in [81] (at the end of the numerical procedure, a back scaling
must be carried out). Let x j

c = x j
d − x be the realization of X with x = (1/nd)

∑nd
j=1 x j

d ∈ Rnx . Let [xc] = [x1
c . . . xnd

c ]
be the matrix in Mnx,nd . Since nx ≫ nd, the economy size SVD (thin SVD [111] of matrix [xc] is carried out, which
allows for obtaining the left-singular vectors represented by the matrix [Φc] ∈ Mnx,nd such that [Φc]T [Φc] = [Ind ]. The
corresponding singular values S 1 ≥ . . . ≥ S nd−1 > S nd = 0 are in decreasing order. For ν ≤ nd − 1, the reduced
representation X(ν) of X is given by Eq. (2.8), in which [Φ] ∈ Mnx,ν is made up of the first ν columns of matrix [Φc]
and where [λ] is the diagonal matrix in M+ν such that [λ]αα = λα = S 2

α/(nd − 1). Note that the positive real numbers
λ1 ≥ . . . ≥ λν > 0 are the ν largest positive eigenvalues of the estimated covariance matrix [ĈX] of the covariance
matrix [CX] of X, performed using the training dataset. Therefore, [λ] and [Φ] depend on nd. As it can be seen, these
eigenvalues and the associated eigenvectors are computed without computing [ĈX] because nx can be very large. It
should also be noted that, if nd = nx and if ν < nd − 1, then the sequence of random variables X(ν) is mean-square con-
vergent to X when ν goes to nd − 1, and if ν = nd − 1 = nx − 1, then Eq. (2.8) is not an approximation and corresponds
to a change of basis. In general, for the high-dimension problems and small training datasets, nx is large and nd ≪ nx.
Therefore, Eq. (2.8) corresponds to a reduced representation, which is an approximation whose accuracy depends on
ν and nd and which is classically controlled as follows. For nd ≪ nx and for ν < nd − 1, parameter ν is chosen such
that

errPCA(ν ; nd) =
E{∥X − X(ν) ∥2}

E{∥X ∥2}
≃ 1 −

∑ν
α=1 λα

tr[ĈX]
≤ εPCA , ν < nd − 1 , (3.3)
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in which εPCA is a given positive real number sufficiently small, where ∥ · ∥ is the usual Euclidean norm, and where E
is the mathematical expectation operator. The trace, tr[ĈX], of matrix [ĈX] is calculated by estimating the diagonal
entries of [ĈX] using the training dataset. Note that ν 7→ errPCA(ν ; nd) defined by Eq. (3.3) gives the relative error as a
function of ν < nd − 1 for a fixed value of nd.

3.4. ”Projection” of the target on the model

We have to specify the meaning of Eq. (2.11) that we have defined as a ”projection” of the target dataset onto the
model in a context of incomplete data due to the partial observability. For all r ∈ {1, . . . ,Nr}, let ηr

targ ∈ Rno be the
linear least squares solution of the equation [Ao] ηr

targ = br with br = or
targ − oid ∈ Rno , which is the unique solution of

the optimization problem
ηr

targ = min
η ∈Rν
∥ [Ao] η − br ∥ . (3.4)

Since ν < no, the rank of matrix [Ao] ∈ Mno,ν is less than or equal to ν. There is always a unique left-pseudo inverse
[Ainv

o ] ∈ Mν,no such that on the one hand [Ainv
o ] [Ao] and [Ao] [Ainv

o ] are symmetric matrices and on the other hand such
that [Ao] [Ainv

o ] [Ao] = [Ao] and [Ao] [Ainv
o ] [Ao] = [Ao]. The left pseudo-inverse can be computed using the SVD of

[Ao] and then deducing [Ainv
o ] by inverting the non-zero singular values. If the rank of [Ao] is equal to ν, then all

the singular values are positive and [Ao]T [Ao] is invertible. In such a case the left-pseudo inverse can be written as
[Ainv

o ] = ([Ao]T [Ao])−1[Ao]T . For all η ∈ Rν, it is known that ∥ [Ao] η − br ∥ ≥ ∥ [Ao] ηr
targ − br∥ in which ηr

targ is given
by ηr

targ = [Ainv
o ] br. Therefore, the unique solution of the optimization problem defined by Eq. (3.4) is ηr

targ = [Ainv
o ] br,

(see Eq. (2.11)). The relative error in the ”projection” of the target dataset on the model can be quantified, for fixed
Nr, by the mapping,

ν 7→ errtarg(ν; Nr) =

∑Nr
r=1 ∥([Ino ] − [Ao] [Ainv

o ])(or
targ − oid)∥2∑Nr

r=1 ∥or
targ − oid∥

2
, (3.5)

in which [Ao] [Ainv
o ] is the orthogonal projector onto the range of [Ao] and consequently, where [Ino ]− [Ao] [Ainv

o ] is the
orthogonal projector onto the null space of [Ao]T .

3.5. Probabilistic learning constrained by the target dataset using a weak formulation of Fourier transform of prob-
ability measures

The construction of the learned dataset Dlearn(ηud) = {ηℓud, ℓ = 1, . . . ,Nud} of the Rν-valued random variable Hud

is carried out using the Kullback-Leibler divergence minimum principle (KLDMP) based on the prior probability
measure of H constructed with the training datasetDtrain(η) = {η j, j = 1, . . . , nd} and constrained by the target dataset
Dtarg(ηtarg) = {ηr

targ, r = 1, . . . ,Nr}. It should be noted that the constraints imposed for the KLDMP must be described
by statistical moments, i.e., taking the form of a mathematical expectation. In the present case, the constraints are
described by realizations that constitute the points of the target dataset. Therefore, to be able to impose the constraints
using realizations, we use the extension [89] of the constrained PLoM [85, 86, 87]. With this extension, the constraint,
which is defined by the realizations of the target dataset, is transformed into a constraint expressed in the form of a
mathematical expectation, which is necessary to implement the KLDMP. This transformation of constraint formula-
tion can be done thanks to the use of a weak formulation of the Fourier transform of the probability measures. We
refer the reader to [89] for details of this method and the associated algorithms. However, we give below a very brief
summary of the essential points of this method in order to facilitate the reading.

Prior probability measure of H. Let PH(dη) = pH(η) dη be the prior probability measure on Rν of H, whose prob-
ability density function η 7→ pH(η) : Rν → R+ is estimated by using the Gaussian kernel-density estimation (KDE)
with the training dataset Dtrain(η) = {η j, j = 1, . . . , nd}, involving the modification proposed in [20] of the classical
formulation [112] for which sSB = (4/(nd(2 + ν)))1/(ν+4) is the Silverman bandwidth,

pH(η) =
1
nd

nd∑
j=1

1
(
√

2π ŝ)ν
exp

(
−

1
2ŝ2 ∥

ŝ
sSB

η j − η ∥2
)
, ∀η ∈ Rν , (3.6)
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in which ŝ = sSB

(
s2

SB + (nd − 1)/nd
)−1/2. With such a modification, the normalization of H is preserved for any value

of nd, that is to say,

E{H} =
∫

Rν
η pH(η) dη =

1
2ŝ2 η̂ = 0ν , (3.7)

E{H ⊗H} =
∫

Rν
(η ⊗ η) pH(η) dη = ŝ2 [Iν] +

ŝ2

s2
SB

(nd − 1)
nd

[ĈH] = [Iν] , (3.8)

in which η̂ ∈ Rν and [ĈH] ∈ M+ν are the estimates of the mean value and the covariance matrix of H, performed with
Dtrain(η). Theorem 3.1 in [84] proves that, for all η fixed in Rν, Eq. (3.6) is a consistent estimation of the sequence
{pH}nd for nd → +∞.

Representation of the constraint defined by the target dataset Dtarg(ηtarg). In [89], it is proven that the constraint
defined by the target datasetDtarg(ηtarg) = {ηr

targ, r = 1, . . . ,Nr} can be written as

E{hc(H)} = bc on RNr , (3.9)

in which hc(η) = (hc
1(η), . . . , hc

Nr
(η)) and bc = (bc

1, . . . , b
c
Nr

) are the vectors in RNr , which are written, for r ∈ {1, . . . ,Nr}

and η ∈ Rν, as

hc
r(η) = exp

(
−

1
νs2 ∥ η − η

r
targ ∥

2
)
, bc

r =
1
Nr

Nr∑
r ′=1

exp
(
−

1
νs2 ∥ η

r ′
targ − η

r
targ ∥

2
)
, (3.10)

in which s =
(
4 (Nr(2 + ν))−1)1/(ν+4)

.

Updated estimate using the Kullback-Leibler divergence minimum principle under the constraint. The updated prob-
ability density function η 7→ pHud (η) on Rν of the Rν-valued random variable Hud = (Hud,1, . . . , Hud,ν) is estimated by
using the KLDMP [113, 114, 115, 85, 87]. The pdf pHud on Rν, which satisfies the constraint defined by Eq. (3.9) and
which is closest to pH defined by Eq. (3.6), is the solution of the following optimization problem,

pHud = arg min
p∈Cad,p

∫
Rν

p(η) log
(

p(η)
pH(η)

)
dη , (3.11)

in which the admissible set Cad,p is defined by

Cad,p =

{
η 7→ p(η) : Rν → R+ ,

∫
Rν

p(η) dη = 1 ,
∫

Rν
hc(η) p(η) dη = bc

}
. (3.12)

It has been proven that there exists a unique solution to the optimization problem defined by Eqs. (3.11) and (3.12),
which is reformulated using Lagrange multipliers to account for the constraints in the admissible set (refer to Theorem
3 in [89] for the construction of the probability measure of Hud and the proof of its existence and uniqueness). To
generate the learned dataset Dlearn(ηud) = {ηℓud, ℓ = 1, . . . ,Nud}, an MCMC algorithm is required [116, 117, 118]. In
this work, the MCMC generator used is a nonlinear Itô stochastic differential equation (ISDE) associated with the
nonlinear stochastic dissipative Hamiltonian dynamical system proposed in [119] and based on [120]. This MCMC
generator allows for the removal of the transient part to rapidly reach the stationary response associated with the
invariant measure, for which the measure pHud (η) dη is the marginal measure (refer to Theorem 4 in [89] for the
mathematical analysis of this MCMC generator). The ISDE is solved using the Störmer-Verlet algorithm, which
provides an efficient and accurate MCMC algorithm. This algorithm can be easily parallelized to significantly reduce
the elapsed time on a multicore computer. It should be noted that this MCMC generator can be considered as belonging
to the class of Hamiltonian Monte Carlo methods [121, 122], but it is distinct due to the presence of the dissipative
term. Finally, the algorithm presented in [89] can be readily extended to integrate the diffusion maps tool, which
forms the basis of the PLoM algorithm ([81, 84, 88]). It is this extended PLoM algorithm that will be used in the
application presented in Section 4.
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3.6. Predictive statistical surrogate model

Once the learned dataset Dlearn(oud,wud) = {(oℓud,wℓud) ∈ RNo × Rnw , ℓ = 1, . . . ,Nud}, which are realizations of the
updated RNo × Rnw -valued random variable (Oud,Wud), has been constructed (see Eq. (2.12)), the predictive statistical
surrogate model defined by Eq. (2.13) can be implemented as explained at the end of Section 2.

(i) In order to prepare the developments that will be used to present the results of the application, we are going to
reshape the updated RNo -random variable Oud into a Mnobs,nfreq -valued random variable [Oud] such that No = nobs × nfreq,
which makes it possible to explain the dependence according to a parameter ω ∈ B = {ω1, . . . , ωnfreq } ⊂ R+ (for
instance, ω will be the frequency and nobs will be the number of considered frequency-dependent observations). The
corresponding learned realizations for [Oud] are {[oℓud] ∈ Mnobs,nfreq , ℓ = 1, . . . ,Nud}. Since the statistical conditioning
of Oud given Wud = w has been written as Oud(w), the statistical conditioning of [Oud] given Wud = w is written as
[Oud(w)].

(ii) In addition, the results will be presented for a given setWref = {w1
ref, . . . ,w

nref
ref } of values of the control parameter,

whose nref points are defined as the ”reference dataset for validation” for which the reference responses are known what
allows for validating the predictions. For this reason, this subset is chosen such thatWref ⊂ Wtarg butWref 1Wtrain.
Consequently, for any w0 given in Wref, there is an index r0 ∈ {1, . . . ,Nr} such that or0

targ ∈ Rno corresponds to the
”measurement” performed on the dynamical system for the given value w0 = wr0

targ of the control parameter w.

(iii) For the given value w0 of the control parameter, and for every observation defined by a fixed value of the observa-
tion index i in {1, . . . , nobs} and by a fixed value of the frequency index k in {1, . . . , nfreq}, the statistical surrogate model
consists (see Eq. (2.13)) in estimating the probability density function pZ(w0)(z; w0) of the real-valued random variable
Z(w0) defined as the conditional random variable Zud = [Oud]ik given w0,

pZ(w0)(z; w0) = pZud,Wud (z,w0)/pWud (w0) , pWud (w0) =
∫

R
pZud,Wud (z,w0) dz , (3.13)

in which pZud,Wud is the joint probability density function of Zud and Wud. It can then deduce the estimate of the
confidence interval [z−(w0), z+(w0)] of Z(w0) such that

z−(w0) :
∫ z−(w0)

−∞

pZ(w0)(z; w0) dz = 1 − pc , z+(w0) :
∫ z+(w0)

−∞

pZ(w0)(z; w0) dz = pc , (3.14)

in which pc is a given probability level (for instance pc = 0.98). The formulas to numerically estimate the confidence
interval using the Nud learned realizations zℓud = [oℓud]ik and wℓud for ℓ = 1, . . . ,Nud, are given in Appendix A.1.

3.7. Mean-square convergence criterion of the surrogate-model prediction with respect to nd,Nr, and Nud

In order to analyze the convergence of the surrogate-model prediction with respect to the number nd of points in
training dataset Dtrain(y, oid,w), the number Nr of points in target dataset Dtarg(oid) = {o1

targ, . . . , o
Nr
targ}, and the number

Nud = nd × nMC of points in learned dataset Dlearn(oud,wud), we introduce a mean-square convergence criterion of the
surrogate-model prediction. For each given value w0 of the control parameter and for each observation io ∈ {1, . . . ,No},
for which the corresponding component of the target is i ∈ {1, . . . , no} and which corresponds to the ”measurement”
superscript r = ro associated with w0, this criterion is defined as the square of a coefficient of variation,

cv(w0, io)2 =

∑nfreq
k=1

(
E
{

[Oud(w0)]2
iok

}
− (E{[Oud(w0)]iok})2

)∑nfreq
k=1

(
E{[Oud(w0)]iok}

)2 , (3.15)

in which [Oud(w0)]iok is the conditional random variable given Wud = w0 such that,

E{[Oud(w0)]αiok} =

∫
R+

oαk p[Oud(w0)]iok (ok; w0, io) dok , α = 1, 2 , (3.16)
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in which the conditional pdf (with support R+) of [Oud(w0)]iok is written as

p[Oud(w0)]iok (ok; w0, io) = p[Oud(w0)]iok ,Wud (ok,w0; io)/pWud (w0) , ∀ok ∈ R+ . (3.17)

The formulas, which allow for numerically estimating the conditional pdf p[Oud(w0)]iok (· ; w0, io) and E{[Oud(w0)]αiok}

using the Nud learned realizations [Oud(w0)]ℓiok and wℓud for ℓ = 1, . . . ,Nud, are given in Appendix A.2. For a fixed
value of nd, for given w0 and io, the convergence analysis, with respect to nd, Nr, and nMC is performed by studying
the values of cv(nd,Nr, nMC; w0, io).

3.8. Distance of the statistical-surrogate-model predictions to the target
In order to evaluate the quality of the predictions carried out by the statistical surrogate model, we introduce the

mean-square distance between the predictions and the target for each given value w0 of the control parameter and for
each observation io ∈ {1, . . . ,No} for which there is a corresponding target i ∈ {1, . . . , no} (as in Section 3.7). We thus
define the real-valued random variable Rio by

Rio = (
nfreq∑
k=1

([Oud]iok − [or0
targ]ik)2)/(

nfreq∑
k=1

[or0
targ]2

ik) , (3.18)

in which [or0
targ] is the reshaping of or0

targ ∈ Rno . Note that Rio is not the statistical conditioning for given Wud = w0 (we
have just introduced the translation [or0

targ]ik that depends on w0). The Nud learned realizations of Rio are computed by

rℓio =

∑nfreq
k=1 ([oℓud]iok − [or0

targ]ik)2∑nfreq
k=1 [or0

targ]2
ik

, ℓ ∈ {1, . . . ,Nud} . (3.19)

We now introduce the statistical conditioning Rio (w0) of Rio given Wud = w0 whose conditional probability density
function r 7→ pRio (w0)(r; w0) on R with support R+ is written as

pRio (w0)(r; w0) = pRio ,Wud (r,w0)/pWud (w0) , (3.20)

in which pRio ,Wud is the joint probability density function of Rio and Wud. For given w0 and io, the mean-square distance
between the prediction and the target is defined by dms(w0, io) = (E{Rio (w0)})1/2, and consequently,

dms(w0, io)2 =

∫
R+

r pRi(w0)(r; w0) dr . (3.21)

The formulas, which allow for numerically estimating the pdf pRi(w0)(· ; w0) and the mean-square distance dms(w0, io)
using the Nud learned realizations rℓi and wℓud for ℓ = 1, . . . ,Nud, are given in Appendix A.3.

4. Application: nonlinear stochastic dynamics of a three-dimensional MEMS device

In this application, we partially reuse the nonlinear dynamical system presented in [66], but with different pa-
rameter values and the introduction of a vector-valued control parameter and a vector-valued random uncontrolled
parameter. This system is particularly interesting because its response is highly sensitive to the nonlinearities consid-
ered, and there is a significant transfer of energy in the stochastic response outside the frequency band of the external
excitation applied to the system. A 3D view of the system is shown in Figure 1-mid. We provide all the dimensions
and mechanical constants values to allow for reproducibility of this application. Additionally, some values have been
modified (if the system definition were based on [66], it would result in numerous back-and-forth references and make
the text less readable).

4.1. Nonlinear dynamical system
(i) Definition of the nonlinear dynamical system. This 3D MEMS device considered is constituted of a mobile part
made up of a square frame with a vertical beam attached to it. Its suspended part is constituted of a parallelepipedic
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Figure 1: Left figure: 2D view of the MEMS device with lengths in 10−6 m (from [66]); observation node of coordinates (14, 6, 0) microns:
marked by symbol x; observation node of coordinates (7, 17, 0) microns: marked by symbol o. Mid figure: 3D view of the finite element mesh
of the nonlinear computational stochastic dynamical model (from [66]) for which the reference frame is the Cartesian coordinate system Ox1 x2 x3
attached to the mobile part, with origin O located at the bottom left corner of the device, axis Ox1 horizontal and oriented positively from left to
right, axis Ox2 vertical and oriented positively from bottom to top, axis Ox3 perpendicular to the plane Ox1 x2 oriented positively from bottom to
top. Right figure: illustration of the linear response (dashed line) and of the nonlinear response (solid line) in the frequency domain and in dB of the
nominal dynamical system for a given observation and for a given value of the control parameter.

solid with two attached vertical beams. The suspended part is attached to the mobile part by a 3D suspension made of
20 springs. The geometry is described in a Cartesian coordinate system Ox1x2x3 (reference frame) that is attached to
its mobile part and is defined in caption of Figure 1. The external width of the square frame is 30×10−6 m, its external
height is 31 × 10−6 m, and its depth is 4 × 10−6 m. The other dimensions are given in microns in Figure 1-left. The
stiffnesses of the springs and suspension depend on the axis along which they act: ks1 = 4 N/m (along Ox1), ks2 =

6 N/m (along Ox2), and ks3 = 1.5 N/m (along Ox3). The suspended and mobile parts are made of a homogeneous,
orthotropic, linear elastic material whose nominal mechanical properties in the aforementioned reference frame are
those of a standard (100) silicon wafer [123]. In the Voigt notation, its nominal orthotropic elasticity matrix is [Csym

elas ] ∈
M+6 for which the Young moduli are E11 = E22 = 169 × 109 N/m2 and E33 = 130 × 109 N/m2; the Poisson ratios are
ν23 = 0.36, ν31 = 0.28, and ν12 = 0.064; the shear moduli are G23 = G31 = 79.6×109 N/m2 and G12 = 50.9×109 N/m2.
The nominal mass density of the silicon material is 2 330 Kg/m3. A nonlinear elastic material is inserted between the
aforementioned beams. Its constitutive equation corresponds to a cubic, elastic, restoring force with elastic constant
kb whose nominal value is kb = 2 × 1012 N/m. A zero x1-, x2-, and x3-displacement boundary conditions with respect
to the reference frame Ox1x2x3 are prescribed at the base of the mobile part of the device. In the reference frame, the
following time-dependent, square integrable, and real-valued x1-acceleration is applied to the base,

Γ(t) = Γ0 {sin(t(ωc + ∆ωc/2)) − sin(t(ωc − ∆ωc/2))}/(π t) , ∀t ∈ [t0,T ] ,

where Γ0 is the amplitude whose nominal value is Γ0 = 120 m/s2, whereωc = 2 π×13×106 rad/s is the central angular
frequency, and where ∆ωc = 2 π×10×106 rad/s is the angular frequency bandwidth. The energy of the excitation sig-
nal is mainly concentrated in the frequency band [−ωe,−ωmin]∪[ωmin, ωe], whereωmin = ωc−∆ωc/2 = 2π×8×106 rad/s
and ωe = ωc + ∆ωc/2 = 2π × 18 × 106 rad/s. At time t0, the device is at rest (its displacement and velocity fields
are zero). In all analyses, the time-interval of analysis is [t0,T ] with t0 = −2.7778 × 10−5 s and T = 4.6403 × 10−5 s.
For this value of T , the device is returned to its zero equilibrium with a small relative error. If the dynamical system
was linear, the energy of the response signal would be concentrated in the same frequency band [ωmin, ωe] as that
of the energy of the excitation signal. Due to the nonlinearity however, part of the energy of the excitation signal
is transferred outside its frequency band and consequently, the frequency band of the response is not [ωmin, ωe] but
[0, ωmax] in which ωmax has been identified as ωmax = 2π × 72 × 106 rad/s (see figure 1-right. The time discretization
is performed with a sampling time-step ∆t = π/ωmax = 6.9444 × 10−9 s. This yields ntime = 10 682 time points in
the time-interval [t0,T ]. For computing the Fourier transform of the observations (x1-acceleration at observed points)
from the time-discretized responses, the sampling frequency step is set to ∆ω = 2π × 13 481 rad/s, yielding also
nfreq = 10 682 frequency points in the frequency band of analysis [−ωmax, ωmax]. The results will be presented in the
frequency domain for the frequency band Ba = [0, ωa], where ωa = 2 π × 70 × 106 rad/s.
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(ii) Control parameter w. There are two control parameters and consequently, w = (w1,w2) ∈ Cw ⊂ Rnw with nw = 2
and where the admissible set of w is Cw = [0.5 , 1] × [0.5 , 0.9]. Component w1 allows for controlling the amplitude
Γ0 of the x1-acceleration applied to the base, such that Γ0 = w1 Γ0. Component w2 allows for controlling the elastic
constant kb of the nonlinear elastic material, such that kb = w2 kb.

(iii) Uncontrolled random parameter U. As we have explained in Section 2, the level of statistical fluctuations of
U makes it possible to control the ”diameter” of the generated family of computational models. We choose this un-
controlled random parameter U as the components of the random elasticity matrix [Celas] with values in M+6 whose
mean value is [Csym

elas ] ∈ M+6 and whose level of statistical fluctuations is controlled by a hyperparameter δtrain that will
be fixed to 0.2. This value has been identified as large enough to generate a training dataset with sufficiently large
statistical fluctuations to correctly update the probability measure of Hud under the constraint of the target dataset.
The mean model is orthotropic and we could used a random orthotropic model as presented in [124]. Nevertheless,
for the reasons given above, it is better adapted to use for the statistical fluctuations an anisotropic model, the one
introduced in [125] yielding [Celas] = [Lsym

elas ]T [G] [Lsym
elas ] in which [Csym

elas ] = [Lsym
elas ]T [Lsym

elas ] and where the probability
measure, the hyperparameter δtrain, and the random generator of random matrix [G] with values in M+6 is given Page
103 of [126], and is such that E{[G]} = [I6]. This random generator allows for calculating nd independent realizations
{u j, j = 1, . . . nd} of U.

(iv) Observation O(w) and identification observation Oid(w). The observation and the identification observation are
relative to the x1-acceleration in the frequency domain of nobs = 744 observed nodes of the finite element mesh (see
Paragraph (v) below) distributed across various locations of the MEMS device, in particular on the boundaries of the
vertical beams of the suspended and mobile parts.

(iv-1) Observation O(w). The frequency sampling is nobs
freq = 5 193 frequency points ωobs

k = ω1 + (k − 1)∆ω for k ∈
{1, . . . , nobs

freq} and with ω1 = 2π×13 481 rad/s and ∆ω = 2π×13 481 rad/s. We defined the matrix-valued observation
[O(w)] with values in Mnobs,nobs

freq
such that, for m ∈ {1, . . . , nobs} and k ∈ {1, . . . , nobs

freq}, [O(w)]mk = log((ωobs
k )2 |Ŷim (ωobs

k )|)

with Ŷ(ωobs
k ) =

∫ T
t0

exp(−iωobs
k t) Y(t) dt. In this formula, im is the dof number corresponding to the x1-displacement

of the m-th observed node. Observation O(w), which is obtained by reshaping [O(w)], is with values in RNo with
No = nobs × nobs

freq = 3 863 592 and is used for presenting the predictions obtained with the statistical surrogate model.
Nevertheless, in order to keep the number of figures within a reasonable limit, two observations are selected among
all 744 possible ones. These observations are relative to two observed nodes in the suspended part, the first one
having coordinates (14, 6, 0) microns, located at the down left corner of the elastic beam of the suspended part and the
second one having coordinates (7, 17, 0) microns, located at the down left corner of the massive suspended part (see
Figure 1-left). These two observations are the Rnobs

freq -valued random variable denoted by O1
obs(w) and O2

obs(w).
(iv-2) Identification observation Oid(w). There are nid

freq = 519 frequency points ωid
k = ω1 + (k − 1) δωid for

k ∈ {1, . . . , nid
freq} and with δωid = 2π×134 810 rad/s (there are 10 times less frequency points). We defined the matrix-

valued identification observation [Oid(w)] with values in Mnobs,nid
freq

such that, for m ∈ {1, . . . , nobs} and k ∈ {1, . . . , nid
freq},

[Oid(w)]mk = log((ωid
k )2 |Ŷim (ωid

k )|) with Ŷ(ωid
k ) =

∫ T
t0

exp(−iωid
k t) Y(t) dt. Identification observation Oid(w), which is

obtained by reshaping [Oid(w)], is with values in Rno with no = nobs × nid
freq = 386 136 and is used to construct the

learned dataset.

4.2. Computational model
The finite element mesh is shown in Figure 1-mid. There are 7 328 eight-nodes solid elements, 10 675 nodes,

and ny = 32 025 dofs. There are 205 of these nodes, which belong to the base of the mobile part of the device: at
each of these nodes, all displacement dofs are constrained to zero in the moving reference frame Ox1x2x3, due to
the boundary conditions. Hence, there are 615 zero Dirichlet conditions. The governing equation for the relative
displacement vector, Y(t; w), is of the type of Eq. (3.1) and written as

[M] Ÿ(t; w) + [D] Ẏ(t; w) + [K(U)] Y(t; w) + fNL(Y(t; w); w2) = f(t; w1) , t ∈ ]t0,T ] , (4.1)

in which the external force f is deterministic and depends on the control parameter w1 via the amplitude Γ0 = w1 Γ0
of the imposed acceleration. The internal nonlinear elastic force fNL, which are generated by the nonlinear elastic
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material inserted between the elastic beams, depends on the control parameter w2 via the elastic constant kb = w2 kb.
The stiffness matrix [K(U)] of the suspended and mobile parts depends on the uncontrolled random parameter U
that is the reshaping of the random elasticity matrix [Celas] of the linear elastic silicon. The mass matrix [M] and
the damping matrix [D] is independent of w and U. Damping matrix [D] is constructed using the global damping
model described in Appendix A of [66], which is applied to the nominal model and for which the damping rate is
ξd = 0.02. The nominal computational model is given by Eq. (4.1) in which U is replaced by the deterministic vector
u corresponding to the reshaping of the nominal elasticity matrix [Csym

elas ].

4.3. Target dataset and reference dataset for validation

The setWtarg = {w1
targ, . . . ,w

Nr
targ} of the considered values of the control parameters for generating the target dataset

Dtarg(oid) = {o1
targ, . . . , o

Nr
targ} defined in Section 2.2, results from an experimental plan of points chosen on a Cartesian

grid of Nr points in the admissible set Cw defined in Section 4.1(ii). For each value of Nr, the nodes of this 2D-
grid is approximatively uniform and lightly modified in order to contain four points wref ∈ Cw ⊂ Rnw defined in the
reference datasetWref = {w1

ref = (0.6, 0.6),w2
ref = (0.6, 0.8),w3

ref = (0.9, 0.6),w4
ref = (0.9, 0.8)} of the reference control

parameters. The considered values of Nr are 4, 16, 30, 63, 104, and 208. It should be noted that it is normal to choose
the setWref ⊂ Wtarg because the reference responses that are used to validate the predictions made with the statistical
surrogate model must correspond to values of the control parameter for which the response ”measurements” were
made. For each fixed value of Nr, target datasetDtarg(oid) is generated using the methodology presented in Section 2.2
and the deterministic nominal computational model defined by Eq. (3.20) in which the nominal value U = u has been
replaced by another value U = uref corresponding to a modification of the elasticy constants in elasticity matrix [Csym

elas ].
For the validation, the reference dataset is then defined byDref(o) =

{
{Oi

obs(w1
ref), . . . ,O

i
obs(w4

ref)}, i = 1, 2
}

,

4.4. Constructing the training dataset

The prior probability model of the control parameter w is the Rnw -valued random variable W for which its prob-
ability measure is uniform on the admissible set Cw defined in Section 4.1(ii). Consequently, for given nd, the set
Wtarg = {w1, . . .wnd } is made up of nd realizations drawn from this uniform distribution on Cw. The considered values
of nd are 100, 200, and 300. For each fixed value of nd, the training dataset Dtrain(y, oid,w) is generated using the
computational model defined by Eq. (3.20) and the methodology presented in Section 2.

4.5. Reduced representation of Y, training datasetDtrain(x), and reduced representation of X
(i) SVD-based data compression for computing [V]. The reduced representation of {Y(t; w), t ∈ J ,w ∈ Cw},

defined in Section 2.5(i), is constructed with the (t,w)-independent ROB in Rny represented by matrix [V] ∈ Mny,nq

that is computed as explained in Section 3.2. The computation of [V] is carried out with nsnps = ntime = 10 682 and
nmax

q = 20. For nd ∈ {100, 200, 300}, the value of Nd = nd × nsnps are 1 068 200, 2 136 400, and 3 204 600, respectively,
and Figure 2-left displays the graph of function nq 7→ errcomp(nq; Nd) defined by Eq. (3.2). The three curves are almost
superimposed. Using the criterion defined by Eq. (3.2) with errcomp = 10−5 yields nq = 11 that is independent of the
three considered values of nd. This small value of nq shows the efficiency of the POD method for reducing data.

(ii) Constructing training dataset Dtrain(x) and PCA-based reduced representation of X. The training dataset
Dtrain(x) is then constructed using Section 2.5(ii) and for j ∈ {1, . . . , nd}, its points x j ∈ Rnx are defined by Eq. (2.6)
with nx = 10 682 × 12 + 386 136 + 2 = 514 322 that is, in this case, independent of nd. The reduced representation
of X using PCA is performed as explained in Section 3.3. Note that, for this application, nx is independent of Nd,
but the points of Dtrain(x) depend on nd, and consequently, for a fixed value of the tolerance εPCA, dimension ν is
nd-dependent. For nd ∈ {100, 200, 300}, Figure 2-right displays the graph of function ν 7→ errPCA(ν ; nd) defined by
Eq. (3.3). Choosing εPCA = 0.01 yields for ν the values 44, 57, and 62, respectively. It should be noted that the chosen
value of εPCA = 10−2 might appear to large. In fact, calculations were made with smaller values (up to 10−6) and
showed that, for this application, there was no significant impact on the predictions made by the statistical surrogate
model. This choice makes it possible to reduce the computational costs.
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Figure 2: Left figure: for nd ∈ {100, 200, 300} yielding Nd ∈ {1 068 200, 2 136 400, 3 204 600}, graph of function n 7→ errcomp(n; Nd) (the three
curves are almost superimposed). Right figure: for nd = 100 (thin line), 200 (mid thickness line), 300 (thick line), graph of function ν 7→
errPCA(ν ; nd).

4.6. Convergence analysis of the ”projection” of the target on the model

(i) For nd = 300, εPCA = 10−2, and Nr = 208, Figure 3-left shows the graph of function ν 7→ errtarg(ν ; Nr) defined
by Eq. (3.5) for which ν ∈ {1, . . . , 299}, and which allows for analyzing the convergence of the ”projection” of the
target on the model. The dimension ν of the reduced representation of X is constructed with the PCA of X and the
truncation error is given by the function ν 7→ errPCA(ν ; nd) defined by Eq. (3.3) (see Figure 2-right). It can be seen
that for ν = 62 the PCA error is errPCA(62 ; 300) = 0.00997 and the corresponding value of the projection error of
the target on the model is errtarg(62 ; 208) = 0.1126. It should be noted that, for ν = 62, this projection error of
the target on the model is small enough not to significantly impact the updating of the learned probability measure
of Hud obtained by the probabilistic learning under the constraint defined by the projected target. Note also that for
this case (nd = 300), the asymptotic value of the error, obtained for ν = 299 is errtarg(299 ; 208) = 0.094. Since
there is a partial observability (744 components of the 32 025 components of Y(· ; w) are only used to construct the
identification observation), which induces incomplete data. This level, 0.094, of the projection error of the target
could be reduced in considerably increasing the number nd of points in the training dataset, that would not be coherent
with the framework of the proposed methodology for which a small training dataset is assumed (small value of nd).

(ii) In addition, for εPCA fixed to the value 10−2 and for Nr = 208, Figure 3-right displays the graph of function
nd 7→ errtarg(ν(nd) ; Nr) for nd ∈ {100, 200, 300} whose corresponding values of ν(nd) are {44, 57, 62}. It can be seen
that for these fixed values of Nr and εPCA, the projection error stays sufficiently small.

Figure 3: For nd = 300, εPCA = 10−6, and Nr = 208, graph of function ν 7→ errtarg(ν ; Nr) (left figure). For εPCA = 10−2 and Nr = 208, graph of
function nd 7→ errtarg(ν(nd) ; Nr) with nd ∈ {100, 200, 300} and ν(nd) ∈ {44, 57, 62} (right figure).
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4.7. Construction of the learned datasetDlearn(ηud) using PLoM constrained by the target dataset

The methodology presented in Sections 2.5(v) and 3.5 is used for constructing the learned dataset Dlearn(ηud). In
addition the PLoM method is used, i.e. the MCMC generator, which is based on an Itô equation derived from a
dissipative Hamiltonian formulation, is projected on the diffusion maps basis (see the methodology in [81, 84] and the
last version of the used algorithm in [88]). Let εopt be the parameter of the kernel used for constructing the transition
matrix defined in Section 5.2 of [84] and let mopt = ν + 1 be the dimension of the diffusion maps basis (see [88]).
Then for εPCA = 10−2, for nd = 100, 200, 300, yielding ν = 44, 57, 62 respectively, we have εopt = 106.5, 150.5, 192.5
respectively, and the distributions of the eigenvalues α 7→ Λα of the transition matrix are shown in Figure 4-left.
As explained in Section 3.5, the optimization problem defined by Eqs. (3.11) and (3.12) is solve with the algorithm
presented in Sections 6.3 to 6.6 of [89]. For Nr = 208, for the three considered values of nd, and for nMC = 10 000,
Figure 4-right shows the graphs of the error function i 7→ err(i) defined by Eq. (6.36) of [89], which allows for
controlling the convergence of the iteration algorithm as a function of the iteration number i in order to estimate the
optimal value of the vector-valued Lagrange multiplier. The results show in Figure 5 are obtained for εPCA = 10−2,

Figure 4: For εPCA = 10−2 and nd = 100 (thin line), 200 (medium line), and 300 (thick line); graph of function α 7→ Λα (left figure). For Nr = 208
and for nMC = 10 000, graph of function i 7→ err(i) (right figure).

nd = 300, nMC = 10 000, Nud = nd × nMC = 3 000 000 learned realizations, and Nr = 208. Figure 5-left shows the
cloud of the learned realizations {(ηℓud,1, η

ℓ
ud,2, η

ℓ
ud,3), ℓ = 1, . . . ,Nud} (red points) and also the cloud of the nd = 300

points {(η j
1, η

j
2, η

j
3), j = 1, . . . , nd} (blue points) of the training dataset. It can be seen that the constraints defined by the

target dataset has a strong effect; the prior probability measure of H is strongly modified by the constraints yielding
the updated probability measure of Hud. As an illustration, Figure 5-right displays the pdf η3 7→ pH3 (η3) estimated
with the nd points of the training set and the pdf η3 7→ pHud,3 (η3) estimated with the Nud points of the learned dataset
(solid line). It can be seen the strong effect of the constraints defined by the target set.

4.8. Construction of the large learned datasetDlearn(oud,wud) and convergence analysis

The construction of the large learned dataset Dlearn(oud,wud) defined by Eq. (2.12) is carried out by using Sec-
tions 2.5(vi) and 3.6.

The convergence analysis with respect to Nr is carried out using the coefficient of variation cv(w j
targ, i; Nr) defined

by Eq. (3.15), for the points of the reference dataset Dref(oud) = {{Oi
ud,obs(w1

ref), . . . ,O
i
ud,obs(w4

ref)}, i = 1, 2} defined in
Section 4.3. For nd = 300, εPCA = 10−2, and for nMC = 10 000, Figure 6-left for observation i = 1 and Figure 6-right
for observation i = 2 display the graph of function Nr 7→ cv(w j

ref, i; Nr) for the four values j = 1, 2, 3, 4 of the reference
control parameters. In Figure 6, it can be seen that the coefficient of variation is decreasing with respect to Nr when
Nr ≥ 60 for observation 1 and Nr ≥ 100 for observation 2. Fluctuations in the convergence for the small values of Nr

can be observed. This is due to the fact that the coefficient of variation is sensitive to the points chosen to define the
target dataset. Nevertheless, such a sensitivity is lost when Nr increases because the distribution of points in the target
dataset tends to become more homogeneous. Clearly, if the distribution of points is homogeneous for a given value of
Nr, then it would also be homogeneous for a large value of Nr.
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Figure 5: Learned dataset for εPCA = 10−2, nd = 300, nMC = 10 000, Nud = 3 000 000, and Nr = 208. Left figure: cloud of the learned realizations
{(ηℓud,1, η

ℓ
ud,2, η

ℓ
ud,3), ℓ = 1, . . . ,Nud} (red points) and cloud of the nd = 300 points {(η j

1, η
j
2, η

j
3), j = 1, . . . , nd} (blue points) of the training dataset.

Right figure: pdf η3 7→ pH3 (η3) estimated with the training set (dashed line) and pdf η3 7→ pHud,3 (η3) estimated with the learned dataset (solid line).

Figure 6: For nd = 300, εPCA = 10−2, and nMC = 10 000, convergence analysis with respect to Nr: graph of function Nr 7→ cv(w j
ref, i; Nr) for

observations O1
ud,obs(w

j
ref) (left figure) and O2

ud,obs(w
j
ref) (right figure), for the four values j = 1, 2, 3, 4 of the reference control parameters.

Similarly, for Nr = 208, the convergence analysis with respect to nd ∈ {100, 200, 300} for εPCA = 10−2 and
nMC = 10 000 is carried out using the coefficient of variation cv(w j

ref, i; nd). Figure 7-left for observation i = 1 and
Figure 7-right for observation i = 2 display the graph of function nd 7→ cv(w j

ref, i; nd) for the four values j = 1, 2, 3, 4
of the reference control parameters. Figure 7 shows that, for nd ≥ 100, the coefficient of variation is decreasing with
respect to nd (except for the first point w1

ref) for observation 1 while is decreasing for observation 2 for j equal to 2
and 4. It is clear that there is no reason for the convergence with respect to nd to be monotonous for nd ≥ 1. Since
εPCA = 10−2 is fixed for all values of nd, the reduced dimension ν varies according to nd.

4.9. Distance between the surrogate-model prediction and the target
For nd = 300, εPCA = 10−2, and nMC = 10 000, we have estimated the square dms(w j

ref, i; Nr)2 of the distance defined
by Eq. (3.21) between the surrogate-model prediction and the target, for the two observations {Oi

ud,obs(w
j
ref), i = 1, 2}

and for the four values {w j
ref, j = 1, 2, 3, 4} of the reference control parameters. Figure 8-left for observation 1 and

Figure 8-right for observation 2 displays the set of the values dms(w j
ref, i; Nr)2 for Nr ∈ {4, 16, 30, 63, 104, 208}. These

figures show that, for Nr = 208, the values belong to the interval [0.012 , 0.075] for observation 1 and to the interval
[0.023 , 0.12] for obseravtion 2. These figures quantify the quality of the predictive statistical surrogate model and it
can be seen that the prediction is good enough. For εPCA = 10−2, nd = 300, nMC = 10 000, Nud = 3 000 000, and
Nr = 208, the graph of the conditional pdf r 7→ pRi(w j

ref)
(r; w j

ref), defined Eq. (3.20), of the random variable Ri given

Wud = w j
ref, for the two observations {Oi

ud,obs(w
j
ref), i = 1, 2} and for the four values {w j

ref, j = 1, 2, 3, 4} of the reference
control parameters, is displayed in Figure 9-left for observation 1 (with a bimodal pdf for j = 3) and in Figure 9-right
for observation 2 (with a multimodal pdf for j = 4).
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Figure 7: For Nr = 208, for εPCA = 10−2, and for nMC = 10 000, convergence analysis with respect to nd: graph of function nd 7→ cv(w j
ref, i; nd)

for observations O1
ud,obs(w

j
ref) (left figure) and O2

ud,obs(w
j
ref) (right figure), for the four values j = 1, 2, 3, 4 of the reference control parameters.

Figure 8: For nd = 300, εPCA = 10−2, nMC = 10 000, and for Nr ∈ {4, 16, 30, 63, 104, 208}, set of the values dms(w
j
ref, i; Nr)2 of the square of the

distance between the surrogate-model prediction and the target for observations O1
ud,obs(w

j
ref) (left figure) and O2

ud,obs(w
j
ref) (right figure), for the

four values j = 1, 2, 3, 4 of the reference control parameters.

4.10. Prediction of the statistical surrogate model
The prediction of the statistical surrogate model is carried out by using Section 3.6(iii) with εPCA = 10−2, nd = 300,

nMC = 10 000, Nud = 3 000 000, and Nr = 208. For these values of the main parameters of the algorithms, the
projection error of the target dataset on the model stays sufficiently small and is converged with respect to ν (see
Section 4.6), the convergence is reasonnably reached with respect to nd and Nr (see Section 4.8), and the quality of the
predictive surrogate model is good enough (see Section 4.9). The prediction of the statistical surrogate model consists
in estimating the conditional confidence regions for the two observations {Oi

ud,obs(w
j
ref), i = 1, 2} and for the four values

{w j
ref, j = 1, 2, 3, 4} of the reference control parameters. Taking into account the definition of these two observations

given in Section 4.1(iv-1), we introduce the frequency dependent function ω 7→ dB1
j (ω) and ω 7→ dB2

j (ω) such that
dBi

j(ωk) = {Oi
ud,obs(w

j
ref)}k for k = 1, . . . , nobs

freq. For each observation i ∈ {1, 2} and for each value w j
ref with j ∈ {1, 2, 3, 4}

of the reference control parameter, the conditional confidence region is estimated with a probability level pc = 0.98.
Figures 10 and 11 display, for observations 1 and 2 respectively, the conditional confidence region of f 7→ dBi

j(2πf)
and also the deterministic functions for the training and for the target corresponding to w = w j

ref. These figures show
the the prediction is good. In particular, it can be seen in Figures 10-(c) and (d) and in Figures 11-(c) and -(d. The
effects of the learning under the constraints defined by the target dataset are very visible: the target line is inside the
conditional confidence region whereas the training line is outside this region.

5. Conclusion

We have presented a novel methodology that addresses the challenging problem of constructing predictive sta-
tistical surrogate models for parameterized uncertain nonlinear computational models. These difficulties arise from
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Figure 9: For εPCA = 10−2, nd = 300, nMC = 10 000, Nud = 3 000 000, and Nr = 208, graph of the conditional pdf r 7→ p
Ri(w

j
ref)

(r; w j
ref) for

observation O1
ud,obs(w

j
ref) (left figure) and for observation O2

ud,obs(w
j
ref) (right figure), for the four values {w j

ref, j = 1, 2, 3, 4} of the reference control
parameters.

(a) Control parameter w = w1
ref = (0.6, 0.6) (b) Control parameter w = w2

ref = (0.6, 0.8)

(c) Control parameter w = w3
ref = (0.9, 0.6) (d) Control parameter w = w4

ref = (0.9, 0.8)

Figure 10: Observation 1: conditional confidence region of f 7→ dB1
j (2πf) for W = w j

ref (yellow region with orange edges), training (blue dashed

line) and target (red solid thick line) corresponding to w = w j
ref.

the chosen framework, which corresponds to real-world situations involving large stochastic computational models
of complex systems encountered in engineering sciences. The main challenges are primarily attributed to the high
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(a) Control parameter w = w1
ref = (0.6, 0.6) (b) Control parameter w = w2

ref = (0.6, 0.8)

(c) Control parameter w = w3
ref = (0.9, 0.6) (d) Control parameter w = w4

ref = (0.9, 0.8)

Figure 11: Observation 2: conditional confidence region of f 7→ dB2
j (2πf) for W = w j

ref (yellow region with orange edges), training (blue dashed

line) and target (red solid thick line) corresponding to w = w j
ref.

dimensionality of the considered under-observed nonlinear uncertain computational model, its partial observability
leading to incomplete data in the target dataset of the identification observations, the non-injectivity of the nonlinear
mapping used to compute the identification observations from the stochastic responses of the computational model,
and, above all, the limited availability of a small training dataset. The proposed approach is purely probabilistic. The
surrogate model is not directly represented by an algebraic model but indirectly represented by a probability measure,
with its generator facilitating the construction of a large learned dataset. We have provided an effective description of
the statistical surrogate model, which allows for rapid computation of output statistics in an online context using only
conditional statistics that explore the learned dataset. For any given value of the vector-valued control parameter, this
statistical surrogate model provides the statistics of any observation of the stochastic computational model, including
mean values, variances, probability density functions, and confidence intervals. The presented developments have
been illustrated through a representative application that highlight all the aforementioned difficulties. The obtained
results contribute to the validation of the proposed approach.
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Appendix A. Formulas for conditional statistics

In this Appendix, we give the explicit formulas for computing the conditional statistics related to the predic-
tive statistical surrogate model defined in Section 3.6(iii), related to the mean-square convergence criterion of the
surrogate-model prediction defined in Section 3.7, and related to the distance of the statistical-surrogate-model pre-
dictions to the target defined in Section 3.8. We reuse the notations of these three sections, but for simplifying
the writing subscript ”ud” is removed. Consequently, for k fixed in {1, . . . , nfreq}, the Nud learned realizations wℓud of
Wud, for ℓ = 1, . . . ,Nud, are simply rewritten as wℓ for W with ℓ = 1, . . . ,N. Considering W = (W1, . . . ,Wnw ),
w = (w1, . . . ,wnw ), and w0 = (w0,1, . . . ,w0,nw ), for j = 1, . . . , nw, let w j =

1
N

∑N
ℓ=1 wℓj and let σ j =

1
N−1

∑N
ℓ=1(wℓj −w j)

2

(if σ j = 0, then σ j is set to 1). Let W̃ j = (W j −w j)/σ j whose realizations are w̃ℓj = (wℓj −w j)/σ j for ℓ = 1, . . . ,N, and
let w̃0, j = (w0, j − w j)/σ j.

Appendix A.1. Formulas for conditional statistics of the predictive statistical surrogate model
We reuse the notations of Section 3.6(iii), but simplifying the writing, for k fixed in {1, . . . , nfreq}, the Nud learned

realizations zℓud = [oℓud]ik of Zud for ℓ = 1, . . . ,Nud, are simply rewritten as zℓ for Z. The associated conditional random
variable Zud(w0) given W = w0 is also simply rewritten as Z(w0). Let z = 1

N

∑N
ℓ=1 zℓ and let σ = 1

N−1

∑N
ℓ=1(zℓ − z)2 (if

σ = 0, then σ is set to 1). Let Z̃ = (Z − z)/σ whose realizations are z̃ℓ = (zℓ − z)/σ for ℓ = 1, . . . ,N. The conditional
probability density function z 7→ pZ |W(z |w0) of Z given W = w0 is given by

pZ |W(z |w0) =
1

σ
√

2π s

∑N
ℓ=1 exp

(
− 1

2s2

(
(z̃ − z̃ℓ)2 + ∥w̃0 − w̃ℓ∥2

))∑N
ℓ=1 exp

(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
) , z̃ = (z − z)/σ ,

in which s = (4/(N(2 + n)))1/(n+4) with n = nfreq + nw. Let z∗ 7→ FZ |W(z∗ |w0) on R be the conditional cumulative
distribution function of Z(w0) given W = w0, which is defined by

FZ |W(z∗ |w0) = Proba{Z ≤ z∗ |w0} =

∫ z∗

−∞

pZ |W(z |w0) dz .

We then have,

FZ |W(z∗ |w0) =

∑N
ℓ=1 F̃ℓ(z̃∗) exp

(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
)∑N

ℓ=1 exp
(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
) , z̃∗ = (z∗ − z)/σ ,

in which F̃ℓ(z̃∗) is written as

F̃ℓ(z̃∗) =
1
2
+

1
2

erf

(
1

s
√

2
(z̃∗ − z̃ℓ)

)
,

with erf(y) = (2/
√
π)

∫ y
0 e−t2

dt. For each k fixed in {1, . . . , nfreq}, the conditional upper bound z+(w0) = Proba{Z ≤
z+(w0) |w0} and the conditional lower bound z−(w0) = Proba{Z ≤ z−(w0) |w0} of the confidence interval [z−(w0) , z+(w0)]
of the random variable Z(w0) given W = w0, for a given probability level pc ∈]0, 1[ (for instance, pc = 0.98) are com-
puted by solving the equations,

z+(w0) = argz{FZ |W(z |w0) = pc} , z−(w0) = argz{FZ |W(z |w0) = 1 − pc} .

Appendix A.2. Formulas for mean-square convergence criterion of the surrogate-model prediction
We reuse the notations of Section 3.7 but again as in Appendix Appendix A.1, for simplifying the writing we

define Q = (Q1, . . . ,Qnfreq ) with Qk = [Oud]iok for k = 1, . . . , nfreq. Therefore, the N learned realizations of Q are
denoted by qℓ for ℓ = 1, . . . ,N. The associated conditional random variable of Q given W = w0 is written as Q(w0).
Let q = 1

N

∑N
ℓ=1 qℓ and let σq,k =

1
N−1

∑N
ℓ=1(qℓk −q

k
)2 (if σq,k = 0, then σq,k is set to 1). Let Q̃k = (Qk −q

k
)/σq,k whose

realizations are q̃ℓk = (qℓk − q
k
)/σq,k for ℓ = 1, . . . ,N and k = 1, . . . , nfreq. The square of the coefficient of variation

cv(w0, io)2 defined by Eq. (3.15) is written as

cv(w0, io)2 =

∑nfreq
k=1

(
E{(Qk)2 |W = w0} − (E{Qk |W = w0})2

)∑nfreq
k=1 (E{Qk |W = w0})2

,
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in which

E{Qk |W = w0} = q
k
+ σq,k E{Q̃k | W̃ = w̃0}

E{(Qk)2 |W = w0} = (q
k
)2 + 2 q

k
σq,k E{Q̃k | W̃ = w̃0} + (σq,k)2 E{(Q̃k)2 | W̃ = w̃0} ,

and where for α = 1 or 2,

E{(Q̃k)α | W̃ = w̃0} = γα +

∑N
ℓ=1(q̃ℓk)α exp

(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
)∑N

ℓ=1 exp
(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
) ,

in which s = (4/(N(2 + n)))1/(n+4) with n = nfreq + nw and where γ1 = 0 and γ2 = s2.

Appendix A.3. Formulas for the distance of the statistical-surrogate-model predictions to the target

We reuse the notations of Section 3.8, removing subscript io when no confusion is possible. Let r = 1
N

∑N
ℓ=1 rℓio

and let σ = 1
N−1

∑N
ℓ=1(rℓio−r)2 (if σ = 0, then σ is set to 1). Let R̃io = (Rio−r)/σwhose realizations are r̃ℓio = (rℓio−r)/σ

for ℓ = 1, . . . ,N. The conditional probability density function r 7→ pRio |W(r |w0) of Rio given W = w0 is written as

pRio |W(r |w0) =
1

σ
√

2π s

∑N
ℓ=1 exp

(
− 1

2s2

(
(r̃ − r̃ℓio )2 + ∥w̃0 − w̃ℓ∥2

))∑N
ℓ=1 exp

(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
) , r̃ = (r − r)/σ ,

in which s = (4/(N(2+ n)))1/(n+4) with n = 1+ nw. The mean-square distance dms(w0, io) = (E{Rio (w0)})1/2 defined by
Eq. (3.21) is such that

dms(w0, io)2 =

∑N
ℓ=1 r̃ℓio exp

(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
)∑N

ℓ=1 exp
(
− 1

2s2 ∥w̃0 − w̃ℓ∥2
) .
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[74] A. C. Öztireli, M. Alexa, M. Gross, Spectral sampling of manifolds, ACM Transactions on Graphics (TOG) 29 (6) (2010) 1–8.
doi:10.1145/1882261.1866190.

[75] Y. Marzouk, T. Moselhy, M. Parno, A. Spantini, Sampling via measure transport: An introduction, Handbook of uncertainty quantification
(2016) 1–41doi:10.1007/978-3-319-11259-6 23-1.

[76] M. D. Parno, Y. M. Marzouk, Transport map accelerated markov chain Monte Carlo, SIAM/ASA Journal on Uncertainty Quantification

28



6 (2) (2018) 645–682. doi:10.1137/17M1134640.
[77] G. Perrin, C. Soize, N. Ouhbi, Data-driven kernel representations for sampling with an unknown block dependence structure under correla-

tion constraints, Computational Statistics & Data Analysis 119 (2018) 139–154. doi:10.1016/j.csda.2017.10.005.
[78] Y. Kevrekidis, Manifold learning for parameter reduction, Bulletin of the American Physical Society 65 (2020).

doi:10.1016/j.jcp.2019.04.015.
[79] S. Pan, K. Duraisamy, Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability, SIAM

Journal on Applied Dynamical Systems 19 (1) (2020) 480–509. doi:10.1137/19M1267246.
[80] I. Kalogeris, V. Papadopoulos, Diffusion maps-based surrogate modeling: An alternative machine learning approach, International Journal

for Numerical Methods in Engineering 121 (4) (2020) 602–620. doi:10.1002/nme.6236.
[81] C. Soize, R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics 321 (2016)

242–258. doi:10.1016/j.jcp.2016.05.044.
[82] C. Soize, R. Ghanem, C. Safta, X. Huan, Z. P. Vane, J. C. Oefelein, G. Lacaze, H. N. Najm, Q. Tang, X. Chen, Entropy-based closure for

probabilistic learning on manifolds, Journal of Computational Physics 388 (2019) 528–533. doi:10.1016/j.jcp.2018.12.029.
[83] C. Soize, R. Ghanem, C. Desceliers, Sampling of Bayesian posteriors with a non-Gaussian probabilistic learning on manifolds from a small

dataset, Statistics and Computing 30 (5) (2020) 1433–1457. doi:10.1007/s11222-020-09954-6.
[84] C. Soize, R. Ghanem, Probabilistic learning on manifolds, Foundations of Data Science 2 (3) (2020) 279–307. doi:10.3934/fods.2020013.
[85] C. Soize, R. Ghanem, Physics-constrained non-Gaussian probabilistic learning on manifolds, International Journal for Numerical Methods

in Engineering 121 (1) (2020) 110–145. doi:10.1002/nme.6202.
[86] C. Soize, R. Ghanem, Probabilistic learning on manifolds constrained by nonlinear partial differential equations for small datasets, Computer

Methods in Applied Mechanics and Engineering 380 (2021) 113777. doi:10.1016/j.cma.2021.113777.
[87] C. Soize, Probabilistic learning inference of boundary value problem with uncertainties based on Kullback-Leibler divergence under implicit

constraints, Computer Methods in Applied Mechanics and Engineering 395 (2022) 115078. doi:10.1016/j.cma.2022.115078.
[88] C. Soize, R. Ghanem, Probabilistic learning on manifolds (PLoM) with partition, International Journal for Numerical Methods in Engineer-

ing 123 (1) (2022) 268–290. doi:10.1002/nme.6856.
[89] C. Soize, Probabilistic learning constrained by realizations using a weak formulation of fourier transform of probability measures, Compu-

tational Statistics (2022) 1–30doi:10.1007/s00180-022-01300-w.
[90] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 63 (3) (2001) 425–464. doi:10.1111/1467-9868.00294.
[91] Y. M. Marzouk, H. N. Najm, L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of

Computational Physics 224 (2) (2007) 560–586. doi:10.1016/j.jcp.2006.10.010.
[92] J. E. Gentle, Computational statistics, Springer, New York, 2009. doi:10.1007/978-0-387-98144-4.
[93] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numerica 19 (2010) 451–559. doi:10.1017/S0962492910000061.
[94] H. Owhadi, C. Scovel, T. Sullivan, On the brittleness of Bayesian inference, SIAM Review 57 (4) (2015) 566–582. doi:10.1137/130938633.
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