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Abstract

Neural networks as a machine learning technique are increasingly deployed in various domains.
Despite their performances and their continuous improvement, the deployment of neural networks
in safety-critical systems, in particular for autonomous mobility, remains restricted. This is mainly
due to the lack of (formal) specifications and verification methods and tools that allow for getting
sufficient confidence in the behavior of the neural network-based functions. Recent years have seen
neural network verification getting more attention; and many verification methods were proposed,
yet they are far from being applicable to real-world models. The main challenge of these methods
is related to their computational complexity and the size of neural networks pertaining to complex
functions. As a consequence, applying abstraction methods for neural network verification purposes
is seen as a promising mean to cope with such issues. In general terms, the aim of abstraction is
to build an abstract model by omitting some irrelevant details or some details that are not highly
impacting w.r.t some considered features. Thus, the verification is made easier while preserving, to
some extent, the relevant behavior for the properties to be examined on the original model. In this
paper, we review both the abstraction techniques for activation functions and model size reduction
approaches, with a particular focus on the latter. Throughout the paper, we briefly present the
main idea of each approach, and then discuss their respective advantages and limitations. Finally,
we provide some insights and guidelines to improve the discussed methods.

1 Introduction

Neural Network (NN) is one of the most popular machine learning techniques [16, 25]. The use of such
an approach has shown fast progress during the last decade, giving rise to a noticeable enhancement
of the technique, as witnessed by its successful achievements in various domains [30]. Nowadays,
applications of NNs can be encountered in a wide range of domains, such as in financial transactions,
trading, forecasting and fraud detection [30, 34]. In recent years, with the advances in terms of
computational performances, NNs have been widely adopted in image recognition and object detection
systems. Namely, they are increasingly investigated to be deployed for safety-critical applications, in
particular for the design of environment monitoring and decision making functions in autonomous
vehicles and trains [39, 50]. A software module of a safety-critical system needs to be certified before
its deployment. Thus, it is required to develop methods to verify safety specifications and certify such
NN-based software.

The earliest works that deal with the verification of NN models are based on the transformation of
the model at hand into a system of linear equations that can be solved by means of available verification
tools, namely SAT/SMT solvers [11, 21, 37] and MILP solvers [4, 8, 31, 46]. Although these methods
are theoretically sound1 and complete2, they are limited to small-size neural networks due to the
non-linearity of NN models. Indeed, the number of linear constraints grows exponentially with the
number of neurons for which the activation functions need to be linearized, which may give rise to a
state-space explosion problem. Therefore, verification methods based on over-approximation have been
proposed to help mitigate this problem while preserving the soundness but not the completeness [10,
27, 38, 52, 53, 54] (see [51] for more details). Among these techniques, abstraction methods try
to ease the verification problem by abstracting the activation function using linear bounds [11] or

1Whenever the method returns that the property holds, it indeed holds on the system.
2The verification method never returns ”Unknown”.
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abstract domains [14, 42, 43], or by reducing the size of the network to improve the scaliblity of NN
verification engines. In the latter case, a smaller and easier model to verify is generated from the
original network [12, 36]; thus, instead of applying the verification method directly on the original
model, the verification process can be enhanced by applying it on the reduced model.

Regarding the substantial interest in NN verification and the amount of existing methods for certi-
fying NNs, many surveys and reviews on NN verification methods have been proposed in the literature.
For instance, Leofante et al. [26] established three types of NN verification properties: equivalence,
invertibility and invariance. They also provided a review of NN verification techniques based on con-
straints solving. Liu et al. [29] classified the existing verification methods into three basic categories:
optimization, reachability and search-based verification techniques. Huang et al. [18] conducted a
review about deep NN safety and trustworthiness. For NN verification, the authors distinguished
between global and local properties. Regarding the guarantees of the verification technique, the sur-
vey classifies NN verification techniques into deterministic, approximative and statistical. According
to [49], verification methods can be classified as geometric-based methods, MILP, SAT/SMT and
optimization-based methods, even though MILP and SAT/SMT based verification methods can also
be considered as particular cases of optimization techniques. Recently, Urban et al. [51] discussed
the verification methods applied to machine learning. For NN verification, the authors proposed a
classification of the existing methods into complete or incomplete methods with respect to the output
of the verification process. Moreover, the review [51] summarizes formal verification approaches for
different machine learning techniques such as support vector machine and decision trees.

Among all the surveys and reviews discussed above, and to the best of our knowledge, no existing
work offers an overview on the abstraction methods for NN verification purposes. The aim of this work
is to present a review on the existing activation function abstraction and model reduction methods
in the literature for NN verification, and derive a critical discussion regarding these techniques. Con-
cretely, for each discussed approach we will sketch out the main idea and analyze its advantages along
with its drawbacks. For model reduction techniques, we will particularly highlight how each method
can affect the verification process, and we will discuss further research directions in terms of these
techniques. It is worth noticing that in this paper, we only consider NN abstraction methods that are
used for verification purposes, i.e., we do not include neural networks’ compression techniques such as
quantisation and edges pruning [17], since their goal is to build a compressed model to speed up the
run-time execution, while preserving the model’s accuracy but not necessarily its behavior.

The remainder of the paper is structured as follows: In Section 2, preliminary concepts and no-
tations pertaining to neural networks are introduced, the verification problem of NNs is stated and
an overview of the existing NN verification methods is provided. Section 3 reviews existing NN ab-
straction approaches, with a deeper focus on model reduction methods. Besides discussing the main
features of the evoked techniques, some pointers to possible enhancements of the discussed methods
will be provided. Finally, in Section 4 we recall the main findings through our review and outline some
challenges and perspectives regarding NN abstraction.

2 Background

2.1 Neural networks

A neural network is a sequence of interconnected layers {l1, l2, ..., ln}. When the number of layers is
important, the term Deep Neural Networks is used. In an NN, each layer holds one or many nodes,
called neurons. The first layer l1 is called the input layer, the last one ln is the output layer and the
remaining layers li : 2 ≤ i ≤ n− 1 are referred to as hidden layers. Likewise, the nodes in the hidden
layers are called hidden nodes. Each hidden node is associated with a bias and an activation function.
The nodes of a layer li ∈ {l2, l3, ..., ln} are connected to the nodes of the previous layer via weighted
edges. That is to say, a neuron of layer li receives data from layer li−1, calculates the weighted sum
of this data and adds a bias. An activation function is then applied and the result is forwarded to
interconnected neurons of the next layer li+1 (more details are given below). The propagation of data
from the input layer to the output layer, passing through multiple hidden layers, is called “feed-forward
propagation”. An NN is built upon a training phase that aims to recognize and encode the underlying
input-output relationship (correlation) of a data set. To evaluate an NN model, the accuracy, which
is the rate of correct predictions, is calculated. Figure 1 shows a neural network of 4 layers: an input
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Figure 1: Example of a neural network

layer of 3 inputs, two hidden layers of 4 and 3 nodes, respectively, and a 2-node output layer.
An NN model can indeed be seen as a function N : Dx → Dy, where Dx is the input domain

and Dy is the output domain of the model. For image classification for example, Dx is a matrix of
pixel values representing an image, Dy is the set of all possible classes of these images. As an NN
model consists of a sequence of n layers, N can be considered as a composition of a set of functions
{f1, f2, ..., fn} where fi, 1 ≤ i ≤ n is the corresponding function of layer li. This can be written,
formally, as: N (x) = fn(fn−1(...(f1(x))...), where f1 is the identity function. In the following, we give
some formal definitions pertaining to NN concepts and properties that will be used later on in this
paper.

Definition 2.1. For a layer li : i ∈ {1 . . . n}, we define the set of neurons of li by Si, with |Si| the
number of neurons in the layer li. And for a neuron nij ∈ Si, its value w.r.t to an input x is vij(x).
For simplicity, when x is not specific, we use vij instead of vij(x).

Let nij ∈ Si be a neuron of a hidden layer li, its value vij is calculated in two steps:

1. Affine transformation: calculates the sum of previous layer’s outputs modulated by the
weights assigned to the corresponding edges, plus the bias. This can be formulated as:

zij =

k=|Si−1|∑
k=1

wi−1
j,k × vi−1,k + bij

where wi−1
j,k is the weight of the edge connecting the nodes ni−1,k and nij , and bij is the bias of

the node nij . Note that zij is also called the pre-activation value of nij .

2. Activation function: the final value vij , also called the value after activation, is determined
by applying an activation function σ to zij , i.e. vij = σ(zij).

The two steps are summarized in equation (1). The obtained value vij is the output value of nij

which will be forwarded to the next layer li+1. Figure 2 illustrates these steps on an example.

vij = σ

k=|Si−1|∑
k=1

wi−1
j,k × vi−1,k + bij

 (1)

The calculation of the NN output y = N (x) for a given input x, is done by successively applying
these operations, layer by layer, from the input to the output layer.

Depending on the application, there exists several activation functions: Sigmoid, Tanh, Relu,
etc. [55]. Relu (for Rectified Linear Unit), as defined in equation (2), is a piece-wise linear function that
has linear behaviors in ]−∞, 0] and in [0,+∞[. The ReLU activation function is widely used in NN,
and due its simple form and its piece-wise linear behaviour, the majority of the existing neural network
verification and abstraction approaches consider models with this activation function [18, 21, 31].
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Figure 2: An example showing the connection between a neuron of li and li−1

Relu(x) = max(x, 0) =

{
x, if x ≥ 0

0, otherwise
(2)

Remark (Weights). In this paper, the weight of an edge connecting nik ∈ Si to a node ni+1,j ∈ Si+1

is written as wi
jk or w(nik, ni+1,j).

2.2 Verification of neural networks

Formal verification is the domain of proving or disproving that a system meets certain formal specifi-
cations and properties. A verification problem is defined as:

M |= P ? (3)

which is equivalent to answering the question: does the system model M satisfy the property P?
Depending on the verification technique, the system has to be modelled (e.g., state transition model)
and the specifications need to be expressed respecting some specific syntax (e.g., temporal logic). The
aim of a verification technique is to prove that P holds on M or generate a counterexample witnessing
the violation of P . Many verification techniques, such as model-checking, SAT/SMT, abstract inter-
pretation, and theorem proving have been broadly and successfully applied to verify software-intensive
systems [2, 6].

Accordingly, formal verification for NN can be defined as in formula (3), where M is the NN model
and P is the property to be checked, which is generally a mathematical formula constituted of a set
of constraints on the inputs and the outputs of the network.

According to Leofante et al. [26], for a given NN represented by its corresponding functionN : Dx → Dy,
the NN verification problem can be stated as follows:

• Define pre(x) and post(y) as a set of constraints on the input x (preconditions) and the output
y (postconditions), respectively. Here, pre(x) and post(y) are sorted first order logic formulas.

• For all x satisfying the preconditions pre(x), verify whether or notN (x) fulfills the postconditions
post(N (x)).

This can be formulated as follows:

∀x ∈ Dx, pre(x) =⇒ post(N (x)) (4)

Example 2.1. By taking Dx = R2 and Dy = R as the input and output domains of some given NN,
the verification problem defined by formula (4) can be instantiated as:{

pre(x) : x1 ∈ [l1, u1] ∧ x2 ∈ [l2, u2], with x = (x1 x2)
T

post(N (x)) : N (x) ≥ c

where li, ui, c ∈ R, and li ≤ ui. The verification problem of this example thus aims to check that for
all input x in the 2-dimensional interval defined in the precondition, the corresponding output N (x)
is lower-bounded by c as in the postcondition.
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Figure 3: An example of state-space explosion. For two Relu nodes, case splitting leads to four linear
subproblems.

Example 2.2. To verify the robustness property of a classification network, i.e., to check for a classi-
fication problem that the network assigns the same label (class) ci to all inputs within a small region
surrounding x0, the verification problem can be formulated using formula (4) as follows:

∃x0 ∈ Dx : N (x0) = ci

pre(x) : ∥x− x0∥p ≤ ϵ

post(N (x)) : N (x) = ci

where ∥.∥p is a given norm.

Verifying properties of NNs is increasingly receiving more attention and many approaches have
been proposed in recent years [18, 29]. The straightforward verification way consists of encoding the
NN behavior, as well as the property to be checked, as a system of linear equations, and then use an
appropriate engine to perform the verification process. For instance SAT/SMT and MILP encoding are
widely used to verify NNs properties [4, 9, 19, 21, 22, 31, 46]. These methods are also called complete
because they encode the exact behavior of the network. However, since most of the common activation
functions are nonlinear, this kind of verification methods does not scale in the case of large neural
networks, and suffers from state-space explosion. For example for the piece-wise linear activation
function Relu, each Relu node has to be split into two linear constraints, i.e.: if y = relu(x), then
y = 0 when x < 0 and y = x when x is positive. Therefore, solving a verification problem of a network
of n Relu nodes leads to solving 2n linear sub-problems as illustrated in Figure 3. To address this
issue, several approaches based on abstraction have been proposed. The next section provides more
details about this category of techniques.

3 Abstraction approaches for neural network verification

In order to overcome the drawbacks of complete verification methods for NN, some abstraction ap-
proaches are proposed. The main idea behind these approaches consists in generating an abstract
model from the original network ensuring that whenever the property P holds on the abstract model
N , it necessarily holds on the original one N , i.e.,:

N |= P =⇒ N |= P. (5)

However, these approaches may fail to provide any conclusion on the original network when the prop-
erty is violated on the abstract model. This is in fact due to spurious counterexamples. Namely, when
the property does not hold, a counterexample (CE) on the abstract model is generated, but due to the
over-approximation of the abstract model, this CE might not correspond to any real behavior in the
original model (i.e., spurious counterexample).

Concretely, the abstraction of NN can be performed in two different manners:
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Figure 4: The activation function Sigmoid (σ) and its abstraction in x ∈ [−2, 2]. The solid line
represents y = σ(x) and each small region (yellow rectangles) is an over-approximation of y [37].

• Activation function abstraction (AF abstraction): to ease the verification process, non-linear
activation functions of the NN are over-approximated by a set of linear constraints [14, 37, 42, 43].

• NN model reduction: abstracting the network model by merging some nodes in order to reduce
the size of the network, and thus improve the scalability of existing verification tools.

A detailed survey of these methods is given in Sections 3.1 and 3.2, respectively.

Remark (Refinement). Some works consider improving the incomplete verification methods by ruling
out as many spurious CE as possible by introducing a refinement phase. In other words, the verification
method refines the abstract model iteratively until we can prove either the property holds or the
generated CE exhibits a real behavior on the original model [11, 47, 48, 52, 53].

3.1 Abstraction of the activation function

The key challenge of NN verification is pertaining to the non-linearity of activation functions. AF
abstraction-based verification approaches are applied to handle this issue by over-approximating the
activation functions with linear constraints.

The earliest work dealing with NN verification problem was introduced by Pulina et al. [37]. In
this work, authors divided the Sigmoid function into small regions, then a linear over-approximation
is computed for each region, as shown in Figure 4.

With the same spirit, Ehlers [11] proposed a precise Relu-abstraction technique where Relu is
replaced by a system of linear constraints (see Figure 5) and hence the verification problem of NN is
reformulated as a linear programming (LP) problem that can be solved using classic LP solvers. The
approach in [11] was implemented in a tool called Planet and brings the LP toolkit GLPK into play
along with the Minisat solver for verification.

Gehr et al. [14] applied an abstract interpretation method [7] on NN for the first time. They
proposed a framework called AI2 (Abstract Interpretation for Artificial Intelligence) that soundly
over-approximates NN operations by means of zonotope abstract domain3. The approach can be
extended to support other abstract domains. AI2 can handle feedforward and convolution neural
networks (CNN) with Relu and max-pooling functions. The approach in [14] was extended by Singh
et al. [42] to support Sigmoid and Tanh activation functions. This is accomplished by means of
abstract transformers based on zonotopes for each function. As an example, the abstraction of Relu
is given in Figure 6.a.

Furthermore, Singh et al. [43] proposed a new method, called DeepPoly, based on Abstract In-
terpretation by introducing a new abstract domain. DeepPoly combines floating point polyhedra and
intervals. Each neuron is represented by its concrete and symbolic upper and lower bounds. Moreover,
Singh et al. [43] introduced abstract transformers for popular NN operations: affine transformation,
Relu, Sigmoid, Tanh and Max-pooling to propagate the inputs successively through the layers of
the network. For Relu, two different abstractions are proposed as shown in Figures 6.b et 6.c. The
approach supports both feedforward and convolution NN.

While the previous works consider only a single neuron, some others try to define sound approx-
imations of a set of neurons, jointly. Singh et al. [41] introduced a new method that provides an

3An abstract domain is a set of logical constraints that define a geometric shape. The most popular abstract domains
are: box (or Interval), zonotope and polyhedra. For example, a zonotope abstract domain [15] Z is defined by a set of
constraints zi, s.t: zi = ai +

∑m
j=1 bijϵj , where ϵj ∈ [li, ui] is an error term and ai, bij are constants.
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Figure 5: The abstraction of the Relu activation function proposed in [11]. The Relu (d = relu(c))
is represented by the black line and its over-approximation on the range c ∈ [l, u] by the filled area.

Figure 6: Relu activation function abstractions using different abstract domains

approximation of k Relu nodes (in the same layer) at a time in order to capture dependencies of the
Relu inputs. First, the k nodes are selected and then the convex relaxation of the group of nodes
is calculated. The framework has a parameter k which represents the number of Relu nodes to be
considered together. A more general framework, based on [41], was recently proposed by Müller et
al. [33]. The framework, called PRIMA (PRecIse Multi-neuron Abstraction), computes the convex
over-approximation of a set of k outputs of arbitrary activation function, including Relu, Sigmoid and
Tanh. The approach decomposes the n activations into overlapping groups of size k, then calculates
the convex approximation of the octahedral over-approximation for each group i. Finally, it takes the
union of all the obtained output constraints. These constraints combined with the encoding of the
whole NN are used for verification.

A technique based on symbolic propagation is proposed in [27] to enhance the precision of abstract
interpretation-based approaches. In this work, every neuron is associated with a symbolic formula
expressed using the activations of neurons in its previous layers. In [44], a combination of over-
approximation techniques with linear relaxation methods is proposed so as to gain more precision of
over-approximation techniques and the scalability of complete methods.

3.2 NN model reduction

The main objective of NN model reduction is to reduce the size of the NN model while guaranteeing
some behavioral relation: the desired property P holds on the original model N whenever it holds on
the reduced model N as defined in equation (5). Figure 7 provides an illustrative example of the main
idea behind model reduction applied on a small neural network.
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(a) An NN before abstraction (the
concrete NN model)

(b) The NN after model reduction (the
two hidden nodes are merged)

Figure 7: Model reduction of a small neural network

Such a behavioral relation is obtained by ensuring that N is an over-approximation of N (i.e. all
behaviors of N can be reproduced in N). Therefore, the reduction process must carefully select the set
of neurons to be merged (or removed), and determine how to calculate the weights of the new edges.

Prabhakar and Afzal [36] proposed a method based on Interval Neural Networks (INN) for output
range analysis. In this method, the nodes of the same layer are merged while replacing the weights of
their input edges by the interval hull of the incoming edges. In other words, the weights of incoming
edges are replaced by [min(Win),max(Win)], where Win are the values of the incoming weights to the
nodes to be merged. The weights of the outgoing edges from these nodes are replaced by the interval
hull multiplied by the number of merged nodes n: n× [min(Wout),max(Wout)].

For the verification part, Prabhakar and Afzal [36] adapted INN to MILP big-M encoding [4] and
used the Gurobi MILP solver for verification. The performance of this method is tested on the airborne
collision avoidance ACAS Xu benchmark [20, 21]. The authors claim that the abstraction enhances
the verification process. Namely, Gurobi was not able to verify a number of properties on the original
model (no return), while the same properties have been successfully checked when Gurobi was applied
on the abstract model.

In [45], Sotoudeh and Thakur, by introducing the notion of Abstract Neural Network (ANN),
provided a formalization of a general abstraction approach. In ANN, the weights are represented using
abstract domains. Accordingly, the approach proposed by Prabhakar and Afzal [36] can be considered
as a particular instantiation of this approach using the interval abstract domain. Notice that the
proposed approach supports a wide range of activation functions. Moreover, it can be instantiated using
other convex abstract domains and it is not restricted to intervals as used in INNs [36]. The approach
provides a generic formula to calculate the weight merging matrixW from the original weight matrixW
and the partitions P in and P out of two successive abstract layers li and li+1, respectively. A partition
Pi is a rearrangement of a set Si of neurons, i.e., if Si = {ni1, ni2, ni3}, a possible partition of Si would
be Pi = {{ni1, ni2}, {ni3}}, which means that ni1 and ni2 will be merged in the abstract network. W
is the convex combination (calculated by a function g) of the partitioning combination matrix of P in

and P out, denoted by C and D, respectively, and the weight matrix W , i.e., W = g(D,W,C). Next,
the abstract weight matrix, denoted by Wabs, is built by applying a convex abstract domain αA on
the obtained W : Wabs = αA(W ). The reduced model is obtained by applying the same procedure
to every layer, iteratively. Therefore, the obtained reduced model is an over-approximation for any
non-negative activation function that satisfies the Weakened Intermediate Value Property (WIVP).
Although some activation functions can have negative values and others are not continuous (thus not
WIVP), the authors of [45] claim that there is always a way to overcome these problems, as they
showed for Leaky Relu and the threshold activation functions.

In [1], Ashok et al. apply K-means clustering algorithms to partition each hidden layer li into
ki subgroups, such that ki ≤ |Si|, then replace each subgroup with its representative neuron. The
abstraction method, called DeepAbstract, has three parameters: the original network N , a finite set
of input-points X and a vector KL which contains the number of nodes on each abstract layer. For
each hidden layer li, the following steps are performed:

1. For every x ∈ X, calculate the value vij(x) of each neuron in Si,

2. Apply K-means to split each layer li into ki clusters. Let Cli denote the set of clusters of li,

3. For each cluster C ∈ Cli :

(a) Determine the representative neuron repC ,

8



(b) Calculate the corresponding outgoing weights of repC :

W
i

∗, repC =
∑

nij∈C

W i
∗, nij

(c) Replace all the neurons in C with repC .

Note that the representative neuron repC of a cluster C is the nearest neuron to the centroid of C,
thus; the incoming weights of repC remain the same as the corresponding neuron before abstraction.
All the other neurons from cluster C are omitted with their incoming edges.

In addition, Ashok et al. [1] provide a method to lift the verification results from the abstract model
to the original one using the DeepPoly verification Algorithm4. A set of experiments were conducted
to check the performance of DeepAbstract. Local robustness of some MNIST images was checked and
the authors claim that the verification time was reduced by 25% when DeepPoly is combined with
DeepAbstract.

Elboher et al. [12] proposed an abstraction approach based on merging neurons of the same category
(see hereafter) to build a smaller model so as to enhance the scalability of the existing verification tools.
Regarding the verification property, which has the form: P : ∀x ∈ pre(x) =⇒ y ≤ c, the aim of this
approach is to build a reduced model N (its corresponding function is N ), s.t ∀x ∈ Dx, N (x) ≥ N (x).
Therefore, N |= P whenever N |= P (i.e., N (x) ≤ c). First, each neuron is labelled according to the
sign of its outgoing weights. A neuron is split if it has both positive and negative outgoing weights.
Next, to guarantee that N is an over-approximation of N , the proposed method tries to increase the
output of the abstract model by classifying each neuron as I or D. The class I means the output
will increase by increasing the value of this neuron, while a neuron is marked as D when decreasing
its value leads to increasing the output’s value. Finally, the nodes of the same layer and the same
category can be merged by summing up the weights of their outgoing edges and taking the min value
of the the weights of their incoming edges if they are marked as D, or the max value for any I group
of nodes. Moreover, some heuristics are proposed in [12] to enhance the abstraction process. The
proposed method is applied on ACAS Xu networks while Marabou [22] is used as back-end verification
tool. A comparison study between the abstraction method combined with Marabou and the vanilla
version of Marabou was conducted, and the results showed that the abstraction method helps allows
Marabou to verify more properties in less execution time.

A novel approach based on bisimulation [23] is proposed by Prabhakar [35]. The generated ab-
stract neural network is equivalent, or bisimilar, to the original one. To guarantee the equivalence
between N and N , two neurons nij and nik to be merged must have the same activation func-
tion, the same bias value (bij = bik) and the same weights for each incoming edge respectively, i.e.,
∀n′ ∈ Si−1, w(n

′, nij) = w(n′, nik). Due to the strict conditions that, generally, do not hold in most of
real networks, Prabhakar [35] extends the NN bisimulation to a more feasible relaxed method, called
NN δ-bisimulation. Using NN δ-bisimulation (δ ∈ R+), two nodes nij and nik in Si can be merged if
the following conditions are satisfied:

1. nij and nik have the same activation function

2. |bij − bik| ≤ δ

3. ∀n′ ∈ Si−1, |w(n′, nij)− w(n′, nik)| ≤ δ

where δ ≥ 0. So the obtained network N is δ-bisimilar to network N .
Taking advantages of code refactoring [13], Shriver et al. [40] introduced the concept of refactoring

neural networks to restructure the initial model and preserve its accuracy to enhance further oper-
ations on it, for instance verification. Concretely, NN refactoring consists of two steps: architecture
transformation and distillation. The former applies some changes on the network’s architecture by
dropping or changing some layers and/or their types that are not supported by verification tools (e.g.
residual blocks and convolutional layers). The latter updates the model’s parameters: weights and
biases, while preserving the original model’s behavior, which is captured by its accuracy and test error
according to Shriver et al. [40]. A tool called R4V was developed from this approach. R4V was tested
on DAVE-2 [3] and DroNet [32] networks. The used verification tools are presented in Table 1. The

4Available at https://github.com/eth-sri/ERAN.

9

https://github.com/eth-sri/ERAN


Name (if exists) Pub.
Year

Authors Verification meth-
ods

Evaluation

R4V 2019 Shriver et al. Relupex[21],
ERAN[42],
Neurify[52],
Planet[11]

DAVE-2[3],
DroNet[32]

INN 2019 Prabhakar et al. MILP [31] ACAS Xu [20,
21]

ANN 2020 Soutoudeh et al. - -
DeepAbstract 2020 Ashok et al. ERAN MNIST[24]
- 2020 Elboher et al. Marabou[22] ACAS Xu
Bisimulation 2021 Prabhakar - -

Table 1: A list of NN model reduction methods used for verification. The underscore symbol ”−” is
used to denote that no information is provided in the corresponding original paper.

results showed that applying the verification tools on the refactored model improves their scalabil-
ity. For example, Planet [11] fails to check any property on DroNet within 24 hours. However, after
refactoring the network, Planet was able to verify three out of the ten properties.

The main features of the above discussed neural networks reduction techniques are summarized in
Table 1. The last two columns of the table contain verification methods and the data sets used during
the evaluation of the abstraction method. Verification methods are those used during the evaluation
of the abstraction in the original paper; notice that other methods can be used to verify the obtained
abstract model.

It is worth mentioning that another family of techniques based on merging neurons and removing
some edges without affecting the accuracy of the model exists in the literature. These techniques are
called NN compression and acceleration, and their objective is to build a smaller network with low
computational complexity, so that it can be embedded on devices with limited resources and used
in real-time applications, while keeping the accuracy as high as possible [5, 17, 28]. Although both
NN model reduction and NN compression strive to reduce the number of neurons, NN compression
techniques cannot be used for verification, since the generated models do not fulfil the abstraction
condition presented in formula (5). In other words, verifying a property P on the compressed network
obtained by any compression method does not imply that the property does hold in the original
network.

3.3 Discussion

This section discusses the aforementioned model reduction methods, while highlighting their limitations
and proposing some possible area of improvements. In order to fairly compare the efficiency of the
discussed approaches, we analyze them according to three main criteria (with respect to the available
information in the original papers): (i) the precision of the over-approximation, (ii) the minimal
number of neurons that can be obtained when the reduction method is applied until saturation, and
(iii) the efficiency regarding the verification time and the number of the verified properties on the
reduced model versus the original one.

The abstraction method based on INNs, proposed by Prabhakar et al. [36] seems to be very useful
when the problem of output range analysis is considered. An exhaustive application of this method
leads to merge all neurons of each hidden layer and replace them by one abstract neuron. The results
of their paper show that the precision depends highly on the number and the selection of the nodes
to be merged. The method needs some improvements to be more precise since no study has been
provided for neuron selection. In addition, operations on intervals may impact the precision of this
method. MILP encoding is proposed to solve the verification problem on INNs, and to the best of
our knowledge, no other verification method is proposed to verify INNs. Moreover, this method is
restricted to abstract NNs with non-negative activation functions [45]. Consequently, Sotoudeh et
al. [45] proposed some fundamentals to abstract any NNs with different activation functions using any
convex abstract domain and which is not limited to intervals. In [45], the authors provide an example
of abstraction based on octagons but no explanation was given of the meaning of using such abstract
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(a) The concrete model N after the
classification of nodes (I+ for

increasing positive node)

(b) The abstract model N

Figure 8: Counterexample of Elboher et al. [12] abstraction method

domain to represent the merged neurons. Moreover, the work would have been more relevant if it had
included an evaluation study to concretely show how the ANN can be extended to deal with other
abstract domains.

DeepAbstract, proposed by Ashok et al. [1], is parametrized by the number of clusters on each
layer; if there are few clusters, the model will be more abstract and less precise. In addition, this
method relies on the discrete input set X that is used during clustering phase and can only verify the
robustness of the model on points within this set X. Ashok et al. [1] claim that the verification time
was reduced by 25% when DeepAbstract is used along with DeepPoly, however, only 195 out of 200
images could be verified to be robust against 197/200 when DeepPoly is used without abstraction.

The abstraction-refinement proposed by Elboher et al. [12] boosted the Marabou verifier to check
more properties (58 out of 90 property versus 35/90). Moreover, the abstraction method reduces the
total query median runtime from 63671 seconds to 1045 seconds. As a consequence of the classification
of neurons, this method can abstract a layer to four neurons at most. This is one of the main drawbacks
of this method since only neurons belonging to the same category can be merged. It should also be
mentioned that only properties in the form: y ≤ c are considered, although authors claim that the
approach is adaptable to cope with various types of properties by adjusting the output layer. In
addition, this method cannot be applied if some neurons have negative values. For instance, this
method cannot be applied in hidden layers if the used activation function returns negative values
such as sigmoid and Leaky Relu. For the same reason, the first hidden layer cannot be abstracted
if the inputs are negative. An example demonstrating this case is given in Figure 8, where x is an
input, y is the output. The NN in Figure 8.b is generated using Elboher et al.’s method [12], which
is supposed to be an abstraction of the original model of Figure 8.a. Both N and N use the Relu
activation function on the hidden layer. Although for negative inputs the output of N is always zero:
∀x ≤ 0, y = 0, the output of N is always positive, for instance, for x = −1, y = 3, thus the condition
of the over-approximation ∀x ∈ Dx : N (x) ≥ N (x) does not hold.

The NN bisimulation method proposed in [35] guarantees the equivalence between abstract and
original models, thus offers an exact abstraction. However, the set of conditions are hard to satisfy
on real neural network, especially the condition on weights. On the other hand, the relaxed version,
NN-δ-bisimulation, looks more feasible but needs further improvements to keep trace of the verified
property on the abstract model and lift it to provide guarantees on the original network.

In [40], Shriver et al. propose an efficient approach with a dedicated tool, called R4V, to simplify
and compress NN models. The wide experimental study they performed with different verification
tools and data sets shows that R4V offers actual benefits to overcome the limitations of some NN
verification techniques. However, this method enables to verify properties on the refactored model
and does not propose a way to lift these guarantees to the original model. In other words, it does not
provide any guarantee of whether the property holds on the original model.

Regarding the challenges of neural network verification, developing a new general approach that
overcomes the issues related to the existing abstraction methods mentioned above is necessary. The
works [1, 35, 40] could be adopted and combined with some heuristics to select candidate neurons to be
merged. For instance, the δ-bisimulation method [35] can be used to select similar nodes by analysing
their incoming weights. Approach in [1] can be adapted using discretization of the input region, so
that the nodes that are close to each other (in the same cluster) are good candidates for abstraction.

If we focus on the abstract weights generated by the approach introduced in [12], we notice that
the outgoing weights are always the sum of the corresponding edges on the original model. However,
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depending on the category of neurons, the abstract incoming weights is either the min or the max .
On the other hand, the INN abstraction [36] and the ANN [45] techniques calculate the scaling of the
weight matrix by multiplying the obtained outgoing weights (using an abstract domain) by the number
of the merged neurons. By examining the results of these three approaches, one way to abstract a
neural network is to take the convex hull of the incoming weights and sum the outgoing weights of the
merged neurons. In particular, for the INN-based abstraction method [36], the sum of the outgoing
weights can be considered rather than the scaled convex hull of these weights; this should lead to a
tighter weighted-interval, hence more precise abstract model can be generated.

4 Conclusion

In this work, we discussed the problem of neural network verification and we presented different existing
techniques used to solve this problem. We showed that the abstraction of neural networks can be used
to help tackle the non-linearity and the complexity of the generated models. Abstraction of neural
networks can be applied in two levels: abstracting the activation function and reducing the network’s
size (model reduction). While the abstraction of activation functions aims to over-approximate the
non-linear activation functions with linear constraints, model reduction is used to reduce the number
of neurons of the network. Both categories are applied to improve the verification process as a whole.
The abstraction has to be sound, meaning that the desired behavior of the original model must be
maintained. In this paper we focused more on model reduction methods since, to the best of our
knowledge, no survey about neural networks reduction for verification purposes has been introduced.

Through highlighting advantages and limitations of each model reduction method, we proposed
some guidelines for a more general model reduction approach. As a perspective, we aim to develop
a new NN-reduction method that takes the advantage of the INN abstraction developed in [36] (no
constraints for merging neurons), and the precision of the approach proposed by Elboher et al. [12].
Evaluation of its performances will be conducted on several available benchmarks. (This last sentence
is so vague that it seems really useless. I think you should either remove it or give a bit more details
about what you plan to do.)
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