
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A review of abstraction methods towards verifying neural networks

FATEH BOUDARDARA and ABDERRAOUF BOUSSIF, Technological Research Institute Railenium, France

PIERRE-JEAN MEYER and MOHAMED GHAZEL, Univ Gustave Eiffel, COSYS-ESTAS, France

Neural networks as a machine learning technique are increasingly deployed in various domains. Despite their performances and
their continuous improvement, the deployment of neural networks in safety-critical systems, in particular for autonomous mobility,
remains restricted. This is mainly due to the lack of (formal) specifications and verification methods and tools that allow for getting
sufficient confidence in the behavior of the neural network-based functions. Recent years have seen neural network verification
getting more attention; and many verification methods were proposed, yet the practical applicability of these methods to real-world
neural network models remains limited. The main challenge of neural network verification methods is related to the computational
complexity and the large size of neural networks pertaining to complex functions. As a consequence, applying abstraction methods
for neural network verification purposes is seen as a promising mean to cope with such issues. The aim of abstraction is to build an
abstract model by omitting some irrelevant details or some details that are not highly impacting w.r.t some considered features. Thus,
the verification process is made faster and easier while preserving, to some extent, the relevant behavior regarding the properties to be
examined on the original model. In this paper, we review both the abstraction techniques for activation functions and model size
reduction approaches, with a particular focus on the latter. The review primarily discusses the application of abstraction techniques on
feed-forward neural networks, and explores the potential for applying abstraction to other types of neural networks. Throughout the
paper, we present the main idea of each approach, and then discuss their respective advantages and limitations in details. Finally, we
provide some insights and guidelines to improve the discussed methods.

CCS Concepts: • Theory of computation→ Abstraction; Logic and verification; • Computing methodologies→ Neural networks.

Additional Key Words and Phrases: Formal verification, neural network verification; Abstraction; Abstract interpretation;

ACM Reference Format:
Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, and Mohamed Ghazel. 2022. A review of abstraction methods towards
verifying neural networks. 1, 1 (September 2022), 18 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Neural Network (NN) is one of the most popular machine learning techniques [20, 36]. The use of such an approach
has shown fast progress during the last decade, giving rise to a noticeable enhancement of the technique, as witnessed
by its successful achievements in various domains [41]. Nowadays, applications of NNs can be encountered in a wide
range of domains, such as in financial transactions, trading, forecasting and fraud detection [41, 47]. In recent years,
with the advances in terms of computational performances, NNs have been widely adopted in image recognition and
object detection systems [47]. Namely, they are increasingly investigated to be deployed for safety-critical applications,
in particular for the design of environment monitoring and decision-making functions in autonomous vehicles and

Authors’ addresses: Fateh Boudardara, fateh.boudardara@railenium.eu; Abderraouf Boussif, abderraouf.boussif@railenium.eu, Technological Research
Institute Railenium, 180 rue Joseph-Louis Lagrange, Valenciennes, France, F-59308; Pierre-Jean Meyer, pierre-jean.meyer@univ-eiffel.fr; Mohamed
Ghazel, mohamed.ghazel@univ-eiffel.fr, Univ Gustave Eiffel, COSYS-ESTAS, 20 rue Élisée Reclus, F-59666, Villeneuve d’Ascq, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM Transactions on Embedded Computing Systems

Manuscript submitted to ACM Transactions on Embedded Computing Systems 1

HTTPS://ORCID.ORG/0000-0001-5771-7676
HTTPS://ORCID.ORG/0000-0002-2435-014X
HTTPS://ORCID.ORG/0000-0002-8167-3156
HTTPS://ORCID.ORG/0000-0002-1160-7997
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-5771-7676
https://orcid.org/0000-0002-2435-014X
https://orcid.org/0000-0002-8167-3156
https://orcid.org/0000-0002-1160-7997
https://orcid.org/0000-0002-1160-7997

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 F Boudardara et al.

trains [62]. A software module of a safety-critical system needs to be certified before its deployment. Thus, it is required
to develop methods to verify safety specifications and certify such NN-based software [25, 26].

The earliest works that deal with the verification of NN models are based encoding the model at hand as a system of
linear equations, which can then be solved using off-the-shelf verification tools, namely SAT/SMT solvers [15, 30, 50]
and MILP solvers [8, 12, 42, 58]. Although these methods are theoretically sound1 and complete2, they are limited to
small-size neural networks due to the non-linearity of NN models. Indeed, the number of linear constraints grows
exponentially with the number of neurons for which the activation functions need to be linearized, which may give rise
to a state-space explosion problem. Therefore, verification methods based on over-approximation have been proposed
to help mitigate this problem while preserving the soundness but not the completeness [14, 22, 32, 38, 51, 64–66, 69]
(see [63] for more details). Among these techniques, abstraction methods try to ease the verification problem by
abstracting the activation function using linear bounds [15] or abstract domains [18, 54, 55], or by reducing the size of
the network to improve the scalability of NN verification engines. In the latter case, an abstract (or reduced) model,
which is smaller and easier to verify, is generated from the original network [16, 49]; thus, instead of applying the
verification method directly on the original model, the verification process can be enhanced by applying it on the
reduced model.

Regarding the substantial interest in NN verification and the amount of existing methods for certifying NNs, many
surveys and reviews on NN verification methods have been proposed in the literature. For instance, Leofante et al. [37]
established three types of NN verification properties: equivalence, invertibility and invariance. They also provided a
review of NN verification techniques based on constraints solving. Liu et al. [40] classified the existing verification
methods into three basic categories: optimization, reachability and search-based verification techniques. Huang et
al. [23] conducted a review about deep NN safety and trustworthiness. For NN verification, the authors distinguished
between global and local properties. Regarding the guarantees of the verification technique, the survey classifies NN
verification techniques into deterministic, approximative and statistical. According to [61], verification methods can
be classified as geometric-based methods, MILP, SAT/SMT and optimization-based methods, even though MILP and
SAT/SMT based verification methods can also be considered as particular cases of optimization techniques. Recently,
Urban et al. [63] discussed the verification methods applied to machine learning. For NN verification, the authors
proposed a classification of the existing methods into complete or incomplete methods with respect to the output of
the verification process. Moreover, the review [63] summarizes formal verification approaches for different machine
learning techniques such as support vector machine and decision trees. Another research area that is surveyed in [5]
involves exploiting the sequential behavior of Recurrent Neural Networks (RNNs) to convert RNN models into automata
and verify certain properties on the resulting automaton model. Although such techniques can also be seen as a form of
NN abstraction into automata, their focus on recurrent neural networks places them out of the scope of the present
survey where we primarily consider feed-forward neural networks.

Among all the surveys and reviews discussed above, and to the best of our knowledge, no existing work offers an
overview on the abstraction methods for feed-forward NNs verification purposes. The aim of this work is to present a
review on the existing activation function abstraction and model reduction methods in the literature for NN verification,
and derive a critical discussion regarding these techniques. Concretely, for each presented approach we will sketch out
the main idea, analyze its advantages and its drawbacks, and discuss the corresponding formal guarantees. For model
reduction techniques, we will particularly highlight how each method can affect the verification process, and we will

1Whenever the method returns that the property holds, it indeed holds on the system.
2The verification method never returns "Unknown".

Manuscript submitted to ACM Transactions on Embedded Computing Systems

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A review of abstraction methods towards verifying neural networks 3

discuss further research directions in terms of these techniques. Although this work focuses on feed-forward NNs, we
also provide some perspectives on how these abstraction methods can be adjusted to support other types of NNs. It is
worth noticing that in this paper, we only consider NN abstraction methods that are used for verification purposes, i.e.,
we do not include neural networks’ compression techniques such as quantization and edges pruning [21], since their
goal is to build a compressed model to speed up the run-time execution [7], while preserving the model’s accuracy but
not necessarily its behavior, neither providing formal guarantees on the compressed model.

The remainder of the paper is structured as follows: In Section 2, preliminary concepts and notations pertaining to
neural networks are introduced, the verification problem of NNs is stated and an overview of the existing NN verification
methods is provided. Section 3 reviews existing NN abstraction approaches, with a deeper focus on model reduction
methods. Besides discussing the main features of the evoked techniques, some pointers to possible enhancements of the
discussed methods will be provided. Finally, in Section 4 we recall the main findings through our review and outline
some challenges and perspectives regarding NN abstraction.

2 BACKGROUND

2.1 Neural networks

A feed-forward neural network (FFNN) is a sequence of interconnected layers {𝑙1, 𝑙2, ..., 𝑙𝑛}. When the number of layers
is important, the term Deep Neural Networks is used. In an NN, each layer holds one or many nodes, called neurons.
The first layer 𝑙1 is called the input layer, the last one 𝑙𝑛 is the output layer and the remaining layers 𝑙𝑖 : 2 ≤ 𝑖 ≤ 𝑛 − 1
are referred to as hidden layers. Likewise, the nodes in the hidden layers are called hidden nodes. Each hidden node
is associated with a bias and an activation function. The nodes of a layer 𝑙𝑖 ∈ {𝑙2, 𝑙3, ..., 𝑙𝑛} are connected to the nodes
of the previous layer via weighted edges. That is to say, a neuron of layer 𝑙𝑖 receives data from layer 𝑙𝑖−1, calculates
the weighted sum of this data and adds a bias. An activation function is then applied, and the result is forwarded to
interconnected neurons of the next layer 𝑙𝑖+1 (more details are given below). The propagation of data from the input
layer to the output layer, passing through multiple hidden layers, is called “feed-forward propagation”. An NN is built
upon a training phase that aims to recognize and encode the underlying input-output relationship (correlation) of a
data set. To evaluate an NN model, the accuracy, which is the rate of correct predictions, is calculated. Fig. 1 shows a
neural network of 4 layers: an input layer of 3 inputs, two hidden layers of 4 and 3 nodes, respectively, and a 2-node
output layer.

An NN model can indeed be seen as a function N : 𝐷𝑥 → 𝐷𝑦 , where 𝐷𝑥 is the input domain and 𝐷𝑦 is the output
domain of the model. For image classification for example, 𝐷𝑥 is a matrix of pixel values representing an image, 𝐷𝑦 is
the set of all possible classes of these images. As an NN model consists of a sequence of 𝑛 layers, N can be considered
as a composition of a set of functions {𝑓1, 𝑓2, ..., 𝑓𝑛} where 𝑓𝑖 , 1 ≤ 𝑖 ≤ 𝑛 is the corresponding function of layer 𝑙𝑖 . This
can be written, formally, as: N(𝑥) = 𝑓𝑛 (𝑓𝑛−1 (...(𝑓1 (𝑥))...), where 𝑓1 is the identity function. In the following, we give
some formal definitions pertaining to NN concepts and properties that will be used later on in this paper.

Definition 2.1. For a layer 𝑙𝑖 : 𝑖 ∈ {1 . . . 𝑛}, we define the set of neurons of 𝑙𝑖 by 𝑆𝑖 , with |𝑆𝑖 | the number of neurons in
the layer 𝑙𝑖 . And for a neuron 𝑛𝑖 𝑗 ∈ 𝑆𝑖 , its value w.r.t to an input 𝑥 is 𝑣𝑖 𝑗 (𝑥). For simplicity, when 𝑥 is not specific, we
use 𝑣𝑖 𝑗 instead of 𝑣𝑖 𝑗 (𝑥).

Let 𝑛𝑖 𝑗 ∈ 𝑆𝑖 be a neuron of a hidden layer 𝑙𝑖 , its value 𝑣𝑖 𝑗 is calculated in two steps:

Manuscript submitted to ACM Transactions on Embedded Computing Systems

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 F Boudardara et al.

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Fig. 1. Example of a neural network

Fig. 2. An example showing the connection between a neuron of 𝑙𝑖 and 𝑙𝑖−1

(1) Affine transformation: calculates the sum of previous layer’s outputs modulated by the weights assigned to
the corresponding edges, plus the bias. This can be formulated as:

𝑧𝑖 𝑗 =

𝑘= |𝑆𝑖−1 |∑︁
𝑘=1

𝑤𝑖−1
𝑗,𝑘

× 𝑣𝑖−1,𝑘 + 𝑏𝑖 𝑗

where𝑤𝑖−1
𝑗,𝑘

is the weight of the edge connecting the nodes 𝑛𝑖−1,𝑘 and 𝑛𝑖 𝑗 , and 𝑏𝑖 𝑗 is the bias of the node 𝑛𝑖 𝑗 .
Note that 𝑧𝑖 𝑗 is also called the pre-activation value of 𝑛𝑖 𝑗 .

(2) Activation function: the final value 𝑣𝑖 𝑗 , also called the value after activation, is determined by applying an
activation function 𝜎 to 𝑧𝑖 𝑗 , i.e. 𝑣𝑖 𝑗 = 𝜎 (𝑧𝑖 𝑗).

The two steps are summarized in Equation (1). The obtained value 𝑣𝑖 𝑗 is the output value of 𝑛𝑖 𝑗 which will be
forwarded to the next layer 𝑙𝑖+1. Fig. 2 illustrates these steps on an example.

𝑣𝑖 𝑗 = 𝜎
©­«
𝑘= |𝑆𝑖−1 |∑︁
𝑘=1

𝑤𝑖−1
𝑗,𝑘

× 𝑣𝑖−1,𝑘 + 𝑏𝑖 𝑗 ª®¬ (1)

Manuscript submitted to ACM Transactions on Embedded Computing Systems

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A review of abstraction methods towards verifying neural networks 5

The calculation of the NN output 𝑦 = N(𝑥) for a given input 𝑥 , is done by successively applying these operations,
layer by layer, from the input to the output layer.

Depending on the application, there exists several activation functions: Sigmoid, Tanh, Relu, etc. [70]. Relu (for
Rectified Linear Unit), as defined in Equation (2), is a piece-wise linear function that has linear behaviors in (−∞, 0]
and in [0, +∞). The Relu activation function is widely used in NN, and due to its simple form and its piece-wise linear
behaviour, the majority of the existing neural network verification and abstraction approaches consider models with
this activation function [23, 30, 42].

𝑅𝑒𝑙𝑢 (𝑥) = max(𝑥, 0) =

𝑥, if 𝑥 ≥ 0

0, otherwise
(2)

Remark (Weights). In this paper, the weight of an edge connecting 𝑛𝑖𝑘 ∈ 𝑆𝑖 to a node 𝑛𝑖+1, 𝑗 ∈ 𝑆𝑖+1 is written as𝑤𝑖
𝑗𝑘

or
𝑤 (𝑛𝑖𝑘 , 𝑛𝑖+1, 𝑗).

2.2 Verification of neural networks

Formal verification is the domain of proving or disproving that a system meets certain formal specifications and
properties. A verification problem is defined as:

𝑀 |= 𝑃 ? (3)

which is equivalent to answering the question: does the system modelM satisfy the property P? Depending on the
verification technique, the system has to be modelled (e.g., state transition model) and the specifications need to be
expressed respecting some specific syntax (e.g., temporal logic). The aim of a verification technique is to prove that
P holds on M or generate a counterexample witnessing the violation of P . Many verification techniques, such as
model-checking, SAT/SMT, abstract interpretation, and theorem proving have been broadly and successfully applied to
verify software-intensive systems [3, 10].

Accordingly, formal verification for NN can be defined as in Formula (3), where M is the NN model and P is the
property to be checked, which is generally a mathematical formula constituted of a set of constraints on the inputs and
the outputs of the network.

According to Leofante et al. [37], for a given NN represented by its corresponding function N : 𝐷𝑥 → 𝐷𝑦 , the NN
verification problem can be stated as follows:

• Define 𝑝𝑟𝑒 (𝑥) and 𝑝𝑜𝑠𝑡 (𝑦) as a set of constraints on the input 𝑥 (preconditions) and the output𝑦 (postconditions),
respectively. Here, 𝑝𝑟𝑒 (𝑥) and 𝑝𝑜𝑠𝑡 (𝑦) are sorted first order logic formulas.

• For all 𝑥 satisfying the preconditions 𝑝𝑟𝑒 (𝑥), verify whether or notN(𝑥) fulfills the postconditions 𝑝𝑜𝑠𝑡 (N (𝑥)).

This can be formulated as follows:
∀𝑥 ∈ 𝐷𝑥 , 𝑝𝑟𝑒 (𝑥) =⇒ 𝑝𝑜𝑠𝑡 (N (𝑥)) (4)

Example 2.2. By taking 𝐷𝑥 = R2 and 𝐷𝑦 = R as the input and output domains of some given NN, the verification
problem defined by Formula (4) can be instantiated as:

𝑝𝑟𝑒 (𝑥) : 𝑥1 ∈ [𝑙1, 𝑢1] ∧ 𝑥2 ∈ [𝑙2, 𝑢2], with 𝑥 = (𝑥1 𝑥2)𝑇

𝑝𝑜𝑠𝑡 (N (𝑥)) : N(𝑥) ≥ 𝑐
Manuscript submitted to ACM Transactions on Embedded Computing Systems

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 F Boudardara et al.

𝑟𝑒𝑙𝑢 (𝑥)

𝑟𝑒𝑙𝑢 (𝑣)

𝑣 ≥ 0 𝑣 < 0

𝑥 ≥ 0

𝑟𝑒𝑙𝑢 (𝑣)

𝑣 ≥ 0 𝑣 < 0

𝑥 < 0

Fig. 3. An example of state-space explosion. For two Relu nodes, case splitting leads to four linear subproblems.

where 𝑙𝑖 , 𝑢𝑖 , 𝑐 ∈ R, and 𝑙𝑖 ≤ 𝑢𝑖 . The verification problem of this example thus aims to check that for all input 𝑥 in the
2-dimensional interval defined in the precondition, the corresponding output N(𝑥) is lower-bounded by 𝑐 as in the
postcondition.

Example 2.3. To verify the robustness property of a classification network for an input image 𝑥0, i.e., to check for a
classification problem that the network assigns the same label (class) 𝑐𝑖 to all inputs within a small region surrounding
𝑥0, the verification problem can be formulated using (4) as follows:

𝐿𝑒𝑡𝑠 𝑥0 ∈ 𝐷𝑥 : N(𝑥0) = 𝑐𝑖
𝑝𝑟𝑒 (𝑥) : ∥𝑥 − 𝑥0∥𝑝 ≤ 𝜖

𝑝𝑜𝑠𝑡 (N (𝑥)) : N(𝑥) = 𝑐𝑖

where ∥.∥𝑝 is a given norm.

It is worth mentioning that the paper [37] introduces other types of properties such as equivalence between two NNs.
However, it should be noted that most of the existing verification methods and all the abstraction methods reviewed in
this paper concentrate on verifying a single network and rely on properties based on Formula 3.

Verifying properties of NNs is increasingly receiving more attention and many approaches have been proposed in
recent years [23, 40]. The straightforward verification way consists of encoding the NN behavior, as well as the property
to be checked, as a system of linear equations, and then use an appropriate engine to perform the verification process.
For instance, SAT/SMT and MILP encoding are widely used to verify NNs properties [8, 13, 24, 30, 31, 42, 58]. These
methods are also called complete because they encode the exact behavior of the network. However, since most of the
common activation functions are nonlinear, this kind of verification methods does not scale in the case of large neural
networks, and suffers from state-space explosion. For example for the piece-wise linear activation function Relu, each
Relu node has to be split into two linear constraints, i.e.: if 𝑦 = 𝑟𝑒𝑙𝑢 (𝑥), then 𝑦 = 0 when 𝑥 < 0 and 𝑦 = 𝑥 when 𝑥 is
positive. Therefore, solving a verification problem of a network of 𝑛 Relu nodes leads to solving 2𝑛 linear sub-problems
as illustrated in Fig. 3. To address this issue, several approaches based on abstraction have been proposed. The next
section provides more details about this category of techniques.
Manuscript submitted to ACM Transactions on Embedded Computing Systems

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A review of abstraction methods towards verifying neural networks 7

Fig. 4. The activation function Sigmoid (𝜎) and its abstraction in 𝑥 ∈ [−2, 2]. The solid line represents 𝑦 = 𝜎 (𝑥) and each small
region (yellow rectangles) is an over-approximation of 𝑦 [50].

3 ABSTRACTION APPROACHES FOR NEURAL NETWORK VERIFICATION

In order to overcome the drawbacks of complete verification methods for NN, some abstraction approaches are proposed.
The main idea behind these approaches consists in generating an abstract model from the original network ensuring
that whenever the property P holds on the abstract model N , it necessarily holds on the original one N , i.e.,:

𝑁 |= 𝑃 =⇒ 𝑁 |= 𝑃 . (5)

However, these approaches may fail to provide any conclusion on the original network when the property is violated
on the abstract model. This is in fact due to spurious counterexamples. Namely, when the property does not hold, a
counterexample (CE) on the abstract model is generated, but due to the over-approximation of the abstract model, this
CE might not correspond to any real behavior in the original model (i.e., spurious counterexample).

Concretely, the abstraction of NN can be performed in two different manners:

• Activation function abstraction (AF abstraction): to ease the verification process, non-linear activation functions
of the NN are over-approximated by a set of linear constraints.

• NN model reduction: abstracting the network model by merging some nodes in order to reduce the size of the
network, and thus improve the scalability of existing verification tools.

A detailed survey of these methods is given in Sections 3.1 and 3.2, respectively.

Remark (Refinement). Some works consider improving the incomplete verification methods by ruling out as many
spurious CE as possible by introducing a refinement phase. In other words, the verification method refines the abstract
model iteratively until we can prove either the property holds or the generated CE exhibits a real behavior on the
original model [15, 59, 60, 64, 65].

3.1 Abstraction of the activation function

The key challenge of NN verification is pertaining to the non-linearity of activation functions. AF abstraction-based
verification approaches are applied to handle this issue by over-approximating the activation functions with linear
constraints.

The earliest work dealing with NN verification problem was introduced by Pulina et al. [50]. In this work, authors
divided the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function into small regions, then a linear over-approximation is computed for each region, as
shown in Fig. 4.

With the same spirit, Ehlers [15] proposed a precise 𝑅𝑒𝑙𝑢-abstraction technique where 𝑅𝑒𝑙𝑢 is replaced by a system
of linear constraints (see Fig. 5a) and hence the verification problem of NN is reformulated as a linear programming

Manuscript submitted to ACM Transactions on Embedded Computing Systems

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 F Boudardara et al.

(LP) problem that can be solved using classic LP solvers. The approach in [15] was implemented in a tool called Planet
and brings the LP toolkit GLPK into play along with the Minisat solver for verification.

Gehr et al. [18] applied an abstract interpretation method [11] on NN for the first time. They proposed a framework
called 𝐴𝐼2 (Abstract Interpretation for Artificial Intelligence) that soundly over-approximates NN operations by means
of 𝑧𝑜𝑛𝑜𝑡𝑜𝑝𝑒 abstract domain3. The approach can be extended to support other abstract domains. 𝐴𝐼2 can handle
feed-forward and convolutional neural networks (CNN) with 𝑅𝑒𝑙𝑢 and𝑚𝑎𝑥-𝑝𝑜𝑜𝑙𝑖𝑛𝑔 functions. The approach in [18]
was extended by Singh et al. [54] to support 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑇𝑎𝑛ℎ activation functions. This is accomplished by means of
abstract transformers based on zonotopes for each function. As an example, the abstraction of 𝑅𝑒𝑙𝑢 is given in Fig. 5b

Furthermore, Singh et al. [55] proposed a new method, called𝐷𝑒𝑒𝑝𝑃𝑜𝑙𝑦, based on Abstract Interpretation by introduc-
ing a new abstract domain. DeepPoly combines floating point polyhedra and intervals. Each neuron is represented by its
concrete and symbolic upper and lower bounds. Moreover, Singh et al. [55] introduced abstract transformers for popular
NN operations: affine transformation, 𝑅𝑒𝑙𝑢, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 , 𝑇𝑎𝑛ℎ and 𝑀𝑎𝑥-𝑝𝑜𝑜𝑙𝑖𝑛𝑔 to propagate the inputs successively
through the layers of the network. For 𝑅𝑒𝑙𝑢, two different abstractions are proposed as shown in Figs. 5c and 5d. It is
worthwhile to mention that the approach supports both feed-forward and convolutional NN.

While the previous works consider only a single neuron, some others try to define sound approximations of a set of
neurons, jointly. Singh et al. [53] introduced a new method that provides an approximation of 𝑘 𝑅𝑒𝑙𝑢 nodes (in the same
layer) at a time in order to capture dependencies of the 𝑅𝑒𝑙𝑢 inputs. First, the 𝑘 nodes are selected and then the convex
relaxation of the group of nodes is calculated. The framework has a parameter 𝑘 which represents the number of 𝑅𝑒𝑙𝑢
nodes to be considered together. A more general framework, based on [53], was recently proposed by Müller et al. [44].
The framework, called 𝑃𝑅𝐼𝑀𝐴 (PRecIse Multi-neuron Abstraction), computes the convex over-approximation of a set of
𝑘 outputs of arbitrary activation function, including 𝑅𝑒𝑙𝑢, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 and𝑇𝑎𝑛ℎ. The approach decomposes the𝑛 activations
into overlapping groups of size 𝑘 , then calculates the convex approximation of the octahedral over-approximation for
each group 𝑖 . Finally, it takes the union of all the obtained output constraints. These constraints combined with the
encoding of the whole NN are used for verification.

Other techniques based on symbolic propagation are proposed in [38, 69] to enhance the precision of abstract
interpretation-based approaches. In symbolic propagation every neuron is associated with a formula expressed using
the activations of neurons in its previous layers. In [56], a combination of over-approximation techniques with linear
relaxation methods is proposed so as to gain more precision of over-approximation techniques and the scalability of
complete methods.

These techniques can be adapted to support further types of NNs. One way to deal with Recurrent Neural Networks is
to generate an equivalent feed-forward neural network and then apply the abstraction method [1, 27]. For Convolutional
Neural Networks, most of the techniques are applicable and the only restriction is that the activation function of the
convolution layer has to be Relu or other supported functions such as Sigmoid and Tanh [55].

3.2 NN model reduction

The main objective of NN model reduction is to reduce the size of the NN model while guaranteeing some behavioral
relation: the desired property P holds on the original model N whenever it holds on the reduced model N as defined
in (5). Fig. 6 provides an illustrative example of the main idea behind model reduction applied on a small neural network.

3An abstract domain is a set of logical constraints that define a geometric shape. The most popular abstract domains are: box (or Interval), zonotope and
polyhedra. For example, a zonotope abstract domain [19] 𝑍 is defined by a set of constraints 𝑧𝑖 , s.t: 𝑧𝑖 = 𝑎𝑖 +

∑𝑚
𝑗=1 𝑏𝑖 𝑗𝜖 𝑗 , where 𝜖 𝑗 ∈ [𝑙𝑖 ,𝑢𝑖] is an error

term and 𝑎𝑖 , 𝑏𝑖 𝑗 are constants.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A review of abstraction methods towards verifying neural networks 9

(a) The abstraction of the 𝑅𝑒𝑙𝑢 activation
function proposed in [15].

(b) The abstraction of the 𝑅𝑒𝑙𝑢 activation
function using zonotopes [18, 54].

(c) The abstraction of the 𝑅𝑒𝑙𝑢 activation
function proposed in [55]

(d) The abstraction of the 𝑅𝑒𝑙𝑢 activation
function proposed in [55]

Fig. 5. Relu activation function abstractions using different abstract domains. The 𝑅𝑒𝑙𝑢 (𝑦 = 𝑟𝑒𝑙𝑢 (𝑥)) is represented by the green
line and its over-approximation on the range 𝑥 ∈ [𝑙,𝑢] by the blue filled area.

(a) An NN before abstraction (the concrete
NN model)

(b) The NN after model reduction (the two
hidden nodes are merged)

Fig. 6. Model reduction of a small neural network

Such a behavioral relation is obtained by ensuring that 𝑁 is an over-approximation of 𝑁 (i.e. all behaviors of 𝑁
can be reproduced in 𝑁). Therefore, the reduction process must carefully select the set of neurons to be merged (or
removed), and determine how to calculate the weights of the new edges.

Prabhakar and Afzal [49] proposed a method based on Interval Neural Networks (INN) for output range analysis. In
this method, the nodes of the same layer are merged while replacing the weights of their input edges by the interval hull

Manuscript submitted to ACM Transactions on Embedded Computing Systems

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 F Boudardara et al.

of the incoming edges. In other words, the weights of incoming edges are replaced by [min(𝑊𝑖𝑛),max(𝑊𝑖𝑛)], where
𝑊𝑖𝑛 are the values of the incoming weights to the nodes to be merged. The weights of the outgoing edges from these
nodes are replaced by the interval hull multiplied by the number of merged nodes 𝑛: 𝑛 × [min(𝑊𝑜𝑢𝑡),max(𝑊𝑜𝑢𝑡)].

For the verification part, Prabhakar and Afzal [49] adapted INN to MILP big-M encoding [8] and used the Gurobi
MILP solver for verification. The performance of this method is tested on the airborne collision avoidance ACAS Xu
benchmark [29, 30]. The authors claim that the abstraction enhances the verification process. Namely, Gurobi was not
able to verify a number of properties on the original model (no return), while the same properties have been successfully
checked when Gurobi was applied on the abstract model.

Recently, Boudardara et al. [6] proposed an interval-weight based model reduction method. The elaborated method
supports Relu and Tanh neural networks. While an outgoing weight of a set of merged nodes is the sum of absolute
values of their corresponding outgoing weights, an abstract incoming weight is an interval defined as: the min and the
max of the sign of the corresponding outgoing weights of the merged nodes multiplied by the the original incoming
weights. The sign function defined in this work returns 1 if the value is at least equal to 0, and −1 otherwise. The method
is applied to the ACAS Xu Relu-NN benchmark [30], where the Interval Bound Propagation (IBP) algorithm [67] is
used to calculate the output range on the original and abstract networks. Moreover, the authors of [6] have varied the
number of merged nodes to assess the output range and the IBP computation time for abstract networks. It has been
shown, in particular, that merging more nodes accelerates the IBP algorithm while generating larger output ranges.
The authors observe that the wide output range is due to the IBP algorithm which is not an exact verification method.
However, this work does not discuss possible adaptation to support other verification tools.

In [57], Sotoudeh and Thakur, by introducing the notion of Abstract Neural Network (ANN), provided a formalization
of a general abstraction approach. In ANN, the weights are represented using abstract domains. Accordingly, the
approach proposed by Prabhakar and Afzal [49] can be considered as a particular instantiation of this approach using
the interval abstract domain. Notice that the proposed approach supports a wide range of activation functions. Moreover,
it can be instantiated using other convex abstract domains and it is not restricted to intervals as used in INNs [49]. The
approach provides a generic formula to calculate the weight merging matrix𝑊 from the original weight matrix𝑊 and
the partitions 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 of two successive abstract layers 𝑙𝑖 and 𝑙𝑖+1, respectively. A partition 𝑃𝑖 is a rearrangement
of a set 𝑆𝑖 of neurons, i.e., if 𝑆𝑖 = {𝑛𝑖1, 𝑛𝑖2, 𝑛𝑖3}, a possible partition of 𝑆𝑖 would be 𝑃𝑖 = {{𝑛𝑖1, 𝑛𝑖2}, {𝑛𝑖3}}, which means
that 𝑛𝑖1 and 𝑛𝑖2 will be merged in the abstract network.𝑊 is the convex combination (calculated by a function 𝑔) of
the partitioning combination matrix of 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 , denoted by 𝐶 and 𝐷 , respectively, and the weight matrix𝑊 , i.e.,
𝑊 = 𝑔(𝐷,𝑊 ,𝐶). Next, the abstract weight matrix, denoted by𝑊𝑎𝑏𝑠 , is built by applying a convex abstract domain 𝛼𝐴
on the obtained𝑊 :𝑊𝑎𝑏𝑠 = 𝛼𝐴 (𝑊). The reduced model is obtained by applying the same procedure to every layer,
iteratively. Therefore, the obtained reduced model is an over-approximation for any non-negative activation function
that satisfies the Weakened Intermediate Value Property (WIVP). Although some activation functions can have negative
values and others are not continuous (thus not WIVP), the authors of [57] claim that there is always a way to overcome
these problems, as they showed for Leaky 𝑅𝑒𝑙𝑢 and the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 activation functions.

In [2], Ashok et al. apply K-means clustering algorithms to partition each hidden layer 𝑙𝑖 into 𝑘𝑖 subgroups, such that
𝑘𝑖 ≤ |𝑆𝑖 |, then replace each subgroup with its representative neuron. The abstraction method, called DeepAbstract, has
three parameters: the original network 𝑁 , a finite set of input-points 𝑋 and a vector 𝐾𝐿 which contains the number of
nodes on each abstract layer. For each hidden layer 𝑙𝑖 , the following steps are performed:

(1) For every 𝑥 ∈ 𝑋 , calculate the value 𝑣𝑖 𝑗 (𝑥) of each neuron in 𝑆𝑖 ,

Manuscript submitted to ACM Transactions on Embedded Computing Systems

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A review of abstraction methods towards verifying neural networks 11

(2) Apply K-means to split each layer 𝑙𝑖 into 𝑘𝑖 clusters. Let 𝐶𝑙𝑖 denote the set of clusters of 𝑙𝑖 ,
(3) For each cluster 𝐶 ∈ 𝐶𝑙𝑖 :

(a) Determine the representative neuron 𝑟𝑒𝑝𝐶 ,
(b) Calculate the corresponding outgoing weights of 𝑟𝑒𝑝𝐶 :

𝑊
𝑖
∗, 𝑟𝑒𝑝𝐶 =

∑︁
𝑛𝑖 𝑗 ∈𝐶

𝑊 𝑖
∗ , 𝑛𝑖 𝑗

(c) Replace all the neurons in 𝐶 with 𝑟𝑒𝑝𝐶 .

Note that the representative neuron 𝑟𝑒𝑝𝐶 of a cluster 𝐶 is the nearest neuron to the centroid of 𝐶 , thus; the incoming
weights of 𝑟𝑒𝑝𝐶 remain the same as the corresponding neuron before abstraction. All the other neurons from cluster 𝐶
are omitted with their incoming edges.

In addition, Ashok et al. [2] provide a method to lift the verification results from the abstract model to the original
one. The idea is to calculate the accumulated error induced by replacing a cluster of neurons by its representative
for each image 𝑥 in 𝑋 , and then propagate this error through the successive layers using the DeepPoly verification
Algorithm4. A set of experiments were conducted to check the performance of DeepAbstract. Local robustness of some
MNIST images was checked and the authors claim that the verification time was reduced by 25% when DeepPoly is
combined with DeepAbstract.

Elboher et al. [16] proposed an abstraction approach based on merging neurons of the same category (see hereafter)
to build a smaller model so as to enhance the scalability of the existing verification tools. Regarding the verification
property, which has the form: 𝑃 : ∀𝑥 ∈ 𝑝𝑟𝑒 (𝑥) =⇒ 𝑦 ≤ 𝑐 , the aim of this approach is to build a reduced model 𝑁
(its corresponding function is N), s.t ∀𝑥 ∈ 𝐷𝑥 , N(𝑥) ≥ N (𝑥). Therefore, 𝑁 |= 𝑃 whenever 𝑁 |= 𝑃 (i.e., N(𝑥) ≤ 𝑐).
First, each neuron is labelled according to the sign of its outgoing weights. A neuron is split if it has both positive and
negative outgoing weights. Next, to guarantee that 𝑁 is an over-approximation of 𝑁 , the proposed method tries to
increase the output of the abstract model by classifying each neuron as 𝐼 or 𝐷 . The class 𝐼 means the output will increase
by increasing the value of this neuron, while a neuron is marked as 𝐷 when decreasing its value leads to increasing the
output’s value.Finally, the nodes of the same layer and the same category can be merged by summing up the weights of
their outgoing edges and taking the min value of the the weights of their incoming edges if they are marked as 𝐷 , or
the max value for any 𝐼 group of nodes. Moreover, some heuristics are proposed in [16] to enhance the abstraction
process. The proposed method is applied on ACAS Xu networks while Marabou [31] is used as back-end verification
tool. A comparison study between the abstraction method combined with Marabou and the vanilla version of Marabou
was conducted, and the results showed that the abstraction method allows Marabou to verify more properties in less
execution time.

A novel approach based on bisimulation [33] is proposed by Prabhakar [48]. The generated abstract neural network
is equivalent, or bisimilar, to the original one. To guarantee the equivalence between 𝑁 and 𝑁 , two neurons 𝑛𝑖 𝑗 and
𝑛𝑖𝑘 to be merged must have the same activation function, the same bias value (𝑏𝑖 𝑗 = 𝑏𝑖𝑘) and the same weights for
each incoming edge respectively, i.e., ∀𝑛′ ∈ 𝑆𝑖−1,𝑤 (𝑛′, 𝑛𝑖 𝑗) = 𝑤 (𝑛′, 𝑛𝑖𝑘). Due to the strict conditions that, generally,
do not hold in most of real networks, Prabhakar [48] extends the NN bisimulation to a more feasible relaxed method,
called NN 𝛿-bisimulation. Using NN 𝛿-bisimulation (𝛿 ∈ R+), two nodes 𝑛𝑖 𝑗 and 𝑛𝑖𝑘 in 𝑆𝑖 can be merged if the following
conditions are satisfied:

(1) 𝑛𝑖 𝑗 and 𝑛𝑖𝑘 have the same activation function
4Available at https://github.com/eth-sri/ERAN.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

https://github.com/eth-sri/ERAN

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 F Boudardara et al.

Table 1. A list of NN model reduction methods used for verification. The underscore symbol "−" is used to denote that no information
is provided in the corresponding original paper.

Method Pub. Year Supported AFs Verification
methods

Evaluation on Guarantees of the
reduced model

R4V [52] 2019 Relu Relupex[30],
ERAN[54],
Neurify[64],
Planet[15]

DAVE-2[4],
DroNet[43]

None

INN [49] 2019 Relu MILP [42] ACAS Xu [30] N(𝑥) ∈ N (𝑥)
ANN [57] 2020 Relu,

Leaky Relu 5
- - N(𝑥) ∈ N (𝑥)

DeepAbstract [2] 2020 Relu ERAN MNIST[35] Depends on the
data set

Elboher et al. [16] 2020 Relu Marabou[31] ACAS Xu [30] N(𝑥) ≤ N (𝑥)
Bisimulation [48] 2021 Relu - - N ≡ N6

Boudardara et al. [6] 2022 Relu, Tanh IBP[67] ACAS Xu [30] N(𝑥) ∈ N (𝑥)

(2) |𝑏𝑖 𝑗 − 𝑏𝑖𝑘 | ≤ 𝛿
(3) ∀𝑛′ ∈ 𝑆𝑖−1, |𝑤 (𝑛′, 𝑛𝑖 𝑗) −𝑤 (𝑛′, 𝑛𝑖𝑘) | ≤ 𝛿

where 𝛿 ≥ 0. So the obtained network 𝑁 is 𝛿-bisimilar to network 𝑁 .
Taking advantages of code refactoring [17], Shriver et al. [52] introduced the concept of refactoring neural networks

to restructure the initial model and preserve its accuracy to enhance further operations on it, for instance verification.
Concretely, NN refactoring consists of two steps: architecture transformation and distillation. The former applies some
changes on the network’s architecture by dropping or changing some layers and/or their types that are not supported
by verification tools (e.g. residual blocks and convolutional layers). The latter updates the model’s parameters: weights
and biases, while preserving the original model’s behavior, which is captured by its accuracy and test error according to
Shriver et al. [52]. A tool called R4V was developed from this approach. R4V was tested on DAVE-2 [4] and DroNet [43]
networks. The used verification tools are presented in Table 1. The results showed that applying the verification tools
on the refactored model improves their scalability. For example, Planet [15] fails to check any property on DroNet
within 24 hours. However, after refactoring the network, Planet was able to verify three out of the ten properties.

The main features of the above discussed neural networks reduction techniques are summarized in Table 1. The last
two columns of the table contain verification methods and the data sets used during the evaluation of the abstraction
method. Verification methods are those used during the evaluation of the abstraction in the original paper; notice that
other methods can be used to verify the obtained abstract model.

An example is provided in Figure 7 to demonstrate the application of some of the methods mentioned in this
section [6, 16, 49, 57] 7. Notice that the abstract network using the ANN method [57] with the box (or interval) abstract
domain is the same as the abstract network obtained using the method of INN [49] (see Figure 7b). The example presents
a segment of a Relu-NN, i.e, 𝑠1 is an arbitrary neuron of a hidden layer and not the input of the network, and all nodes
are assigned a Relu activation function. We apply abstraction (using the selected methods) to merge the two nodes 𝑠3

5The authors claim that the method can be adjusted to support other activation function
6The abstract network is equivalent to the original one when bisimulation is used which is not the case for 𝛿-bisimulation
7Supplementary details are needed to apply the other methods. For example DeepAbstract [2] needs a data set for the clustering algorithm.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A review of abstraction methods towards verifying neural networks 13

(a) A toy NN example before ap-
plying model reduction (the orig-
inal network). For 𝑣 (𝑠1) = 1, we
have 𝑣 (𝑠5) = 2

(b) The abstract network using
INN method [49] and ANN [57].
For 𝑣 (𝑠1) = 1, 𝑣 (𝑠5) = [0, 17], and
we have 𝑣 (𝑠5) ∈ 𝑣 (𝑠5)

(c) The abstract network using
the method presented in [6]. For
𝑣 (𝑠1) = 1, 𝑣 (𝑠5) = [0, 12], and we
have 𝑣 (𝑠5) ∈ 𝑣 (𝑠5)

(d) The network after neurons’
classification (positive /negative
and increasing /decreasing) [16]

(e) The abstract network using the
method of Elboger et al. [16]. For
𝑣 (𝑠1) = 1, 𝑣 (𝑠5) = 12, andwe have
𝑣 (𝑠5) ≤ 𝑣 (𝑠5)

Fig. 7. The application of different model reduction methods on a toy example of NN

and 𝑠4, while assuming that 𝑣 (𝑠1) = 1, and we calculate the value of 𝑠5, 𝑣 (𝑠5) and 𝑣 (𝑠5) on the original and the abstract
networks, respectively. While model reduction methods [6, 49, 57] (Figures 7c and 7b) ensure that the output of the
original network is within the ranges of the output of the abstract network, i.e.: 𝑣 (𝑠5) ∈ 𝑣 (𝑠5), the method introduced
in [16] (Figure 7e) guarantees that the output of the obtained abstract network is always greater than the output’s value
of the original network, i.e.: 𝑣 (𝑠5) ≤ 𝑣 (𝑠5)

It is worth noting here that these techniques can be adjusted to support other types of NNs. For instance, RNN can
be transformed into an equivalent FFNN [1, 27], and then model reduction approaches can be applied to generate the
abstract network. On the other hand, model reduction can be applied on the fully connected part of CNNs [46, 68].
Regarding Binarized Neural Networks (BNN), due to their binary behaviour and their small size comparing to other
types of NNs, their verification does not require abstracting their behavior and, generally, exact methods such as SAT
and MILP can be applied directly [28, 34, 45].

It is worth mentioning that another family of techniques based on merging neurons and removing some edges
without affecting the accuracy of the model exists in the literature. These techniques are called NN compression and
acceleration, and their objective is to build a smaller network with low computational complexity, so that it can be
embedded on devices with limited resources and used in real-time applications, while keeping the accuracy as high as
possible [9, 21, 39]. Although both NN model reduction and NN compression strive to reduce the number of neurons,
NN compression techniques cannot be used for verification, since the generated models do not fulfil the abstraction
condition presented in Formula (5). In other words, verifying a property 𝑃 on the compressed network obtained by any
compression method does not imply that the property does hold in the original network.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 F Boudardara et al.

3.3 Discussion

This section discusses the aforementioned model reduction methods, while highlighting their limitations and proposing
some possible area of improvements. In order to fairly compare the efficiency of the discussed approaches, we analyze
them according to three main criteria (with respect to the available information in the original papers): (i) the precision
of the over-approximation, (ii) the minimal number of neurons that can be obtained when the reduction method is
applied until saturation, and (iii) the efficiency regarding the verification time and the number of the verified properties
on the reduced model versus the original one.

The abstraction method based on INNs, proposed by Prabhakar et al. [49] seems to be very useful when the problem
of output range analysis is considered. An exhaustive application of this method leads to merge all neurons of each
hidden layer and replace them by one abstract neuron. The results of their paper show that the precision depends
highly on the number and the selection of the nodes to be merged. The method needs some improvements to be more
precise, since no study has been provided for neuron selection. In addition, operations on intervals may impact the
precision of this method. MILP encoding is proposed to solve the verification problem on INNs, and to the best of our
knowledge, no other verification method is proposed to verify INNs. Moreover, this method is restricted to abstract
NNs with non-negative activation functions [57]. Consequently, Sotoudeh et al. [57] proposed some fundamentals to
abstract any NNs with different activation functions using any convex abstract domain and which is not limited to
intervals. In [57], the authors provide an example of abstraction based on octagons, but no explanation was given of the
meaning of using such abstract domain to represent the merged neurons. Moreover, the work would have been more
relevant if it had included an evaluation study to concretely show how the ANN can be extended to deal with other
abstract domains. In [6], Boudardara et al. proposed a method that is similar to INNs[49], where the incoming weights
are encoded as intervals, while the outgoing weights are scalars. However, unlike INNs, the proposed method is not
limited to non-negative activation functions and can support the use of Tanh activation function. Moreover, the authors
claim that the method can be adjusted to support other activation functions as well.

DeepAbstract, proposed by Ashok et al. [2], is parametrized by the number of clusters on each layer; if there are few
clusters, the model will be more abstract and less precise. In addition, this method relies on the discrete input set 𝑋 that
is used during clustering phase and can only verify the robustness of the model on points within this set 𝑋 . Ashok et
al. [2] claim that the verification time was reduced by 25% when DeepAbstract is used along with DeepPoly, however,
only 195 out of 200 images could be verified to be robust against 197/200 when DeepPoly is used without abstraction.

The abstraction-refinement proposed by Elboher et al. [16] boosted the Marabou verifier to check more properties
(58 out of 90 property versus 35/90). Moreover, the abstraction method reduces the total query median runtime from
63671 seconds to 1045 seconds. As a consequence of the classification of neurons, this method can abstract a layer to
four neurons at most. This is one of the main drawbacks of this method since only neurons belonging to the same
category can be merged. It should also be mentioned that only properties in the form: 𝑦 ≤ 𝑐 are considered, although
authors claim that the approach is adaptable to cope with various types of properties by adjusting the output layer. In
addition, this method cannot be applied if some neurons have negative values. For instance, this method cannot be
applied in hidden layers if the used activation function returns negative values such as sigmoid and Leaky Relu. For the
same reason, the first hidden layer cannot be abstracted if the inputs are negative. An example demonstrating this case
is given in Fig. 8, where 𝑥 is an input, 𝑦 is the output.

The NN in Fig. 8.b is generated using Elboher et al.’s method [16], which is supposed to be an abstraction of the
original model of Fig. 8.a. Both 𝑁 and 𝑁 use the 𝑅𝑒𝑙𝑢 activation function on the hidden layer. Although for negative

Manuscript submitted to ACM Transactions on Embedded Computing Systems

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A review of abstraction methods towards verifying neural networks 15

(a) The concrete model 𝑁 after the
classification of nodes (I+ for increasing

positive node)

(b) The abstract model 𝑁

Fig. 8. Counterexample of Elboher et al. [16] abstraction method

inputs the output of 𝑁 is always zero: ∀𝑥 ≤ 0, 𝑦 = 0, the output of 𝑁 is always positive, for instance, for 𝑥 = −1, 𝑦 = 3,
thus the condition of the over-approximation ∀𝑥 ∈ 𝐷𝑥 : N(𝑥) ≥ N (𝑥) does not hold.

The NN bisimulation method proposed in [48] guarantees the equivalence between abstract and original models,
thus offers an exact abstraction. However, the set of conditions are hard to satisfy on real neural network, especially
the condition on weights. On the other hand, the relaxed version, NN-𝛿-bisimulation, looks more feasible but needs
further improvements to keep trace of the verified property on the abstract model and lift it to provide guarantees on
the original network.

In [52], Shriver et al. propose an efficient approach with a dedicated tool, called R4V, to simplify and compress NN
models. The wide experimental study they performed with different verification tools and data sets shows that R4V
offers actual benefits to overcome the limitations of some NN verification techniques. However, this method enables to
verify properties on the refactored model and does not propose a way to lift these guarantees to the original model. In
other words, it does not provide any guarantee of whether the property holds on the original model.

Regarding the challenges of neural network verification, developing a new general approach that overcomes the issues
related to the existing abstraction methods mentioned above is necessary. The works [2, 48, 52] could be adopted and
combined with some heuristics to select candidate neurons to be merged. For instance, the 𝛿-bisimulation method [48]
can be used to select similar nodes by analyzing their incoming weights. The approach in [2] can be adapted using
discretization of the input region, so that the nodes that are close to each other (in the same cluster) are good candidates
for abstraction.

While the technique in [16] ensures that N(𝑥) ≤ N (𝑥), the three methods presented in [6, 49, 57] go further by
guaranteeing that the output of the original network is always included within the output range of the obtained abstract
network, i.e., N(𝑥) ∈ N (𝑥). However, it is necessary to conduct a comparative study to assess the performance of
these methods. On the other hand, an abstract network obtained using DeepAbstract [2] can be used only to verify the
robustness of the model on inputs within the set of images 𝑋 that is used during the clustering phase. The last column
of Table 1 summarizes the relation between the original and the abstract networks using different methods.

4 CONCLUSION

In this work, we discussed the problem of neural network verification and we presented different existing techniques
used to solve this problem.We showed that the abstraction of neural networks can be used to help tackle the non-linearity
and the complexity of the generated models. Abstraction of neural networks can be applied in two levels: abstracting

Manuscript submitted to ACM Transactions on Embedded Computing Systems

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 F Boudardara et al.

the activation function and reducing the network’s size (model reduction). While the abstraction of activation functions
aims to over-approximate the non-linear activation functions with linear constraints, model reduction is used to reduce
the number of neurons of the network. Both categories are applied to improve the verification process as a whole. The
abstraction has to be sound, meaning that the desired behavior of the original model must be maintained. In this paper
we focused more on model reduction methods since, to the best of our knowledge, no survey about neural networks
reduction for verification purposes has been introduced.

While the main focus of this work is on the application of abstraction methods to feed-forward neural networks,
discussing their advantages, limitations, and the formal guarantees provided by each model reduction method, we also
addressed the perspectives and potential applicability of these methods to other types of NNs, including convolutional
neural networks (CNNs) and recurrent neural networks (RNNs).

ACKNOWLEDGMENTS

This research work is funded by the French program ”Investissements d’Avenir” and is part of the French collaborative
project TASV (Train Autonome Service Voyageurs), with SNCF, Alstom Crespin, Thales, Bosch, and Spirops

REFERENCES
[1] Michael E Akintunde, Andreea Kevorchian, Alessio Lomuscio, and Edoardo Pirovano. 2019. Verification of RNN-based neural agent-environment

systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 6006–6013.
[2] Pranav Ashok, Vahid Hashemi, Jan Křetínskỳ, and Stefanie Mohr. 2020. Deepabstract: Neural network abstraction for accelerating verification. In

International Symposium on Automated Technology for Verification and Analysis. Springer, 92–107.
[3] Armin Biere, Marijn Heule, and Hans van Maaren. 2009. Handbook of satisfiability. Vol. 185. IOS press.
[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs

Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).
[5] Benedikt Bollig, Martin Leucker, and Daniel Neider. 2022. A Survey of Model Learning Techniques for Recurrent Neural Networks. A Journey from

Process Algebra via Timed Automata to Model Learning: Essays Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday (2022), 81–97.
[6] Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, and Mohamed Ghazel. 2022. Interval Weight-Based Abstraction for Neural Network

Verification. In Computer Safety, Reliability, and Security. SAFECOMP 2022 Workshops: DECSoS, DepDevOps, SASSUR, SENSEI, USDAI, and WAISE
Munich, Germany, September 6–9, 2022, Proceedings. Springer, 330–342.

[7] Xuyi Cai, Ying Wang, and Lei Zhang. 2022. Optimus: An Operator Fusion Framework for Deep Neural Networks. ACM Transactions on Embedded
Computing Systems (TECS) (feb 2022). https://doi.org/10.1145/3520142

[8] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum resilience of artificial neural networks. In International Symposium on
Automated Technology for Verification and Analysis. Springer, 251–268.

[9] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model compression and acceleration for deep neural networks. arXiv preprint
arXiv:1710.09282 (2017).

[10] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. 2018. Handbook of model checking. Vol. 10. Springer.
[11] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by construction or

approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. 238–252.
[12] Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan, and Ashish Tiwari. 2017. Output range analysis for deep neural networks. arXiv preprint

arXiv:1709.09130 (2017).
[13] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output Range Analysis for Deep Feedforward Neural Networks.

In Proc. 10th NASA Formal Methods. 121–138. https://doi.org/10.1007/978-3-319-77935-5_9
[14] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verification

of Deep Networks.. In UAI, Vol. 1. 3.
[15] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium on Automated Technology

for Verification and Analysis. Springer, 269–286.
[16] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-based framework for neural network verification. In International

Conference on Computer Aided Verification. Springer, 43–65.
[17] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-Wesley Professional.
[18] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness

certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 3–18.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

https://doi.org/10.1145/3520142
https://doi.org/10.1007/978-3-319-77935-5_9

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A review of abstraction methods towards verifying neural networks 17

[19] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The zonotope abstract domain taylor1+. In International Conference on Computer Aided
Verification. Springer, 627–633.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
[21] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv preprint arXiv:1510.00149 (2015).
[22] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019. ReachNN: Reachability Analysis of Neural-Network Controlled Systems. ACM

Transactions on Embedded Computing Systems (TECS) 18, 5s, Article 106 (oct 2019), 22 pages. https://doi.org/10.1145/3358228
[23] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi. 2020. A survey of safety and

trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability. Computer Science Review 37
(2020), 100270. https://doi.org/10.1016/j.cosrev.2020.100270

[24] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verification of deep neural networks. In International conference on
computer aided verification. Springer, 3–29.

[25] Radoslav Ivanov, Taylor J Carpenter, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee. 2020. Verifying the safety of autonomous systems
with neural network controllers. ACM Transactions on Embedded Computing Systems (TECS) 20, 1 (2020), 1–26.

[26] Radoslav Ivanov, Kishor Jothimurugan, Steve Hsu, Shaan Vaidya, Rajeev Alur, and Osbert Bastani. 2021. Compositional Learning and Verification of
Neural Network Controllers. ACM Transactions on Embedded Computing Systems (TECS) 20, 5s (2021), 1–26.

[27] Yuval Jacoby, Clark Barrett, and Guy Katz. 2020. Verifying recurrent neural networks using invariant inference. In Automated Technology for
Verification and Analysis: 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19–23, 2020, Proceedings 18. Springer, 57–74.

[28] Kai Jia and Martin Rinard. 2020. Efficient exact verification of binarized neural networks. Advances in neural information processing systems 33
(2020), 1782–1795.

[29] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J Kochenderfer. 2016. Policy compression for aircraft collision avoidance
systems. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE, 1–10.

[30] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An efficient SMT solver for verifying deep neural
networks. In International Conference on Computer Aided Verification. Springer, 97–117.

[31] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar
Zeljić, et al. 2019. The marabou framework for verification and analysis of deep neural networks. In International Conference on Computer Aided
Verification. Springer, 443–452.

[32] Jianglin Lan, Yang Zheng, and Alessio Lomuscio. 2022. Tight neural network verification via semidefinite relaxations and linear reformulations. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 7272–7280.

[33] Kim G Larsen and Arne Skou. 1991. Bisimulation through probabilistic testing. Information and computation 94, 1 (1991), 1–28.
[34] Christopher Lazarus and Mykel J Kochenderfer. 2022. A mixed integer programming approach for verifying properties of binarized neural networks.

arXiv preprint arXiv:2203.07078 (2022).
[35] Yann LeCun. 1998. The MNIST database of handwritten digits.
[36] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436–444.
[37] Francesco Leofante, Nina Narodytska, Luca Pulina, and Armando Tacchella. 2018. Automated verification of neural networks: Advances, challenges

and perspectives. arXiv preprint arXiv:1805.09938 (2018).
[38] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun Zhang. 2019. Analyzing deep neural networks with symbolic

propagation: Towards higher precision and faster verification. In International Static Analysis Symposium. Springer, 296–319.
[39] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021. Pruning and quantization for deep neural network acceleration: A

survey. Neurocomputing 461 (2021), 370–403.
[40] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J Kochenderfer, et al. 2021. Algorithms for verifying

deep neural networks. Foundations and Trends® in Optimization 4, 3-4 (2021), 244–404.
[41] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. 2017. A survey of deep neural network architectures and

their applications. Neurocomputing 234 (2017), 11–26.
[42] Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis for feed-forward relu neural networks. arXiv preprint arXiv:1706.07351

(2017).
[43] Antonio Loquercio, Ana I Maqueda, Carlos R Del-Blanco, and Davide Scaramuzza. 2018. Dronet: Learning to fly by driving. IEEE Robotics and

Automation Letters 3, 2 (2018), 1088–1095.
[44] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2022. PRIMA: general and precise neural network

certification via scalable convex hull approximations. Proceedings of the ACM on Programming Languages 6, POPL (2022), 1–33.
[45] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. 2018. Verifying properties of binarized deep neural

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
[46] Matan Ostrovsky, Clark Barrett, and Guy Katz. 2022. An abstraction-refinement approach to verifying convolutional neural networks. In Automated

Technology for Verification and Analysis: 20th International Symposium, ATVA 2022, Virtual Event, October 25–28, 2022, Proceedings. Springer, 391–396.
[47] Ajeet Ram Pathak, Manjusha Pandey, and Siddharth Rautaray. 2018. Application of deep learning for object detection. Procedia computer science 132

(2018), 1706–1717.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

https://doi.org/10.1145/3358228
https://doi.org/10.1016/j.cosrev.2020.100270

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 F Boudardara et al.

[48] Pavithra Prabhakar. 2022. Bisimulations for neural network reduction. In Verification, Model Checking, and Abstract Interpretation: 23rd International
Conference, VMCAI 2022, Philadelphia, PA, USA, January 16–18, 2022, Proceedings. Springer, 285–300.

[49] Pavithra Prabhakar and Zahra Rahimi Afzal. 2019. Abstraction based output range analysis for neural networks. Advances in Neural Information
Processing Systems 32 (2019).

[50] Luca Pulina and Armando Tacchella. 2010. An abstraction-refinement approach to verification of artificial neural networks. In International
Conference on Computer Aided Verification. Springer, 243–257.

[51] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses against adversarial examples. arXiv preprint arXiv:1801.09344 (2018).
[52] David Shriver, Dong Xu, Sebastian Elbaum, and Matthew B Dwyer. 2019. Refactoring neural networks for verification. arXiv preprint arXiv:1908.08026

(2019).
[53] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. 2019. Beyond the Single Neuron Convex Barrier for Neural Network

Certification. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.), Vol. 32. Curran Associates, Inc.

[54] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. 2018. Fast and effective robustness certification. Advances in
neural information processing systems 31 (2018).

[55] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural networks. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 1–30.

[56] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. Boosting robustness certification of neural networks. In International
Conference on Learning Representations.

[57] Matthew Sotoudeh and Aditya V Thakur. 2020. Abstract Neural Networks. In International Static Analysis Symposium. Springer, 65–88.
[58] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of Neural Networks with Mixed Integer Programming. In International

Conference on Learning Representations. https://openreview.net/forum?id=HyGIdiRqtm
[59] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. 2020. Verification of deep convolutional neural networks using imagestars.

In International Conference on Computer Aided Verification. Springer, 18–42.
[60] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson. 2019.

Star-based reachability analysis of deep neural networks. In International Symposium on Formal Methods. Springer, 670–686.
[61] Hoang-Dung Tran, Weiming Xiang, and Taylor T Johnson. 2020. Verification approaches for learning-enabled autonomous cyber-physical systems.

IEEE Design & Test (2020).
[62] Damien Trentesaux, Rudy Dahyot, Abel Ouedraogo, Diego Arenas, Sébastien Lefebvre, Walter Schön, Benjamin Lussier, and Hugues Cheritel. 2018.

The autonomous train. In 2018 13th Annual Conference on System of Systems Engineering (SoSE). IEEE, 514–520.
[63] Caterina Urban and Antoine Miné. 2021. A Review of Formal Methods applied to Machine Learning. arXiv preprint arXiv:2104.02466 (2021).
[64] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Efficient formal safety analysis of neural networks. arXiv preprint

arXiv:1809.08098 (2018).
[65] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal security analysis of neural networks using symbolic

intervals. In 27th {USENIX} Security Symposium ({USENIX} Security 18). 1599–1614.
[66] Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples via the convex outer adversarial polytope. In International

Conference on Machine Learning. PMLR, 5286–5295.
[67] Weiming Xiang, Hoang-Dung Tran, Xiaodong Yang, and Taylor T Johnson. 2020. Reachable set estimation for neural network control systems: A

simulation-guided approach. IEEE Transactions on Neural Networks and Learning Systems 32, 5 (2020), 1821–1830.
[68] Jin Xu, Zishan Li, Miaomiao Zhang, and Bowen Du. 2021. Conv-Reluplex: a verification framework for convolution neural networks. In Proceedings

of the 33rd International Conference on Software Engineering and Knowledge Engineering (SEKE).
[69] Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang. 2021. Enhancing robustness

verification for deep neural networks via symbolic propagation. Formal Aspects of Computing 33, 3 (2021), 407–435.
[70] Meng Zhu, Weidong Min, Qi Wang, Song Zou, and Xinhao Chen. 2021. PFLU and FPFLU: Two novel non-monotonic activation functions in

convolutional neural networks. Neurocomputing 429 (2021), 110–117.

Manuscript submitted to ACM Transactions on Embedded Computing Systems

https://openreview.net/forum?id=HyGIdiRqtm

	Abstract
	1 Introduction
	2 Background
	2.1 Neural networks
	2.2 Verification of neural networks

	3 Abstraction approaches for neural network verification
	3.1 Abstraction of the activation function
	3.2 NN model reduction
	3.3 Discussion

	4 Conclusion
	Acknowledgments
	References

